Kittens play with yarn

Kittens play with computers
Kittens play with yarn

Kittens play with computers
The city refused the demonstrators a permit because they feared violence.
The city refused the demonstrators a permit because they feared violence.

- A city fears violence
- Demonstrators fear violence
The city refused the demonstrators a permit because they feared violence.

a city fears violence
demonstrators fear violence

I ate the cake with a cherry vs. I ate the cake with a fork

cakes come with cherries

cakes are eaten using cherries
The city refused the demonstrators a permit because they feared violence.

a city fears violence
demonstrators fear violence

I ate the cake with a cherry vs. I ate the cake with a fork

cakes come with cherries
cakes are eaten using cherries

Put a sarcastic comment in your talk. That’s a great idea.

Sarcasm in your talk is a great idea
Common Sense Reasoning for Vision

Dogs drive cars

People drive cars
Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Baseball is played underwater

Baseball is played on grass
Prior Work on Common Sense Reasoning

Old School AI: Nuanced reasoning; tiny coverage.
- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).
Prior Work on Common Sense Reasoning

Old School AI: Nuanced reasoning; tiny coverage.
- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Textual Entailment: Rich inference; small data.
- RTE Challenges.
- Episodic Logic (Schubert, 2002).
Prior Work on Common Sense Reasoning

Old School AI: Nuanced reasoning; tiny coverage.
- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Textual Entailment: Rich inference; small data.
- RTE Challenges.
- Episodic Logic (Schubert, 2002).

Information Extraction: Shallow inference, large data.
- OpenIE (Yates et al., 2007), NELL (Carlson et al., 2010).
- *Extraction* of facts from a large corpus; fuzzy lookup.
Start with a large knowledge base
Start with a large knowledge base

- The cat ate a mouse
- All cats have tails
- All kittens are cute
Infer new facts...

- The cat ate a mouse
- All cats have tails
- All kittens are cute
The cat ate a mouse

All cats have tails

All kittens are cute

No carnivores eat animals
Infer new facts...

The cat ate a mouse

All cats have tails

All kittens are cute

No carnivores eat animals

↑ Don’t want to run inference over every fact!

↑ Don’t want to run inference over every fact!
Infer new facts...

- The cat ate a mouse
- All cats have tails
- All kittens are cute

↑ Don’t want to run inference over every fact!

↓ Don’t want to store all of these!

No carnivores eat animals
Infer new facts...on demand from a query...

No carnivores eat animals?

The cat ate a mouse

All cats have tails

All kittens are cute
...Using text as the meaning representation...

No carnivores eat animals?

The carnivores eat animals

The cat eats animals

The cat ate an animal

The cat ate a mouse

All cats have tails

All kittens are cute
Without aligning to any particular premise.

The carnivores eat animals.

The cat eats animals.

The cat ate an animal.

The cat ate a mouse.

No carnivores eat animals?

All cats have tails.

All kittens are cute.
A Better Knowledge Base Lookup

Lookup in 270 million entry KB...

...by lemmas 12% recall
...with NaturalLI 49% recall (91% precision)
A Better Knowledge Base Lookup

Lookup in 270 million entry KB...

...by lemmas 12% recall
...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.
A Better Knowledge Base Lookup

Lookup in 270 million entry KB...

...by lemmas 12% recall
...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Maintain good properties of fuzzy lookup.

- Fast.
- Minimal pre-processing of query.
- Minimal pre-processing of knowledge base.
A Better Knowledge Base Lookup

Lookup in 270 million entry KB...

...by lemmas 12% recall
...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Maintain good properties of fuzzy lookup.
- Fast.
- Minimal pre-processing of query.
- Minimal pre-processing of knowledge base.

