Nothing like Good Old Frequency:
Studying Context Filters for Distributional Thesauri

Muntsa Padró,♣ Marco Idiart♥, Carlos Ramisch♦, Aline Villavicencio♣

♦Institute of Informatics, Federal University of Rio Grande do Sul (Brazil)
♥Institute of Physics, Federal University of Rio Grande do Sul (Brazil)
♦Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille (France)
muntsa.padro@inf.ufrgs.br, marco.idiart@gmail.com,
carlos.ramisch@lif.univ-mrs.fr, avillavicencio@inf.ufrgs.br

Abstract

Much attention has been given to the impact of informativeness and similarity measures on distributional thesauri. We investigate the effects of context filters on thesaurus quality and propose the use of cooccurrence frequency as a simple and inexpensive criterion. For evaluation, we measure thesaurus agreement with WordNet and performance in answering TOEFL-like questions. Results illustrate the sensitivity of distributional thesauri to filters.

1 Introduction

Large-scale distributional thesauri created automatically from corpora (Grefenstette, 1994; Lin, 1998; Weeds et al., 2004; Ferret, 2012) are an inexpensive and fast alternative for representing semantic relatedness between words, when manually constructed resources like WordNet (Fellbaum, 1998) are unavailable or lack coverage. To construct a distributional thesaurus, the (collocational or syntactic) contexts in which a target word occurs are used as the basis for calculating its similarity with other words. That is, two words are similar if they share a large proportion of contexts.

Much attention has been devoted to refining thesaurus quality, improving informativeness and similarity measures (Lin, 1998; Curran and Moens, 2002; Ferret, 2010), identifying and demoting bad neighbors (Ferret, 2013), or using more relevant contexts (Broda et al., 2009; Biemann and Riedl, 2013). For the latter in particular, as words vary in their collocational tendencies, it is difficult to determine how informative a given context is. To remove uninformative and noisy contexts, filters have often been applied like pointwise mutual information (PMI), lexicographer’s mutual information (LMI) (Biemann and Riedl, 2013), t-score (Piasecki et al., 2007) and z-score (Broda et al., 2009). However, the selection of a measure and of a threshold value for these filters is generally empirically determined. We argue that these filtering parameters have a great influence on the quality of the generated thesauri.

The goal of this paper is to quantify the impact of context filters on distributional thesauri. We experiment with different filter methods and measures to assess context significance. We propose the use of simple cooccurrence frequency as a filter and show that it leads to better results than more expensive measures such as LMI or PMI. Thus we propose a cheap and effective way of filtering contexts while maintaining quality.

This paper is organized as follows: in §2 we discuss evaluation of distributional thesauri. The methodology adopted in the work and the results are discussed in §3 and §4. We finish with some conclusions and discussion of future work.

2 Related Work

In a nutshell, the standard approach to build a distributional thesaurus consists of: (i) the extraction of contexts for the target words from corpora, (ii) the application of an informativeness measure to represent these contexts and (iii) the application of a similarity measure to compare sets of contexts. The contexts in which a target word appears can be extracted in terms of a window of cooccurring (content) words surrounding the target (Freitag et al., 2005; Ferret, 2012; Erk and Pado, 2010) or in terms of the syntactic dependencies in which the target appears (Lin, 1998; McCarthy et al., 2003; Weeds et al., 2004). The informativeness of each context is calculated using measures like PMI, and t-test while the similarity between contexts is calculated using measures like Lin’s (1998), cosine, Jensen-Shannon divergence, Dice or Jaccard.

Evaluation of the quality of distributional thesauri is a well known problem in the area (Lin,
Intrinsic evaluation, the agreement between thesauri has been examined, looking at the average similarity of a word in the thesauri (Lin, 1998), and at the overlap and rank agreement between the thesauri for target words like nouns (Weeds et al., 2004). Although much attention has been given to the evaluation of various informativeness and similarity measures, a careful assessment of the effects of filtering on the resulting thesauri is also needed. For instance, Biemann and Riedl (2013) found that filtering a subset of contexts based on LMI increased the similarity of a thesaurus with WordNet. In this work, we compare the impact of using different types of filters in terms of thesaurus agreement with WordNet, focusing on a distributional thesaurus of English verbs. We also propose a frequency-based saliency measure to rank and filter contexts and compare it with PMI and LMI.

Extrinsic evaluation of distributional thesauri has been carried out for tasks such as English lexical substitution (McCarty andNavigli, 2009), phrasal verb compositionality detection (McCarty et al., 2003) and the WordNet-based synonymy test (WBST) (Freitag et al., 2005). For comparative purposes in this work we adopt the latter.

