Aligning English Strings with Abstract Meaning Representation Graphs

Nima Pourdamghani Yang Gao Ulf Hermjakob Kevin Knight
Information Sciences Institute
University of Southern California

Overview

Abstract Meaning Representation (AMR) [1]:
- Logical meaning of sentences
- Directed acyclic graphs with labeled edges

The boy wants to go

:w / want-01
:arg0 (b / boy)
:arg1 (g / go-01)

- Find alignment links between English tokens and AMR concepts
- Alignments are required for: Semantic parsing, English generation

Approach

- Similar to Statistical Machine Translation
- Linearize AMR graph (not obvious how)
- Use string / string alignment
- Easier than SMT
- AMR and English are highly cognate
- Harder
- AMR is a graph with unordered nodes
- Much less training data than in SMT

Corpus

- 13050 public AMR/English sentence pairs
- Hand Aligned 200
 - 100 dev, 100 test
- Ratio of aligned tokens in the gold data
 - English: ~ 3/4
 - AMR: ~ 1/2
- AMR role tokens: ~ 1/4

The process

Preprocess

- The boy wants to go
 - :w / want-01
 - :arg0 (b / boy)
 - :arg1 (g / go-01)

- Linearize AMR:
 - w / want-01
 - :arg0 b / boy
 - :arg1 g / go-01

- Remove stopwords
 - English: boy wants go
 - AMR: want-01 boy go-01

- Remove word sense indicator, etc. in AMR
 - want boy go

- Stem both English and AMR to first four letters
 - English: boy want go
 - AMR: want-01 boy go-01

Extend Parallel Corpus

- Tokens that look the same after stemming
- boy
- want
- go
- go

- English tokens that map to multiple AMR ones
 - bigger big
degree more
- month
- month

- November

Symmetrized EM

- Word alignment is symmetric
 - Training should be symmetric as well
 - New objective:
 \[\theta_{AB} = \arg\max \{ L_{AB}(A|E) + L_{BA}(E|A) \} \]

- Subject to:
 - \(\theta_{AB} = \theta_{BA} \)
 - \(\theta_{AB} \)
 - \(\theta_{BA} \)

- Approximate solution:
 - 1- optimize \(\theta_{AB} = \arg\max L_{AB}(A|E) \)
 - 2- satisfy constraint, initialize \(\theta_{BA} \approx \theta_{AB} \)
 - 3- optimize \(\theta_{AB} = \arg\max L_{BA}(E|A) \)
 - 4- satisfy constraint, initialize \(\theta_{BA} \approx \theta_{AB} \)
 - 5- Iterate
 - Steps 1 and 3: EM (IBM models)
 - Steps 2, 4: simple initialization
 - No extra code needed

Training

- Based on IBM word alignment models [2]
- Use EM to maximize likelihood:
- Generating AMR from English
 - \(\theta_{AB} = \arg\max L_{AB}(A|E) \)
- Or, generating English from AMR
 - \(\theta_{BA} = \arg\max L_{BA}(E|A) \)
- Decoding: get the most probable alignments given parameters using Viterbi algorithm

Postprocess

- Goal: rebuild the aligned AMR graph
- Restore stopwords, change alignments
- Rebuild graph using recorded original structure

Experiments

Precision, Recall, F-measure

- We used Mgliza++ as implementation of IBM models
- Experiment setup (Model 4+):
 - 5 × Model 1 + 5 × HMM + 4 × symmetrized Model 4

<table>
<thead>
<tr>
<th>Model</th>
<th>precision</th>
<th>recall</th>
<th>F score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>70.9</td>
<td>71.1</td>
<td>71.0</td>
</tr>
<tr>
<td>HMM</td>
<td>87.6</td>
<td>80.1</td>
<td>83.7</td>
</tr>
<tr>
<td>Model 4</td>
<td>89.7</td>
<td>80.4</td>
<td>84.8</td>
</tr>
<tr>
<td>Model 4+</td>
<td>94.1</td>
<td>80.0</td>
<td>86.5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>74.8</td>
<td>71.6</td>
<td>73.2</td>
</tr>
<tr>
<td>HMM</td>
<td>83.8</td>
<td>73.8</td>
<td>78.5</td>
</tr>
<tr>
<td>Model 4</td>
<td>85.8</td>
<td>74.9</td>
<td>80.0</td>
</tr>
<tr>
<td>Model 4+</td>
<td>92.4</td>
<td>75.6</td>
<td>83.1</td>
</tr>
</tbody>
</table>

Error Sources

- Most of the error is on role tokens
 - role tokens don’t have a specific translation in English
 - some can align to many different English words
 - they can match to part of an English word
 - or the connection might be very implicit

- About 35% of recall loss is due to removing aligned stop words

Conclusions Future Work

We have presented:
- The first set of manually aligned English/AMR pairs (available in amr.isi.edu)
- The first system, and a strong baseline, for learning alignments between English sentences and AMR graphs
- The system is adaptable to any domain and any language
- First step for parsing AMR from English and generating English from AMR

References

Griffitt, U. Hermjakob, K. Knight, P. Koehn, M.
Palmer, and N. Schneider. 2013. Abstract meaning
representation for sembanking. Linguistic
Annotation Workshop (LAW VII-ID), ACL.

and R. L. Mercer. 1993. The mathematics of
statistical machine translation: Parameter
estimation. Computational linguistics, 19(2):263–
311.

Acknowledgements

This work was supported by DARPA contracts
HR0011-12-0-0014 and FA-8750-13-2-0045.
The authors would like to thank David
Chiang, Tomer Levinboim, and Ashish
Vaswani for their comments and suggestions.