Syntax-based Statistical Machine Translation

Philip Williams and Philipp Koehn

29 October 2014

Part I - Introduction
Part II - Rule Extraction
Part III - Decoding
Part IV - Extensions
What Do We Mean by Syntax-based SMT?

- “Syntax-based” is a very inclusive term. It refers to a large family of approaches:
 - Hiero, syntax-directed MT, syntax-augmented MT, syntactified phrase-based MT, tree-to-string, string-to-dependency, dependency treelet-based, soft syntax, fuzzy tree-to-tree, tree-based, ...

- We mean that the translation model uses a tree-based representation of language.
 - We don’t count syntax-based preordering or syntactic LMs.

- We will focus on four widely-used approaches:
 1. Hierarchical phrase-based
 2. Tree-to-string
 3. String-to-tree
 4. Tree-to-tree

Why Use Syntax?

- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German–English translation
 - long distance agreement (e.g., subject-verb) in output

- Encourage grammatically coherent output

- Important step towards more linguistically motivated models (semantics)

- State-of-the art for some language pairs
 - Chinese-English (NIST 2008)
 - English-German (WMT 2012)
 - German-English (WMT 2013)
Statistical Machine Translation

Given a source string, s, find the target string, t^\star, with the highest probability according to a distribution $p(t|s)$:

$$t^\star = \arg \max_t p(t|s)$$

1. Model a probability distribution $p(t|s)$
2. Learn the parameters for the model
3. Find or approximate the highest probability string t^\star

Syntax-based Statistical Machine Translation

1. Model a probability distribution $p(t|s)$
 - How is syntax used in modelling?
2. Learn the parameters for the model
 - What are the parameters of a syntax-based model?
3. Find or approximate the highest probability string t^\star
 - How do we decode with a syntax-based model?
Modelling $p(t|s)$

- Most SMT models use Och and Ney’s (2002) log-linear formulation:

$$p(t|s) = \frac{\exp \left(\sum_{m=1}^{M} \lambda_m h_m(t, s) \right)}{\sum_{t'} \exp \left(\sum_{m=1}^{M} \lambda_m h_m(t', s) \right)}$$

h_1, \ldots, h_M are real-valued functions and $\lambda_1, \ldots, \lambda_M$ are real-valued constants.

- Denominator can be ignored during search:

$$t^* = \arg\max_t p(t|s)$$

$$= \arg\max_t \sum_{m=1}^{M} \lambda_m h_m(t, s)$$

In word-based models, s and t are modelled as sequences of words.

In phrase-based models, s and t are modelled as sequences of phrases.

So what about syntax-based models?
Hierarchical Phrase-based MT

Like phrase pairs...

But with nesting:

Hierarchical phrase pairs:

are modelled using Synchronous Context-Free Grammar (SCFG):

\[
\begin{align*}
X & \rightarrow \text{ist dieser } X_1 \mid \text{, this one is } X_1 \\
X & \rightarrow \text{nicht besonders } X_1 \mid \text{not particularly } X_1 \\
X & \rightarrow \text{schl"upfrig} \mid \text{juicy}
\end{align*}
\]
Hierarchical Phrase-based MT

Rules can include up to two non-terminals:

\[
\begin{align*}
X & \rightarrow \text{deshalb } X_1 \text{ die } X_2 \mid \text{therefore the } X_2 X_1 \\
X & \rightarrow \text{X}_1 \text{ und } X_2 \mid \text{X}_1 \text{ and } X_2
\end{align*}
\]

Glue rules concatenate hierarchical phrases:

\[
\begin{align*}
S & \rightarrow X_1 \mid X_1 \\
S & \rightarrow S_1 X_2 \mid S_1 X_2
\end{align*}
\]

Hierarchical Phrase-based MT

- Synchronous Context-Free Grammar:
 - Rewrite rules of the form \(\{ A, B \} \rightarrow \{ \alpha, \beta, \sim \} \)
 - \(A \) and \(B \) are source and target non-terminals, respectively
 - \(\alpha \) and \(\beta \) are strings of terminals and non-terminals for the source and target sides, respectively.
 - \(\sim \) is a one-to-one correspondence between source and target non-terminals.

- Hiero grammars are a special case of SCFG:
 - One non-terminal type, \(x \), on source side
 - Two non-terminal types, \(x \) and \(s \), on target side
 - Various restrictions on rule form (see Chiang (2007))
• Derivation starts with pair of linked s symbols.

$ s_1 \mid s_1$

$\Rightarrow s_2 \times_3 \mid s_2 \times_3$

• $S \rightarrow s_1 \times_2 \mid s_1 \times_2$ (glue rule)
SCFG Derivation

\[s_1 \mid s_1 \]
\[\Rightarrow s_2 x_3 \mid s_2 x_3 \]
\[\Rightarrow s_2 x_4 \text{ und } x_5 \mid s_2 x_4 \text{ and } x_5 \]

- \(X \rightarrow X_1 \text{ und } X_2 \mid X_1 \text{ and } X_2 \)

SCFG Derivation

\[s_1 \mid s_1 \]
\[\Rightarrow s_2 x_3 \mid s_2 x_3 \]
\[\Rightarrow s_2 x_4 \text{ und } x_5 \mid s_2 x_4 \text{ and } x_5 \]
\[\Rightarrow s_2 \text{ unzutreffend und } x_5 \mid s_2 \text{ unfounded and } x_5 \]