Natural Logic
s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse
(all mice are rodents)
∴ Some cat ate a rodent
Natural Logic as Syllogisms

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse
(all mice are rodents)
∴ Some cat ate a rodent

Cognitively easy inferences are easy:

Most cats eat mice

∴ Most cats eat rodents
Natural Logic as Syllogisms

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse
(all mice are rodents)
∴ Some cat ate a rodent

Cognitively easy inferences are easy:

 Most cats eat mice
∴ Most cats eat rodents

“All students who know a foreign language learned it at university.”
Natural Logic as Syllogisms

Some cat ate a mouse
(all mice are rodents)
∴ Some cat ate a *rodent*

Cognitively easy inferences are easy:

Most cats eat mice
∴ Most cats eat *rodents*

“All students who know a foreign language learned it at university.”
∴ “They learned it at school.”
Natural Logic as Syllogisms

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse
(all mice are rodents)
∴ Some cat ate a rodent

Cognitively easy inferences are easy:

Most cats eat mice
∴ Most cats eat rodents

“All students who know a foreign language learned it at university.”
∴ “They learned it at school.”

Facts are text; inference is lexical mutation
Treat hypernymy as a **partial order**.

\[
\downarrow
\uparrow
\quad \text{animal} \quad \downarrow
\uparrow
\quad \text{feline} \quad \text{dog}
\quad \uparrow
\text{cat}
\downarrow
\]

Polarity is the direction a lexical item can move in the ordering.
Natural Logic and Polarity

Treat hypernymy as a *partial order*.

\[\top \]
\[\text{animal} \]
\[\text{feline} \]
\[\text{cat} \]
\[\text{dog} \]
\[\bot \]

Polarity is the direction a lexical item can move in the ordering.

animal

feline

cat

house cat
Natural Logic and Polarity

Treat hypernymy as a *partial order*.

\[
\begin{array}{c}
\top \\
\downarrow \\
\text{animal} \\
\downarrow \\
\text{feline} \\
\downarrow \\
\text{cat} \\
\downarrow \\
\bot
\end{array}
\]

Polarity is the direction a lexical item can move in the ordering.

\[
\begin{array}{c}
\text{animal} \\
\uparrow \\
\text{feline} \\
\uparrow \\
\text{cat} \\
\uparrow \\
\text{house cat}
\end{array}
\]
Natural Logic and Polarity

Treat hypernymy as a *partial order*.

\[
\top \quad \text{animal} \quad \downarrow \quad \text{feline} \quad \downarrow \quad \text{dog} \quad \downarrow \quad \text{cat} \quad \downarrow \quad \bot
\]

Polarity is the direction a lexical item can move in the ordering.

\[
\text{living thing} \quad \uparrow \quad \text{animal} \quad \uparrow \quad \text{feline} \quad \uparrow \quad \text{cat}
\]
Natural Logic and Polarity

Treat hypernymy as a *partial order*.

\[
\begin{array}{c}
\top \\
\uparrow \\
\text{animal} \\
\uparrow \\
\text{feline} \\
\uparrow \\
\text{cat} \\
\downarrow \\
\bot \\
\end{array}
\]

Polarity is the direction a lexical item can move in the ordering.

\[
\begin{array}{c}
\text{thing} \\
\downarrow \\
\text{living thing} \\
\uparrow \text{animal} \\
\text{feline} \\
\end{array}
\]
Natural Logic and Polarity

Treat hypernymy as a *partial order*.

\[\top \quad \downarrow \quad \text{animal} \quad \downarrow \quad \text{feline} \quad \text{dog} \quad \downarrow \quad \text{cat} \quad \downarrow \quad \bot \]

Polarity is the direction a lexical item can move in the ordering.

\[\text{thing} \quad \downarrow \quad \text{living thing} \quad \downarrow \quad \text{animal} \quad \downarrow \quad \text{feline} \]
Natural Logic and Polarity

Treat hypernymy as a *partial order*.

\[
\begin{array}{c}
\top \\
\downarrow \\
\text{animal} \\
\downarrow \\
\text{feline} & \text{dog} \\
\downarrow \\
\text{cat} \\
\downarrow \\
\bot
\end{array}
\]

Polarity is the direction a lexical item can move in the ordering.

\[
\begin{array}{c}
\text{living thing} \\
\downarrow \\
\text{animal} \\
\text{feline} \\
\downarrow \\
\text{cat}
\end{array}
\]
Natural Logic and Polarity

Treat hypernymy as a *partial order.*

\[
\top \quad \uparrow \\
\downarrow \\
\text{animal} \\
\text{feline} \quad \text{dog} \\
\uparrow \\
\downarrow \\
\text{cat} \\
\downarrow \\
\bot
\]

Polarity is the direction a lexical item can move in the ordering.

animal

feline

↓ cat

house cat
Quantifiers determines the *polarity* (↑ or ↓) of words.
Quantifiers determines the *polarity* (↑ or ↓) of words.
Mutations must respect *polarity*.