3 Methodology

We focus on thesauri of English verbs constructed from the BNC (Burnard, 2007)

\footnote{Even though larger corpora are available, we use a traditional carefully constructed corpus with representative samples of written English to control the quality of the thesaurus.}

Contexts are extracted from syntactic dependencies generated by RASP (Briscoe et al., 2006), using nouns (heads of NPs) which have subject and direct object relations with the target verb. Thus, each target verb is represented by a set of triples containing (i) the verb itself, (ii) a context noun and (iii) a syntactic relation (object, subject). The thesauri were constructed using Lin’s (1998) method. Lin’s version of the distributional hypothesis states that two words (verbs v_1 and v_2 in our case) are similar if they share a large proportion of contexts weighted by their information content, assessed with PMI (Bansal et al., 2012; Turney, 2013).

In the literature, little attention is paid to context filters. To investigate their impact, we compare two kinds of filters, and before calculating similarity using Lin’s measure, we apply them to remove potentially noisy triples:

- **Threshold (th)**: we remove triples that occur less than a threshold th. Threshold values vary from 1 to 50 counts per triple.
- **Relevance (p)**: we keep only the top p most relevant contexts for each verb, where relevance is defined according to the following measures: (a) frequency, (b) PMI, and (c) LMI (Biemann and Riedl, 2013). Values of p vary between 10 and 1000.

In this work, we want to answer two questions: (a) Do more selective filters improve intrinsic evaluation of thesauri? and (b) Do they also help in extrinsic evaluation?

For intrinsic evaluation, we determine agreement between a distributional thesaurus and WordNet as the path similarities for the first k distributional neighbors of a verb. A single score is obtained by averaging the similarities of all verbs with their first k neighbors. The higher this score is, the closer the neighbors are to the target in WordNet, and the better the thesaurus. Several values of k were tested and the results showed exactly the same curve shapes for all values, with WordNet similarity decreasing linearly with k. For the remainder of the paper we adopt $k = 10$, as it is widely used in the literature.

For extrinsic evaluation, we use the WBST set for verbs (Freitag et al., 2005) with 7,398 questions and an average polysemes of 10.4. The task consists of choosing the most suitable synonym for a word among a set of four options. The thesaurus is used to rank the candidate answers by similarity scores, and select the first one as the correct synonym. As discussed by Freitag et al. (2005), the upper bound reached by English native speakers is 88.4% accuracy, and simple lower bounds are 25% (random choice) and 34.5% (always choosing the most frequent option).

4 Results

Figure 1 shows average WordNet similarities for thesauri built filtering by frequency threshold th and by p most frequent contexts. Table 1 summarizes the parametrization leading to the best WordNet similarity for each kind of filter. In all cases we show the results obtained for different frequency ranges\footnote{In order to study the influence of verb frequency on the results, we divide the verbs in three groups: high-frequency...} as well as the results when averaging over all verbs.
When using a threshold filter (Figure 1 left), high values lead to better performance for mid- and low-frequency verbs. This is because, for high threshold values, there are few low and mid-frequency verbs left, since a verb that occurs less has less chances to be seen often in the same context. The similarity for verbs with no contexts over the frequency threshold cannot be assessed and as a consequence those verbs are not included in the final thesaurus. As Figure 2 shows, the number of verbs decreases much faster for low and mid-frequency verbs when threshold increases. For example, for \(th = 50 \), there are only 7 remaining low-frequency verbs in the thesaurus and these tend to be idiosyncratic multiword expressions. One example is \textit{wreak}, and the only triple containing this verb that appeared more than 50 times is \textit{wreak havoc} (71 occurrences). The neighbors of this verb are \textit{cause} and \textit{play}, which yield a good similarity score in WordNet. Therefore, although higher thresholds result in higher similarities for low and mid-frequency verbs, this comes at a cost, as the number of verbs included in the thesaurus decreases considerably.

\footnote{\(|\|v\|\geq 500\), mid-frequency (150 \leq |v| < 500) and low-frequency (|v| < 150).}

\footnote{For \(p \) most salient contexts, the number of verbs does not vary and is the same shown in Figure 2 for \(th = 1 \) (no filter).}

As expected, the best performance is obtained for high-frequency verbs and no filter, since it results in more context information per verb. Increasing threshold decreases similarity due to the removal of some of these contexts. In average, higher threshold values lead to better overall similarity among the frequency ranges (from 0.148 with \(th = 1 \) to 0.164 with \(th = 50 \)). The higher the threshold, the more high-frequency verbs will prevail in the thesaurus, for which the WordNet path similarities are higher.