- \(X \rightarrow \text{unzutreffend} \mid \text{unfounded} \)
SCFG Derivation

\[S_1 \mid S_1 \]
\[\Rightarrow S_2 X_3 \mid S_2 X_3 \]
\[\Rightarrow S_2 X_4 \text{ und } X_5 \mid S_2 X_4 \text{ and } X_5 \]
\[\Rightarrow S_2 \text{ unzutreffend und } X_5 \mid S_2 \text{ unfounded and } X_5 \]
\[\Rightarrow S_2 \text{ unzutreffend und } \text{ irreführend} \mid S_2 \text{ unfounded and misleading} \]

- \(X \rightarrow \text{irreführend} \mid \text{misleading} \)

SCFG Derivation

\[S_1 \mid S_1 \]
\[\Rightarrow S_2 X_3 \mid S_2 X_3 \]
\[\Rightarrow S_2 X_4 \text{ und } X_5 \mid S_2 X_4 \text{ and } X_5 \]
\[\Rightarrow S_2 \text{ unzutreffend und } X_5 \mid S_2 \text{ unfounded and } X_5 \]
\[\Rightarrow S_2 \text{ unzutreffend und } \text{ irreführend} \mid S_2 \text{ unfounded and misleading} \]
\[\Rightarrow X_6 \text{ unzutreffend und } \text{ irreführend} \mid X_6 \text{ unfounded and misleading} \]

- \(S \rightarrow X_1 \mid X_1 \quad \text{(glue rule)} \)
SCFG Derivation

\[s_1 \mid s_1 \]
\[\Rightarrow s_2 x_3 \mid s_2 x_3 \]
\[\Rightarrow s_2 x_4 \text{ and } x_5 \mid s_2 x_4 \text{ and } x_5 \]
\[\Rightarrow s_2 \text{ unzutreffend und } x_5 \mid s_2 \text{ unfounded and } x_5 \]
\[\Rightarrow s_2 \text{ unzutreffend und irreführend } \mid s_2 \text{ unfounded and misleading} \]
\[\Rightarrow x_6 \text{ unzutreffend und irreführend } \mid x_6 \text{ unfounded and misleading} \]
\[\Rightarrow \textit{deshalb } x_7 \text{ die } x_8 \text{ unzutreffend und irreführend} \]
\[\mid \textit{therefore the } x_8 \text{ is } x_7 \text{ unfounded and misleading} \]

• \(X \rightarrow \textit{deshalb } x_1 \text{ die } x_2 \mid \textit{therefore the } x_2 \text{ is } x_1 \) (non-terminal reordering)

SCFG Derivation

\[s_1 \mid s_1 \]
\[\Rightarrow s_2 x_3 \mid s_2 x_3 \]
\[\Rightarrow s_2 x_4 \text{ and } x_5 \mid s_2 x_4 \text{ and } x_5 \]
\[\Rightarrow s_2 \text{ unzutreffend und } x_5 \mid s_2 \text{ unfounded and } x_5 \]
\[\Rightarrow s_2 \text{ unzutreffend und irreführend } \mid s_2 \text{ unfounded and misleading} \]
\[\Rightarrow x_6 \text{ unzutreffend und irreführend } \mid x_6 \text{ unfounded and misleading} \]
\[\Rightarrow \textit{deshalb } x_7 \text{ die } x_8 \text{ unzutreffend und irreführend} \]
\[\mid \textit{therefore the } x_8 \text{ is } x_7 \text{ unfounded and misleading} \]

• \(X \rightarrow \textit{sei } x_1 \mid \textit{was} \)
SCFG Derivation

\[s_1 \mid s_1 \]
\[\Rightarrow s_2 \ x_3 \mid s_2 \ x_3 \]
\[\Rightarrow s_2 \ x_4 \ \text{and} \ x_5 \mid s_2 \ x_4 \ \text{and} \ x_5 \]
\[\Rightarrow s_2 \ \text{unzutreffend und} \ x_5 \mid s_2 \ \text{unzutreffend and} \ x_5 \]
\[\Rightarrow s_2 \ \text{unzutreffend und irreführend} \mid s_2 \ \text{unzutreffend and irreführend} \]
\[\Rightarrow x_6 \ \text{unzutreffend und irreführend} \mid x_6 \ \text{unzutreffend and irreführend} \]
\[\Rightarrow \text{deshalb} \ x_7 \ \text{die} \ x_8 \ \text{unzutreffend und irreführend} \]
\[\Rightarrow \text{deshalb sei} \ \text{die} \ x_8 \ \text{unzutreffend und irreführend} \]
\[\Rightarrow \text{deshalb sei die} \ \text{Werbung} \ \text{unzutreffend und irreführend} \]

- \[X \rightarrow \text{Werbung} \mid \text{advertisement} \]

Hierarchical Phrase-based MT

- We can now define the search in terms of SCFG derivations

\[
t^* = \arg \max_t \sum_{m=1}^{M} \lambda_m h_m(t, s) \quad (1)
\]
\[
= \arg \max_t \sum_{d} \sum_{m=1}^{M} \lambda_m h_m(t, s, d) \quad (2)
\]

\[d \in D \], the set of synchronous derivations with source \(s \) and yield \(t \).