↑ All ↓

↑ house cats ↓

↑ eat ↓

↑ mice ↓

gobelines
cats
kitties

consume
slurp

placentals
rodents
fieldmice
An Example Inference

Quantifiers determines the *polarity* (↑ or ↓) of words.
Mutations must respect *polarity*.

- **↑ All**
 - felines
 - cats
 - kitties

- **↓ house cats**

- **↑ consume**
 - placentals
 - rodents
 - mice

- **↑ mice**
 - fieldmice
An Example Inference

Quantifiers determines the *polarity* (↑ or ↓) of words.

Mutations must respect *polarity*.

\[\uparrow \text{All} \downarrow \uparrow \]

felines
cats
down house cats
kitties
↑ consume
eat
↑ rodents
mice
↑ fieldmice
pine vole
An Example Inference

Quantifiers determines the *polarity* (∧ or ∨) of words.
Mutations must respect *polarity*.

↑ All ↓

felines

cats

↓ house cats

kitties

↑ consume

placentals

rodsents

↑ mice

eat

fieldmice
An Example Inference

Quantifiers determine the *polarity* (↑ or ↓) of words.

Mutations must respect *polarity*.

Gabor Angeli, Chris Manning (Stanford)
An Example Inference

Quantifiers determines the *polarity* (↑ or ↓) of words.

Mutations must respect *polarity*.

Inference is reversible.

↑ All ↓

↑ house cats

↑ consume

↑ rodents

↑ All ↓

↓ house cats

↓ eat

↓ mammals

↓ placentals

↑ felines

↑ cats

↑ house cats

↑ kittens

↑ eat

↑ rodents

↑ mice

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Common Sense Reasoning

October 26, 2014 9 / 22
Properties of Natural Logic

✓ Computationally fast during inference.
 - “Semantic” parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.
Properties of Natural Logic

✓ Computationally fast during inference.
 • “Semantic” parse of query is just syntactic parse.
 • Inference is lexical mutations / insertions / deletions.

✓ Computationally fast during pre-processing.
 • Plain text!
Properties of Natural Logic

✓ Computationally fast during inference.
 - “Semantic” parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.

✓ Computationally fast during pre-processing.
 - Plain text!

✓ Still captures common inferences.
 - We make these types of inferences regularly and instantly.
Properties of Natural Logic

✓ Computationally fast during inference.
 • “Semantic” parse of query is just syntactic parse.
 • Inference is lexical mutations / insertions / deletions.

✓ Computationally fast during pre-processing.
 • Plain text!

✓ Still captures common inferences.
 • We make these types of inferences regularly and instantly.
 • We expect *readers* to make these inferences instantly.
The cat ate a mouse

All cats have tails

All kittens are cute

No carnivores eat animals
Natural Logic Inference is Search

No carnivores eat animals?

The carnivores eat animals

The cat eats animals

The cat ate an animal

The cat ate a mouse

All cats have tails

All kittens are cute
Natural Logic Inference is Search

No carnivores eat animals?

The carnivores eat animals

The cat eats animals

The cat ate an animal

The cat ate a mouse

All cats have tails

All kittens are cute
Natural Logic Inference is Search

Nodes

\[(\text{fact}, \text{truth maintained} \in \{\text{true}, \text{false}\})\]
Natural Logic Inference is Search

Nodes

(fact, truth maintained ∈ \{true, false\})

Start Node

(query fact, true)

End Nodes

any known fact
Natural Logic Inference is Search

Nodes
(fact, truth maintained ∈ {true, false})

Start Node
(query fact, true)