On the other hand, when adopting a relevance
figure of keeping the p most relevant contexts for
each verb (Figure 1 right), we obtain similar re-
sults, but more stable thesauri. The number of
verbs remains constant, since we keep a fixed
number of contexts for each verb and verbs are not
removed when the threshold is modified. Word-
Net similarity increases as more contexts are taken
into account, for all frequency ranges. There is a
maximum around $p = 200$, though larger values
do not lead to a drastic drop in quality. This sug-
gests that the noise introduced by low-frequency
contexts is compensated by the increase of infor-
mativeness for other contexts. An ideal balance
is reached by the lowest possible p that maintains
high WordNet similarity, since the lower the p the
faster the thesaurus construction.

In terms of saliency measure, when keeping
only the p most relevant contexts, sorting them
with PMI leads to much worse results than LMI
or frequency, as PMI gives too much weight to
infrequent combinations. This is consistent with
results of Biemann and Riedl (2013). Regarding
LMI versus frequency, the results using the latter
are slightly better (or with no significant differ-
ence, depending on the frequency range). The ad-
vantage of using frequency instead of LMI is that
it makes the process simpler and faster while lead-
ing to equal or better performance in all frequency
ranges. Therefore for the extrinsic evaluation us-
ing WBS task, we use frequency to select the
p most relevant contexts and then compute Lin’s
similarity using only those contexts.

Figure 3 shows the performance of the thesauri
in the WBS task in terms of precision, recall and
F1.\footnote{Filters based on LMI and PMI were also tested with the
texts occurring less than th times, but, this also
leads to poor recall, since many verbs are left out
of the thesauri and their WSBT questions cannot
be answered. On the other hand, keeping the most
relevant p contexts leads to more stable results and
when p is high (right plot), they are similar to those
shown in the left plot of Figure 3.}

4.1 Discussion

The answer to our questions in Section 3 is yes,
more selective filters improve intrinsic and extrin-
sic thesaurus quality. The use of both filtering
methods results in thesauri in which the neighbors
of target verbs are closer in WordNet and get better
scores in TOEFL-like tests. However, the fact that
filtering contexts with frequency under th removes
verbs in the final thesaurus is a drawback, as high-
lighted in the extrinsic evaluation on the WBS task.

Furthermore, we demonstrated that competitive
results can be obtained keeping only the p most
relevant contexts per verb. On the one hand, this
method leads to much more stable thesauri, with
the same verbs for all values of p. On the other
hand, it is important to highlight that the best re-
results to assess the relevance of the contexts are ob-
tained using frequency while more sophisticated
filters such as LMI do not improve thesaurus qual-
ity. Although an LMI filter is relatively fast com-
pared to dimensionality reduction techniques such
as singular value decomposition (Landauer and
Dumais, 1997), it is still considerably more expen-
sive than a simple frequency filter.

In short, our experiments indicate that a reason-
same results as intrinsic evaluation: sorting contexts by fre-
quency leads to better results.
able trade-off between noise, coverage and computational efficiency is obtained for $p = 200$ most frequent contexts, as confirmed by intrinsic and extrinsic evaluation. Frequency threshold th is not recommended: it degrades recall because the contexts for many verbs are not frequent enough. This result is useful for extracting distributional thesauri from very large corpora like the UKWaC (Ferraresi et al., 2008) by proposing an alternative that minimizes the required computational resources while efficiently removing a significant amount of noise.

5 Conclusions and Future Work

In this paper we addressed the impact of filters on the quality of distributional thesauri, evaluating a set of standard thesauri and different filtering methods. The results suggest that the use of filters and their parameters greatly affect the thesauri generated. We show that it is better to use a filter that selects the most relevant contexts for a verb than to simply remove rare contexts. Furthermore, the best performance was obtained with the simplest method: frequency was found to be a simple and inexpensive measure of context salience. This is especially important when dealing with large amounts of data, since computing LMI for all contexts would be computationally costly. With our proposal to keep just the p most frequent contexts per verb, a great deal of contexts are cheaply removed and thus the computational power required for assessing similarity is drastically reduced.

As future work, we plan to use these filters to build thesauri from larger corpora. We would like to generalize our findings to other syntactic configurations (e.g. noun-adjective) as well as to other similarity and informativeness measures. For instance, ongoing experiments indicate that the same parameters apply when Lin’s similarity is replaced by cosine. Finally, we would like to compare the proposed heuristics with more sophisticated filtering strategies like singular value decomposition (Landauer and Dumais, 1997) and non-negative matrix factorization (Van de Cruys, 2009).

Acknowledgments

We would like to thank the support of projects CAPES/COFECUB 707/11, PNPD 2484/2009, FAPERGS-INRIA 1706-2551/13-7, CNPq 312184/2012-3, 551964/2011-1, 482520/2012-4 and 312077/2012-2.

References