- In practice, approximated with search for single-best derivation:

\[
d^* = \arg \max_d \sum_{m=1}^{M} \lambda_m h_m(t, s, d) \quad (3)
\]
Hierarchical Phrase-based MT

- Search for single-best derivation:

\[d^* = \arg \max_d \sum_{m=1}^{M} \lambda_m h_m(t, s, d) \] \hspace{1cm} (3)

- Rule-local feature functions allow decomposition of derivation scores:

\[h_m(d) = \sum_{r_i} h_m(r_i) \]

- But \(n \)-gram language model can’t be decomposed this way . . .

\[d^* = \arg \max_d \left(\lambda_1 \log p_{LM}(d) + \sum_{r_i} \sum_{m=2}^{M} \lambda_m h_m(r_i) \right) \] \hspace{1cm} (4)

Summary so far:
- Generalizes concept of phrase pair to allow nested phrases
- Formalized using SCFG
- No use of linguistic annotation: syntactic in a purely formal sense
- Model uses standard SMT log-linear formulation
- Search over derivations

Later:
- Rule extraction and scoring
- Decoding (search for best derivation)
- \(k \)-best extraction
Tree-to-String

Hierarchical phrase pairs but with embedded tree fragments on the source side:

Each source subphrase is a complete subtree.

Tree-to-String

Formalized using Synchronous Tree-Substitution Grammar (STSG):

Syntax-based Statistical Machine Translation
Tree-to-String

- Synchronous Tree Substitution Grammar (STSG):
 - Grammar rules have the form \(\langle \pi, \gamma, \sim \rangle \)
 - \(\pi \) is a tree with source terminal and non-terminal leaves
 - \(\gamma \) is a string\(^1\) of target terminals and non-terminals
 - \(\sim \) is a one-to-one correspondence between source and target non-terminals.

- Unlike Hiero:
 - Linguistic-annotation (on source-side)
 - No limit to number of substitution sites (non-terminals)
 - No reordering limit during decoding

\(^1\)Technically, a 1-level tree formed by adding X as the root and the symbols from \(\gamma \) as children.

Syntax-based Statistical Machine Translation

Tree-to-String

- Derivation involves synchronous rewrites (like SCFG)
- Tree fragments required to match input parse tree.
 - Motivation: tree provides context for rule selection ("syntax-directed")
- Efficient decoding algorithms available: source tree constrains rule options
- Search for single-best derivation:

\[
d^* = \arg \max_d \left(\lambda_1 \log p_{LM}(d) + \sum_{r_i} \sum_{m=2}^{M} \lambda_m h_m(r_i) \right)
\]

where source-side of \(d \) must match input tree
String-to-Tree

Hierarchical phrase pairs but with embedded tree fragments on the target side:

Each target subphrase is a complete subtree.

Or SCFG:

\[
\begin{align*}
\text{SBAR} & \rightarrow \quad \text{für } X_1 \mid \text{as NP}_1 \text{ go} \\
\text{NP} & \rightarrow \quad \text{britische Skandale} \mid \text{British political scandals}
\end{align*}
\]
String-to-Tree

- Derivation is a rewriting process, like hierarchical phrase-based and tree-to-string
 - Rewrites only allowed if target labels match at substitution sites
 - Internal tree structure not used in derivation (hence frequent use of SCFG)
 - Motivation: constraints provided by target syntax lead to more fluent output

- Later:
 - Rule extraction and scoring
 - Decoding (Hiero will be special case of S2T)
 - k-best extraction (likewise)

Tree-to-Tree

Hierarchical phrase pairs but with embedded tree fragments on both sides:

Formalized using STSG
Tree-to-Tree

Differences in source and target syntactic structure increasingly important

Can be differences in treebank annotation style or simply differences in language choice

Summary So Far

- We have introduced four models:

<table>
<thead>
<tr>
<th>Model</th>
<th>Formalism</th>
<th>Source Syntax</th>
<th>Target Syntax</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiero</td>
<td>SCFG</td>
<td>N</td>
<td>N</td>
<td>string</td>
</tr>
<tr>
<td>T2S</td>
<td>STSG</td>
<td>Y</td>
<td>N</td>
<td>tree</td>
</tr>
<tr>
<td>S2T</td>
<td>STSG or SCFG</td>
<td>N</td>
<td>Y</td>
<td>string</td>
</tr>
<tr>
<td>T2T</td>
<td>STSG</td>
<td>Y</td>
<td>Y</td>
<td>tree</td>
</tr>
</tbody>
</table>

- Next:
 - Rule extraction
Part I - Introduction
Part II - Rule Extraction
Part III - Decoding
Part IV - Extensions

Learning Synchronous Grammars

• Extracting rules from a word-aligned parallel corpus

• First: Hierarchical phrase-based model
 – only one non-terminal symbol x
 – no linguistic syntax, just a formally syntactic model

• Then: Synchronous phrase structure model
 – non-terminals for words and phrases: NP, VP, PP, ADJ, ...
 – corpus must also be parsed with syntactic parser
Extracting Phrase Translation Rules

shall be = werde

Syntax-based Statistical Machine Translation

Extracting Phrase Translation Rules

shall = werde

Syntax-based Statistical Machine Translation
Extracting Phrase Translation Rules

<table>
<thead>
<tr>
<th>English</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>I shall be passing on</td>
<td>Ich werde Ihnen die entsprechenden Anmerkungen aushändigen</td>
</tr>
<tr>
<td>some comments</td>
<td>= shall be passing on to you some comments</td>
</tr>
</tbody>
</table>

Extracting Hierarchical Phrase Translation Rules

<table>
<thead>
<tr>
<th>English</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>subtracting subphrase</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formal Definition

• Recall: consistent phrase pairs

\[(\bar{e}, \bar{f}) \text{ consistent with } A \iff \]
\[
\forall e_i \in \bar{e}: (e_i, f_j) \in A \rightarrow f_j \in \bar{f} \\
\text{AND } \forall f_j \in \bar{f}: (e_i, f_j) \in A \rightarrow e_i \in \bar{e} \\
\text{AND } \exists e_i \in \bar{e}, f_j \in \bar{f}: (e_i, f_j) \in A
\]