End Nodes
any known fact

Edges
Mutations of the current fact
Natural Logic Inference is Search

Nodes
(\textit{fact}, \textit{truth maintained} \in \{\textit{true}, \textit{false}\})

Start Node
(\textit{query fact}, \textit{true})

End Nodes
any known fact

Edges
Mutations of the current fact

Edge Costs
How “wrong” an inference step is (learned)
An Example Search (as reverse inference)

Search mutates *opposite* to polarity

![Diagram showing the relationship between organisms, animals, carnivores, and felines.](image)
An Example Search (as reverse inference)

Truth maintained: true

Current Node:

- organism
- animal
- consume
- living thing
- organism
- carnivores
- felines
- eat
- slurp
- animals
- chordate

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Common Sense Reasoning October 26, 2014 12 / 22
An Example Search (as reverse inference)

Truth maintained: false

Current Node: ↑ The↑↑ All↓↑ organism animal carnivorues consume ↑ eat slurp living thing organism chordate
An Example Search (as reverse inference)

Truth maintained: false

Current Node:

- The
- felines
- eat
- animals
- carnivores
- consume
- living thing
- organism
- chordate

The current node is the `↑ animals` node, indicating a search for animals. The truth maintained is false, suggesting that the search did not find any evidence to confirm the statement.
An Example Search (as reverse inference)

Truth maintained: false

Current Node:

- **The cats**
- All carnivores
- felines
- consume
- eat
- slurp
- living thing
- organism
- chordate

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Common Sense Reasoning October 26, 2014
An Example Search (as reverse inference)

Truth maintained: false

Current Node:
- The
- All
- cats
- eat
- chordates
- carnivores
- felines
- consume
- kittens
- slurp
- animals
- mice

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Commonsense Reasoning

October 26, 2014 12 / 22
An Example Search (as reverse inference)

Truth maintained: false

Current Node:

- **The**
- **All**
- **cats**
- **kitties**
- **eat**
- **slurp**
- **mice**
- **fieldmice**

- **carnivores**
- **felines**
- **consume**
- **animals**
- **chordates**
An Example Search (as reverse inference)

Truth maintained: false

Current Node:

↑ The↑↑
All↑

↑ cat
kitty

↑ ate
slurped

↑ a↑↑
All↑↑

↑ mouse
fieldmouse
An Example Search (as graph search)

Shorthand for a node:

- organism
- animal
- consume
- living thing
- organism

↑ No ↓
↑ carnivores ↓
↑ felines ↓
↓ eat
↓ slurp
↑ animals
↑ chordate

No carnivores eat animals?
An Example Search (as graph search)

ROOT

No carnivores eat animals?

The carnivores eat animals

No cats eat animals

...
An Example Search (as graph search)

No carnivores eat animals

The carnivores eat animals?

The feline eats animals

All carnivores eat animals

...
An Example Search (as graph search)

The carnivores eat animals

The feline eats animals?

The cat eats animals

The cat eats chordate

...
An Example Search (as graph search)

- The feline eats animals
- The cat eats animals?
- The cat eats chordates
- The kitty eats animals
- ...
An Example Search (as graph search)

The cat eats animals

The cat eats chordates?

The cat eats mice

The cat eats dogs

...
An Example Search (as graph search)

The cat eats chordates

The cat eats mice?

The cat ate a mouse

The kitty eats mice

...
An Example Search (with edges)

ROOT

No carnivores eat animals?

The carnivores eat animals

No cats eat animals

Template: Operator Negate

Instance

Edge

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Common Sense Reasoning October 26, 2014 14 / 22
An Example Search (with edges)

- **Operator**: Negate
- **Template**: No carnivores eat animals?
- **Instance**: No cats eat animals
- **Edge**: No → The
No carnivores eat animals?

