Importance weighting and unsupervised domain adaptation of POS taggers: a negative result

Barbara Plank, Anders Johannsen and Anders Søgaard
Center for Language Technology
University of Copenhagen, Denmark
bplank@cst.dk, a.johannsen@hum.ku.dk, soegaard@hum.ku.dk

Motivation
• Labeled training in NLP is heavily biased
• Importance-Weighting is one way to address data bias
• However, only few applications in NLP and mixed results
 (Jiang & Zhai, 2007; Foster et al. 2010; Søgaard & Haulrich, 2011; Plank & Moschitti, 2013)

Sample Selection Bias

Off-the-shelf POS tagger

Experimental Setup
• unsupervised Domain Adaptation (DA)
• English-Web Treebank:
 • Source: Ontonotes WSJ
 • Target domains (5): answers, emails, reviews, weblogs, newsgroups
• Weighted structured perceptron
• Code available:
 https://bitbucket.org/bplank/importance-weighting-exp
 https://github.com/coastalcph/rungsted

Results

Random weightings

Conclusions & Future Work
• A negative result about importance weighting for unsupervised domain adaptation of POS taggers.
• None of the examined weightings lead to significant improvements
• Most errors due to unseen words (high OOV rate):
 • average word form ambiguity and POS bigram KL divergence low;
 • thus, little space here for improvement for IW
• Instead, robust improvements by using Wiktionary-based type constraints (Täckström et al., 2013)
• Future work: further weight functions, data sets, NLP tasks.

References:
Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. 2006. Tracking the best hyperplane with a simple budget perceptron. In COLT.
Corinna Cortes, Yishay Mansour, and Mehryar Mohri. 2010. Learning bounds for importance weighting. In NIPS.
George Foster, Cyril Goutte, and Roland Kuhn. 2010. Discriminative instance weighting for domain adaptation in statistical machine translation. In EMNLP.
Jing Jiang and ChengXiang Zhai. 2007. Instance weighting for domain adaptation in NLP. In ACL.
Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim Nivre. 2013. Token and type constraints for cross-lingual part-of-speech tagging. TACL.

Sample Selection Bias

Cross-Domain Gulf

The DT share/NN rose/VBD to/TO 10/CD $/$ a/DT unit/NN .
May/NNP I/PRP borrow/VBP 10bucks/UH

unlabeled
T A R G E T

Assign instance-dependent weights (Shimodaira, 2001):
P^S(x)
P^T(x)

Weight functions
a) domain classifier
(Søgaard & Haulrich, 2011)

b) randomly sampled weights

Experimental Setup

Baseline

Token-based domain classifier

96
94
92

answers
reviews
emails
weblogs
newsgroups

avg tag ambiguity
0.05
0.04
0.03
0.01
0.01

KL-div:
27.7
29.5
29.9
22.1
23.1

OOV:
27.7
29.5
29.9
22.1
23.1

low
low
high OOV!

source train
target test

Importance weighting (IW)

Results

Token-based domain classifier

Baseline
1-gram
2-gram
3-gram
4-gram

500 runs in each plot

References:
Henrik Grau, Kristin Aldous, and Dien Duong. 2008. Tracking the best hyperplane with a simple budget perceptron. In COLT.
Corinna Cortes, Yishay Mansour, and Mehryar Mohri. 2010. Learning bounds for importance weighting. In NIPS.
George Foster, Cyril Goutte, and Roland Kuhn. 2010. Discriminative instance weighting for domain adaptation in statistical machine translation. In EMNLP.
Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim Nivre. 2013. Token and type constraints for cross-lingual part-of-speech tagging. TACL.