• Let \(P \) be the set of all extracted phrase pairs \((\bar{e}, \bar{f})\)

Syntax-based Statistical Machine Translation

Formal Definition

• Extend recursively:

if \((\bar{e}, \bar{f}) \in P \text{ AND } (\bar{e}_{\text{SUB}}, \bar{f}_{\text{SUB}}) \in P\)

AND \(\bar{e} = \bar{e}_{\text{PRE}} + \bar{e}_{\text{SUB}} + \bar{e}_{\text{POST}}\)

AND \(\bar{f} = \bar{f}_{\text{PRE}} + \bar{f}_{\text{SUB}} + \bar{f}_{\text{POST}}\)

AND \(\bar{e} \neq \bar{e}_{\text{SUB}} \text{ AND } \bar{f} \neq \bar{f}_{\text{SUB}}\)

add \((e_{\text{PRE}} + x + e_{\text{POST}}, f_{\text{PRE}} + x + f_{\text{POST}})\) to \(P \)

(note: any of \(e_{\text{PRE}}, e_{\text{POST}}, f_{\text{PRE}}, \text{ or } f_{\text{POST}} \) may be empty)

• Set of hierarchical phrase pairs is the closure under this extension mechanism
Comments

- Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

 \[Y \rightarrow X_1 X_2 \mid X_2 \text{ of } X_1 \]

- Typical restrictions to limit complexity [Chiang, 2005]
 - at most 2 nonterminal symbols
 - at least 1 but at most 5 words per language
 - span at most 15 words (counting gaps)
Constraints on Syntactic Rules

- Same word alignment constraints as hierarchical models
- Hierarchical: rule can cover any span
 ⇔ syntactic rules must cover constituents in the tree
- Hierarchical: gaps may cover any span
 ⇔ gaps must cover constituents in the tree
- Much fewer rules are extracted (all things being equal)

Impossible Rules

[Diagram showing a tree structure with English and German words, highlighting the impossibility of certain rules due to the tree structure.]

*English span not a constituent
no rule extracted*
Rules with Context

Rule with this phrase pair requires syntactic context

Too Many Rules Extractable

- Huge number of rules can be extracted
 (every alignable node may or may not be part of a rule → exponential number of rules)

- Need to limit which rules to extract

- Option 1: similar restriction as for hierarchical model
 (maximum span size, maximum number of terminals and non-terminals, etc.)

- Option 2: only extract minimal rules ("GHKM" rules)
Minimal Rules

Extract: set of smallest rules required to explain the sentence pair

Lexical Rule

Extracted rule: \texttt{PRP} \rightarrow \texttt{Ich} | \texttt{I}
Lexical Rule

Extracted rule: $\text{PRP} \rightarrow \text{Ihnen} \mid \text{you}$

Lexical Rule

Extracted rule: $\text{DT} \rightarrow \text{die} \mid \text{some}$
Lexical Rule

Extracted rule: NNS → Anmerkungen | comments

Insertion Rule

Extracted rule: PP → X | to PRP
Non-Lexical Rule

Extracted rule: \(NP \rightarrow X_1 \ X_2 \ | \ DT_1 \ NNS_2 \)

Lexical Rule with Syntactic Context

Extracted rule: \(VP \rightarrow X_1 \ X_2 \ \text{aushändigen} \ | \ \text{passing on PP}_1 \ \text{NP}_2 \)
Lexical Rule with Syntactic Context

Extracted rule: \(VP \rightarrow \text{werde } X \mid \text{shall be } VP \) (ignoring internal structure)

Non-Lexical Rule

Extracted rule: \(S \rightarrow X_1 \ X_2 \mid \text{PRP}_1 \ VP_2 \)

DONE — note: one rule per alignable constituent
I shall be passing on to you some comments.

Unaligned Source Words

Unaligned Source Words

Attach to neighboring words or higher nodes → additional rules

Too Few Phrasal Rules?

- Lexical rules will be 1-to-1 mappings (unless word alignment requires otherwise)

- But: phrasal rules very beneficial in phrase-based models

- Solutions
 - combine rules that contain a maximum number of symbols (as in hierarchical models, recall: "Option 1")
 - compose minimal rules to cover a maximum number of non-leaf nodes
Composed Rules

- Current rules
 \[X_1 X_2 = \underbrace{\text{NP}}_{\text{DT}_1 \text{ NNS}_1} \]

 \[\text{die} = \text{DT}_1 \text{ entsprechenden Anmerkungen} = \text{NNS}_1 \text{ comments} \]

- Composed rule

 \[\text{die entsprechenden Anmerkungen} = \underbrace{\text{NP}}_{\text{DT}_1 \text{ NNS}_1} \]

 some comments

 (1 non-leaf node: NP)

Composed Rules

- Minimal rule:

 \[X_1 X_2 \text{ aushändigen} = \underbrace{\text{VP}}_{\text{PRP}_1 \text{ PP}_1 \text{ NP}_2} \]

 passing on

 3 non-leaf nodes: VP, PP, NP

- Composed rule:

 \[\text{Ihnen} X_1 \text{ aushändigen} = \underbrace{\text{VP}}_{\text{PRP}_1 \text{ PP}_1 \text{ NP}_2} \]

 passing on TO PRP to you

 3 non-leaf nodes: VP, PP and NP
Relaxing Tree Constraints

• Impossible rule

\[
\begin{align*}
x & = \text{MD} \quad \text{VB} \\
\text{werde} & \quad \text{shall} \quad \text{be}
\end{align*}
\]