Template:
Operator Negate

Instance:
No → The carnivores eat animals

Edge:
No carnivores eat animals → The carnivores eat animals
Edge Templates

<table>
<thead>
<tr>
<th>Template</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponym</td>
<td>cat → animal</td>
</tr>
<tr>
<td>Animal</td>
<td>cat → animal</td>
</tr>
<tr>
<td>Antonym</td>
<td>good → bad</td>
</tr>
<tr>
<td>Synonym</td>
<td>cat → true cat</td>
</tr>
<tr>
<td>Add Word</td>
<td>cat → ·</td>
</tr>
<tr>
<td>Delete Word</td>
<td>· → cat</td>
</tr>
<tr>
<td>Operator Weaken</td>
<td>some → all</td>
</tr>
<tr>
<td>Operator Strengthen</td>
<td>all → some</td>
</tr>
<tr>
<td>Operator Negate</td>
<td>all → no</td>
</tr>
<tr>
<td>Operator Synonym</td>
<td>all → every</td>
</tr>
<tr>
<td>Nearest Neighbor</td>
<td>cat → dog</td>
</tr>
</tbody>
</table>
“Soft” Natural Logic

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.

Detail: Variation among edge instances of a template.

WordNet: cat → feline vs. cup → container.

Nearest neighbors distance.

Each edge instance has a distance f_i.

Cost of an edge is $\theta_i \cdot f_i$.

Cost of a path is $\theta \cdot f$.

Can learn parameters θ_i.
“Soft” Natural Logic

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \geq 0$.

WordNet: cat \rightarrow feline vs. cup \rightarrow container. Nearest neighbors distance.

Each *edge instance* has a distance f_i. Cost of an edge is $\theta_i \cdot f_i$. Cost of a path is $\theta \cdot f$. Can learn parameters θ.

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Common Sense Reasoning

October 26, 2014 16 / 22
“Soft” Natural Logic

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta \geq 0$.

Detail: Variation among edge instances of a template.

- WordNet: $\text{cat} \rightarrow \text{feline} \textbf{vs.} \text{cup} \rightarrow \text{container}$.
- Nearest neighbors distance.
- Each edge instance has a distance f.
“Soft” Natural Logic

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta \geq 0$.

Detail: Variation among edge instances of a template.

- WordNet: $\text{cat} \rightarrow \text{feline vs. cup} \rightarrow \text{container}$.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$.
Want to make likely (but not certain) inferences.
- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta \geq 0$.

Detail: Variation among edge instances of a template.
- WordNet: cat \rightarrow feline vs. cup \rightarrow container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$.
Cost of a path is $\theta \cdot f$.
“Soft” Natural Logic

Want to make likely (but not certain) inferences.
- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta \geq 0$.

Detail: Variation among edge instances of a template.
- WordNet: $\text{cat} \rightarrow \text{feline} \ vs. \ \text{cup} \rightarrow \text{container}$.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$.
Cost of a path is $\theta \cdot f$.
Can learn parameters θ.

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Common Sense Reasoning October 26, 2014 16 / 22
Contribution: Simple Transitivity

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

Contribution: Simple Transitivity

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

- $\textit{nocturnal} \uparrow \rightarrow \textit{diurnal}$, $\textit{all} \uparrow \rightarrow \textit{not all}$
- $\therefore \textit{all bats are nocturnal} \uparrow \rightarrow \textit{not all bats are diurnal}$
Contribution: Simple Transitivity

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

- nocturnal \uparrow diurnal, all \leftrightarrow not all
- \[
\therefore \text{ all bats are nocturnal} \not\rightarrow \text{ not all bats are diurnal}
\]
Contribution: Simple Transitivity

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

- *nocturnal* $\uparrow \rightarrow$ *diurnal*, *all* $\subseteq \rightarrow$ *not all*

 \therefore *all bats are nocturnal* $\uparrow \rightarrow$ *not all bats are diurnal*
Contribution: Simple Transitivity

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

- nocturnal \uparrow diurnal, all \mapsto not all

\therefore all bats are nocturnal $\not\Rightarrow$ not all bats are diurnal

<table>
<thead>
<tr>
<th>\varnothing</th>
<th>\exists</th>
<th>\neg</th>
<th>\forall</th>
<th>\exists</th>
<th>\neg</th>
<th>\forall</th>
<th>\neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>\exists</td>
<td>\exists</td>
<td>\neg</td>
<td>\neg</td>
<td>\exists</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>\forall</td>
<td>\forall</td>
<td>\neg</td>
<td>\neg</td>
<td>\forall</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>
Contribution: Simple Transitivity

Natural Logic Analog of Transitivity:

State Fact Mutation
⇒ all bats are nocturnal,
Contribution: Simple Transitivity

Natural Logic Analog of Transitivity:

<table>
<thead>
<tr>
<th>State</th>
<th>Fact</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒</td>
<td>all bats are nocturnal,</td>
<td>(nocturnal \rightarrow diurnal)</td>
</tr>
</tbody>
</table>
Contribution: Simple Transitivity

Natural Logic Analog of Transitivity:

<table>
<thead>
<tr>
<th>State</th>
<th>Fact</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒</td>
<td>all bats are nocturnal,</td>
<td>(nocturnal ↦ diurnal)</td>
</tr>
<tr>
<td>⇒ ¬</td>
<td>all bats are diurnal,</td>
<td></td>
</tr>
</tbody>
</table>
Contribution: Simple Transitivity

Natural Logic Analog of Transitivity:

<table>
<thead>
<tr>
<th>State</th>
<th>Fact</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒</td>
<td>all bats are nocturnal,</td>
<td>(nocturnal ↦ diurnal)</td>
</tr>
<tr>
<td>⇒ ¬</td>
<td>all bats are diurnal,</td>
<td>(all ↦ not all)</td>
</tr>
</tbody>
</table>

Gabor Angeli, Chris Manning (Stanford) | NaturalLI: Natural Logic Inference for Common Sense Reasoning | October 26, 2014
Contribution: Simple Transitivity

Natural Logic Analog of Transitivity:

<table>
<thead>
<tr>
<th>State</th>
<th>Fact</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒</td>
<td>all bats are nocturnal,</td>
<td>(nocturnal \rightarrow diurnal)</td>
</tr>
<tr>
<td>⇒ ¬</td>
<td>all bats are diurnal,</td>
<td>(all \nrightarrow not all)</td>
</tr>
<tr>
<td>⇒</td>
<td>not all bats are diurnal</td>
<td></td>
</tr>
</tbody>
</table>
Contribution: Simple Transitivity

Natural Logic Analog of Transitivity:

<table>
<thead>
<tr>
<th>State</th>
<th>Fact</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒</td>
<td>all bats are nocturnal,</td>
<td>(nocturnal $\uparrow \rightarrow$ diurnal)</td>
</tr>
<tr>
<td>⇒ ¬</td>
<td>all bats are diurnal,</td>
<td>(all $\uparrow \rightarrow$ not all)</td>
</tr>
<tr>
<td>⇒</td>
<td>not all bats are diurnal</td>
<td></td>
</tr>
</tbody>
</table>

- Complex join table can be reduced to tracking a simple binary distinction.
Experiments

FraCaS Textual Entailment Suite:
- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 P: At least three commissioners spend a lot of time at home.
 H: *At least three commissioners spend time at home.*
 P: At most ten commissioners spend a lot of time at home.
 H: *At most ten commissioners spend time at home.*
- 9 focused sections; 3 in scope for this work.
Experiments

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 P: At least three commissioners spend a lot of time at home.
 H: *At least three commissioners spend time at home.*
 P: At most ten commissioners spend a lot of time at home.
 H: *At most ten commissioners spend time at home.*

- 9 focused sections; 3 in scope for this work.

Not a blind test set!

- “Can we make deep inferences without knowing the premise *a priori*?”
FraCaS Results

Systems

M07: MacCartney and Manning (2007)
- *Classify* entailment after aligning premise and hypothesis.

M08: MacCartney and Manning (2008)
- *Classify* entailment after aligning premise and hypothesis.

N: NaturalLI (this work)
- *Search* blindly from hypothesis for the premise.