• Create new non-terminal label: MD+VB

⇒ New rule

\[
\begin{align*}
x & = \text{MD+VB} \\
\text{werde} & \quad \text{MD} \quad \text{VB} \\
& \quad \text{shall} \quad \text{be}
\end{align*}
\]

Zollmann Venugopal Relaxation

• If span consists of two constituents, join them: X+Y

• If span consists of three constituents, join them: X+Y+Z

• If span covers constituents with the same parent \(x\) and include
 – every but the first child \(Y\), label as \(X\backslash Y\)
 – every but the last child \(Y\), label as \(X/Y\)

• For all other cases, label as FAIL

⇒ More rules can be extracted, but number of non-terminals blows up
Special Problem: Flat Structures

- Flat structures severely limit rule extraction

 \[
 \begin{array}{cccccc}
 \text{NP} \\
 \text{DT} & \text{NNP} & \text{NNP} & \text{NNP} & \text{NNP} \\
 \text{the} & \text{Israeli} & \text{Prime} & \text{Minister} & \text{Sharon}
 \end{array}
 \]

- Can only extract rules for individual words or entire phrase

Relaxation by Tree Binarization

 \[
 \begin{array}{cccccc}
 \text{NP} \\
 \text{DT} & \text{NP} \\
 \text{the} & \text{NP} & \text{NP} \\
 \text{Israeli} & \text{NNP} & \text{NNP} \\
 \text{Prime} & \text{NNP} & \text{NNP} \\
 \text{Minister} & \text{Sharon}
 \end{array}
 \]

 More rules can be extracted

 Left-binarization or right-binarization?
Scoring Translation Rules

- Extract all rules from corpus
- Score based on counts
 - joint rule probability: \(p(\text{LHS}, \text{RHS}_f, \text{RHS}_e) \)
 - rule application probability: \(p(\text{RHS}_f, \text{RHS}_e | \text{LHS}) \)
 - direct translation probability: \(p(\text{RHS}_e | \text{RHS}_f, \text{LHS}) \)
 - noisy channel translation probability: \(p(\text{RHS}_f | \text{RHS}_e, \text{LHS}) \)
 - lexical translation probability: \(\prod_{e_i \in \text{RHS}_e} p(e_i | \text{RHS}_f, a) \)
Outline

1. Hiero/S2T decoding (SCFG with string input)
 - Viterbi decoding with local features (-LM)
 - k-best extraction
 - LM integration (cube pruning)
 - The S2T algorithm, as implemented in Moses

2. T2S decoding (STSG with tree input)
 - Vanilla T2S: non-directional, cube pruning

3. T2T decoding (STSG with tree input)
 - Included for completeness — better alternatives explored later

Viterbi S2T Decoding (-LM)

Objective Find the highest-scoring synchronous derivation d^*

Input $s_1 s_2 \ldots s_n$

Grammar

- r_1 $C_1 \rightarrow \alpha_1 \mid \beta_1 w_1$
- r_2 $C_2 \rightarrow \alpha_2 \mid \beta_2 w_2$
- r_3 $C_3 \rightarrow \alpha_3 \mid \beta_3 w_3$
- $r_{|G|}$ $C_{|G|} \rightarrow \alpha_{|G|} \mid \beta_{|G|} w_{|G|}$

- C_i, α_i and β_i are LHS, source RHS, target RHS of rule r_i, respectively.
- w_i is weight of rule r_i (weighted product of rule-local feature functions).
- $|G|$ is the number of rules in the grammar G.
Viterbi S2T Decoding (-LM)

Objective

Find the highest-scoring synchronous derivation d^*

Solution

1. Project grammar
 Project weighted SCFG to weighted CFG $f : G \rightarrow G'$ (many-to-one rule mapping)

2. Parse
 Find Viterbi parse of sentence wrt G'

3. Translate
 Produce synchronous tree pair by applying inverse projection f'

Example

Input

jemand mußte Josef K. verleumdet haben
someone must Josef K. slandered have

Grammar

\begin{verbatim}
\begin{align*}
 r_1: & \text{NP} \rightarrow \text{Josef K.} | \text{Josef K.} & 0.90 \\
 r_2: & \text{VBN} \rightarrow \text{verleumdet} | \text{slandered} & 0.40 \\
 r_3: & \text{VBN} \rightarrow \text{verleumdet} | \text{defamed} & 0.20 \\
 r_4: & \text{VP} \rightarrow \text{mußte X_1 X_2 haben} | \text{must have VBN_2 NP_1} & 0.10 \\
 r_5: & \text{S} \rightarrow \text{jemand X_1 | someone VP_1} & 0.60 \\
 r_6: & \text{S} \rightarrow \text{jemand mußte X_1 X_2 haben} | \text{someone must have VBN_3 NP_1} & 0.80 \\
 r_7: & \text{S} \rightarrow \text{jemand mußte X_1 X_2 haben} | \text{NP_1 must have been VBN_3 by someone} & 0.05 \\
\end{align*}
\end{verbatim}

(Six derivations in total)
Example

Input jemand mußte Josef K. verleumdet haben
 someone must Josef K. slandered have