<table>
<thead>
<tr>
<th>Category</th>
<th>M07</th>
<th>M08</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifiers</td>
<td>84</td>
<td>97</td>
<td>95</td>
</tr>
<tr>
<td>Adjectives</td>
<td>60</td>
<td>80</td>
<td>73</td>
</tr>
<tr>
<td>Comparatives</td>
<td>69</td>
<td>81</td>
<td>87</td>
</tr>
</tbody>
</table>

Applicable (1,5,6) | 76 | 90 | 89 |
FraCaS Results

Systems

M07: MacCartney and Manning (2007)
M08: MacCartney and Manning (2008)
 - Classify entailment after aligning premise and hypothesis.
N: NaturalLI (this work)
 - Search blindly from hypothesis for the premise.

<table>
<thead>
<tr>
<th>§</th>
<th>Category</th>
<th>Accuracy M07</th>
<th>Accuracy M08</th>
<th>Accuracy N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quantifiers</td>
<td>84</td>
<td>97</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>Adjectives</td>
<td>60</td>
<td>80</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>Comparatives</td>
<td>69</td>
<td>81</td>
<td>87</td>
</tr>
</tbody>
</table>
FraCaS Results

Systems

M07: MacCartney and Manning (2007)
M08: MacCartney and Manning (2008)
- *Classify* entailment after aligning premise and hypothesis.

N: NaturalLI (this work)
- *Search* blindly from hypothesis for the premise.

<table>
<thead>
<tr>
<th>§</th>
<th>Category</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M07</td>
</tr>
<tr>
<td>1</td>
<td>Quantifiers</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>Adjectives</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>Comparatives</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Applicable (1,5,6)</td>
<td>76</td>
</tr>
</tbody>
</table>
Experiments

ConceptNet:

- A semi-curated collection of common-sense facts.

 \textit{not all birds can fly}
 \textit{noses are used to smell}
 \textit{nobody wants to die}
 \textit{music is used for pleasure}

- Negatives: ReVerb extractions marked false by Turkers.
- Small (1378 train / 1080 test), but fairly broad coverage.
Experiments

ConceptNet:
- A semi-curated collection of common-sense facts.
 - not all birds can fly
 - noses are used to smell
 - nobody wants to die
 - music is used for pleasure
- Negatives: ReVerb extractions marked false by Turkers.
- Small (1378 train / 1080 test), but fairly broad coverage.

Our Knowledge Base:
- 270 million lemmatized Ollie extractions.
ConceptNet Results

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

4x improvement in recall.

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com
ConceptNet Results

Systems

Direct Lookup: Lookup by lemmas.
NaturalLI: Our system.
NaturalLI Only: Use only inference (prohibit exact matches).

4x improvement in recall.
ConceptNet Results

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

<table>
<thead>
<tr>
<th>System</th>
<th>P</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Lookup</td>
<td>100.0</td>
<td>12.1</td>
</tr>
</tbody>
</table>

4x improvement in recall.
ConceptNet Results

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

<table>
<thead>
<tr>
<th>System</th>
<th>P</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Lookup</td>
<td>100.0</td>
<td>12.1</td>
</tr>
<tr>
<td>NaturalLI Only</td>
<td>88.8</td>
<td>40.1</td>
</tr>
<tr>
<td>NaturalLI</td>
<td>90.6</td>
<td>49.1</td>
</tr>
</tbody>
</table>
ConceptNet Results

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

<table>
<thead>
<tr>
<th>System</th>
<th>P</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Lookup</td>
<td>100.0</td>
<td>12.1</td>
</tr>
<tr>
<td>NaturalLI Only</td>
<td>88.8</td>
<td>40.1</td>
</tr>
<tr>
<td>NaturalLI</td>
<td>90.6</td>
<td>49.1</td>
</tr>
</tbody>
</table>

- 4x improvement in recall.
Conclusions

Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- “Soft” logic with probability of truth.
Conclusions

Takeaways

- *Deep* inferences from a *large* knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- “Soft” logic with probability of truth.

Strictly better than querying a knowledge base.

- 12% recall → 49% recall @ 91% precision.
- Checks logical entailment (not just fuzzy query).
Conclusions

Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- “Soft” logic with probability of truth.

Strictly better than querying a knowledge base.

- 12% recall → 49% recall @ 91% precision.
- Checks logical entailment (not just fuzzy query).

Complexity doesn’t grow with knowledge base size.
Thanks!