⇒ r1: NP → Josef K. | Josef K. 0.90
⇒ r2: VBN → verleumdet | slandered 0.40
⇒ r3: VBN → verleumdet | defamed 0.20
Grammar ⇒ r4: VP → mußte X1 X2 haben | must have VBN2 NP1 0.10
 ⇒ r5: S → jemand X1 | someone VP1 0.60
 ⇒ r6: S → jemand mußte X1 X2 haben | someone must have VBN2 NP1 0.80
 ⇒ r7: S → jemand mußte X1 X2 haben | NP1 must have been VBN1 by someone 0.05

Derivation 1

Syntax-based Statistical Machine Translation 72

Example

Input jemand mußte Josef K. verleumdet haben
 someone must Josef K. slandered have

⇒ r1: NP → Josef K. | Josef K. 0.90
⇒ r2: VBN → verleumdet | slandered 0.40
⇒ r3: VBN → verleumdet | defamed 0.20
Grammar ⇒ r4: VP → mußte X1 X2 haben | must have VBN2 NP1 0.10
 ⇒ r5: S → jemand X1 | someone VP1 0.60
 ⇒ r6: S → jemand mußte X1 X2 haben | someone must have VBN2 NP1 0.80
 ⇒ r7: S → jemand mußte X1 X2 haben | NP1 must have been VBN1 by someone 0.05

Derivation 2

Syntax-based Statistical Machine Translation 73
Example

Input
jemand mußte Josef K. verleumdet haben
someone must Josef K. slandered have

Grammar

Derivation 3

Example

Input
jemand mußte Josef K. verleumdet haben
someone must Josef K. slandered have

Grammar

Derivation 4
Example

Input jemand mußte Josef K. verleumdet haben
 someone must Josef K. slandered have

⇒ r1: NP → Josef K. | Josef K. 0.90
⇒ r2: VBN → verleumdet | slandered 0.40
⇒ r3: VBN → verleumdet | defamed 0.20
⇒ r4: VP → mußte x1 x2 haben | must have VBN2 NP1 0.10
⇒ r5: S → jemand x1 | someone VP1 0.60
⇒ r6: S → jemand mußte x1 x2 haben | someone must have VBN2 NP1 0.80
⇒ r7: S → jemand mußte x1 x2 haben | NP1 must have been VBN1 by someone 0.05

Derivation 5

Syntax-based Statistical Machine Translation 76

Example

Input jemand mußte Josef K. verleumdet haben
 someone must Josef K. slandered have

⇒ r1: NP → Josef K. | Josef K. 0.90
⇒ r2: VBN → verleumdet | slandered 0.40
⇒ r3: VBN → verleumdet | defamed 0.20
⇒ r4: VP → mußte x1 x2 haben | must have VBN2 NP1 0.10
⇒ r5: S → jemand x1 | someone VP1 0.60
⇒ r6: S → jemand mußte x1 x2 haben | someone must have VBN2 NP1 0.80
⇒ r7: S → jemand mußte x1 x2 haben | NP1 must have been VBN1 by someone 0.05

Derivation 6

Syntax-based Statistical Machine Translation 77
Step 1: Project Grammar to CFG

G

r_1: NP \rightarrow Josef K. | Josef K. 0.90
r_2: VBN \rightarrow verleumdet | slandered 0.40
r_3: VBN \rightarrow verleumdet | defamed 0.20
r_4: VP \rightarrow mußte X_1 X_2 haben | must have VBN_2 NP_1 0.10
r_5: S \rightarrow jemand X_1 | someone VP_1 0.60
r_6: S \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN_2 NP_1 0.80
r_7: S \rightarrow jemand mußte X_1 X_2 haben | NP_1 must have been VBN_1 by someone 0.05

q_1: NP \rightarrow Josef K. 0.90
q_2: VBN \rightarrow verleumdet 0.40
q_3: VP \rightarrow mußte NP VBN haben 0.10
q_4: S \rightarrow jemand VP 0.60
q_5: S \rightarrow jemand mußte NP VBN haben 0.80

- G is original synchronous grammar, G' is monolingual projection

Step 1: Project Grammar to CFG

G'

$\Rightarrow r_1$: NP \rightarrow Josef K. | Josef K. 0.90
r_2: VBN \rightarrow verleumdet | slandered 0.40
r_3: VBN \rightarrow verleumdet | defamed 0.20
r_4: VP \rightarrow mußte X_1 X_2 haben | must have VBN_2 NP_1 0.10
r_5: S \rightarrow jemand X_1 | someone VP_1 0.60
r_6: S \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN_2 NP_1 0.80
r_7: S \rightarrow jemand mußte X_1 X_2 haben | NP_1 must have been VBN_1 by someone 0.05

$\Rightarrow q_1$: NP \rightarrow Josef K. 0.90
q_2: VBN \rightarrow verleumdet 0.40
q_3: VP \rightarrow mußte NP VBN haben 0.10
q_4: S \rightarrow jemand VP 0.60
q_5: S \rightarrow jemand mußte NP VBN haben 0.80

- Projected rule gets LHS and source RHS (but with target non-terminal labels)
Step 1: Project Grammar to CFG

\[G \]
\[
\begin{align*}
 r_1: & \text{ NP } \rightarrow \text{ Josef K. } | \text{ Josef K. } & 0.90 \\
 r_2: & \text{ VBN } \rightarrow \text{ verleumdet } | \text{ slandered } & 0.40 \\
 r_3: & \text{ VBN } \rightarrow \text{ verleumdet } | \text{ defamed } & 0.20 \\
 r_4: & \text{ VP } \rightarrow \text{ mußte } x_1 x_2 haben } | \text{ must have VBN}_2 NP_1 & 0.10 \\
 r_5: & \text{ S } \rightarrow \text{ jemand } x_1 | \text{ someone VP}_1 & 0.60 \\
 r_6: & \text{ S } \rightarrow \text{ jemand mußte } x_1 x_2 haben } | \text{ someone must have VBN}_2 NP_1 & 0.80 \\
 r_7: & \text{ S } \rightarrow \text{ jemand mußte } x_1 x_2 haben } | \text{ NP}_1 \text{ must have been VBN}_1 by someone & 0.05 \\
\end{align*}
\]

\[G' \]
\[
\begin{align*}
 q_1: & \text{ NP } \rightarrow \text{ Josef K. } & 0.90 \\
 q_2: & \text{ VBN } \rightarrow \text{ verleumdet } & 0.40 \\
 q_3: & \text{ VP } \rightarrow \text{ mußte NP VBN haben } & 0.10 \\
 q_4: & \text{ S } \rightarrow \text{ jemand VP } & 0.60 \\
 q_5: & \text{ S } \rightarrow \text{ jemand mußte NP VBN haben } & 0.80 \\
\end{align*}
\]

- Many-to-one: weight of projected rule is the best from set of projecting rules

- Target non-terminal labels projected to monolingual rule (in source order)
Step 1: Project Grammar to CFG

\[r_1: \text{NP} \rightarrow \text{Josef K. | Josef K.} \]
\[r_2: \text{VBN} \rightarrow \text{verleumdet | slandered} \]
\[r_3: \text{VBN} \rightarrow \text{verleumdet | defamed} \]
\[r_4: \text{VP} \rightarrow \text{mußte} X_1 X_2 haben | \text{must have VBN}_2 \text{ NP}_1 \]
\[\Rightarrow r_5: \text{S} \rightarrow \text{jemand X} _1 | \text{someone VP}_1 \]
\[r_6: \text{S} \rightarrow \text{jemand mußte} X_1 X_2 haben | \text{someone must have VBN}_2 \text{ NP}_1 \]
\[r_7: \text{S} \rightarrow \text{jemand mußte} X_1 X_2 haben | \text{NP}_1 \text{ must have been VBN}_1 \text{ by someone} \]

\[q_1: \text{NP} \rightarrow \text{Josef K.} \]
\[q_2: \text{VBN} \rightarrow \text{verleumdet} \]
\[q_3: \text{VP} \rightarrow \text{mußte NP VBN haben} \]
\[\Rightarrow q_4: \text{S} \rightarrow \text{jemand VP} \]
\[q_5: \text{S} \rightarrow \text{jemand mußte NP VBN haben} \]

- And so on.

Syntax-based Statistical Machine Translation 83
Step 2: Find Viterbi Parse

- Standard weighted parsing algorithms.
- Binarization can be explicit (like CYK) or implicit (like Earley / CYK+)

Step 3: Reconstruct Synchronous Derivation

1-best parse tree

Source-side parse tree
Step 3: Reconstruct Synchronous Derivation

- Source-side: replace non-terminals with Xs

- Target-side: invert grammar projection
Step 3: Reconstruct Synchronous Derivation

1-best parse tree

1. jemand mußte NP
 2. Josef NP
 3. haben VBN
 4. jemand mußte NP
 5. Josef NP
 6. haben VBN

Source-side parse tree

- Target-side: invert grammar projection

\[\text{NP} \rightarrow \text{Josef K. | Josef K.} \]

Syntax-based Statistical Machine Translation 88

Step 3: Reconstruct Synchronous Derivation

1-best parse tree

1. jemand mußte NP
 2. Josef NP
 3. haben VBN
 4. jemand mußte NP
 5. Josef NP
 6. haben VBN

Source-side parse tree

- Target-side: invert grammar projection (multiple rules? pick highest-scoring)

\[\text{VBN} \rightarrow \text{verleumdet | slandered 0.4} \]
\[\text{VBN} \rightarrow \text{verleumdet | defamed 0.2} \]

Syntax-based Statistical Machine Translation 89
Step 3: Reconstruct Synchronous Derivation

- Target-side: invert grammar projection (multiple rules? pick highest-scoring)

$$
S \rightarrow \text{jemand mußte } X_1 X_2 \text{ haben } | \text{someone must have VBN } NP_1 \quad 0.80
$$

$$
S \rightarrow \text{jemand mußte } X_1 X_2 \text{ haben } | \text{NP } \text{must have been VBN } \text{by someone} \quad 0.05
$$

k-best Extraction

Objective Find the k-best synchronous derivations $d_1, d_2, \ldots d_k$

Well. . .

1. 1-best derivation is 1-best monolingual parse tree with best set of translations
2. 2-best and 3-best derivations are (in some order):
 (a) 1-best monolingual parse tree with second best set of translations, and
 (b) 2-best monolingual parse tree with best translations
3. 4-best derivation is one of . . .
k-best Extraction

Objective Find the \(k \)-best synchronous derivations \(d_1, d_2, \ldots, d_k \)

Well . . .

1. 1-best derivation is 1-best monolingual parse tree with best set of translations
2. 2-best and 3-best derivations are (in some order):
 (a) 1-best monolingual parse tree with second best set of translations, and
 (b) 2-best monolingual parse tree with best translations
3. 4-best derivation is one of . . .

We know part of the solution: how to get the \(k \)-best monolingual derivations (Huang and Chiang, 2005)

Digression: Parsing and Hypergraphs

Syntax-based Statistical Machine Translation 93
Digression: Parsing and Hypergraphs

- Generalization of a graph: hyperedges connect two sets of vertices
- Terminology: vertices and hyperedges (nodes and arcs)
- A parse forest can be represented by a rooted, connected, labelled, directed, acyclic hypergraph (Klein and Manning, 2001)
- Vertices represent parsing states; hyperedges represent rule applications

Monolingual k-best Extraction

Huang and Chiang (2005) provide efficient algorithms for k-best extraction.

Objective

Extract the k-best monolingual derivations d_1, d_2, \ldots, d_k from a weighted parse forest

Outline (alg. 3)

1. The 1-best subderivation for every vertex (and its incoming hyperedges) is known from the outset
2. Given the i-best derivation, the next best candidate along the same hyperedge is identical except for a substitution at a single incoming vertex
3. At the top vertex, generates candidates by recursively asking predecessors for next best subderivations.
4. Maintain priority queue of candidates at each vertex
Synchronous \(k \)-best Extraction

Replace hyperedges according to \(f' \) (invert grammar projection)

- The standard \(k \)-best extraction algorithm now gives the \(k \)-best synchronous derivations.
- The second hypergraph is sometimes called a “translation hypergraph”.
- We’ll call the first the “parse forest hypergraph” or the “parse hypergraph.”

S2T Decoding (LM-) Summary

Objective
Find the \(k \)-best synchronous derivations \(d_1, d_2, \ldots d_k \)

Solution
1. Project grammar
 Project weighted SCFG to unweighted CFG
 \(f : G \rightarrow G' \) (many-to-one)
2. Parse
 Build parse hypergraph wrt \(G' \)
3. Invert projection
 Expand hypergraph by replacing hyperedges according to \(f' \)
4. Extract derivations
 Extract \(k \)-best derivations using Huang and Chiang’s (2005) algorithm
LM Integration

Without LM k-best derivation is k-best path through translation hypergraph

Optimal substructure

If global best path includes $\text{VBN}_{4,4}$ then best path must include hyperedge labelled r_2

Syntax-based Statistical Machine Translation 98

LM Integration

Consider the two paths that include the hyperedge labelled r_6:

What’s the best path through this hypergraph? For bi-gram LM we need to compute:

\[
\begin{align*}
\text{have \ \underline{slandered}} \ Josef & \quad p(\text{have} \mid (s)) \times p(\text{slandered} \mid \text{have}) \times p(\text{Josef} \mid \text{slandered}) \times \ldots \\
\text{have \ \underline{defamed}} \ Josef & \quad p(\text{have} \mid (s)) \times p(\text{defamed} \mid \text{have}) \times p(\text{Josef} \mid \text{defamed}) \times \ldots
\end{align*}
\]

Syntax-based Statistical Machine Translation 99
State Splitting?

Restore optimal substructure property by splitting states:

• Vertex labels include first and last words of translation.
• Hyperedges labelled with weights that incorporate LM costs.
• k-best derivation is k-best path.

Objective

Find the k-best synchronous derivations $d_1, d_2, \ldots d_k$

Potential Solution

1. Project grammar
 Project weighted SCFG to weighted CFG $f : G \rightarrow G'$
2. Parse
 Build parse hypergraph wrt G'
3. Invert projection + split states
 Expand hypergraph by replacing hyperedges according to f'. During replacement, split states and add LM costs
4. Extract derivations
 Extract k-best derivations (Huang and Chiang, 2005)
State Splitting?

- Pick a search vertex for \(NP_{3,4} \) from the set \{ \(NP_{3,4}, Josef K. \) \}
- Pick a search vertex for \(VBN_{5,5} \) from the set \{ \(VBN_{5,5}, slandered \), \(VBN_{5,5}, defamed \) \}
- Pick a synchronous rule from the set \(f'(q_0) = \{ r_6, r_7 \} \) (i.e. pick a target-side)

The full set is generated by taking the Cartesian product of these three sets.

The Search Hypergraph is Too Large. . .

The parse hypergraph has \(O(n^3) \) space constraints (assuming certain grammar properties. . .)

With a \(m \)-gram LM the search hypergraph is \textit{much} larger:

<table>
<thead>
<tr>
<th></th>
<th>Vertices</th>
<th>Hyperedges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parse</td>
<td>(O(n^2</td>
<td>C</td>
</tr>
<tr>
<td>Search</td>
<td>(O(n^2</td>
<td>C</td>
</tr>
</tbody>
</table>

\(C \) is the set of target non-terminals \(n \) is the input sentence length
\(T \) is the set of target-side terminals \(m \) is the order of the LM
\(A \) is the maximum rule arity
Heuristic Search

- In practice, only part of the search hypergraph can be explored.
- During search, a partial search hypergraph is generated in topological order.
- Three main strategies for reducing search space:

 Parse forest pruning Avoid splitting some parse forest hyperedges by pre-pruning the forest (methods can be exact or inexact).

 Heuristic best-first splitting e.g. cube pruning. Use a splitting algorithm that finds expanded hyperedges in approximately best-first order.

 Beam search Bin vertices according to source word span and category. Keep only the highest-scoring vertices for use later in the search.

Strategy 1: Parse Forest Pruning

- If parse forest is constructed in full prior to search then dead-ends can be pruned away.

- State splitting can be restricted to a small subset of promising hyperedges.
 - Moses ranks hyperedges according to -LM rule cost plus sums of incoming +LM vertex costs.

- Monolingual forest pruning methods (Inside-outside estimates, see e.g. Charniak and Johnson (2005)).

 (Forest pruning methods haven’t been widely explored in the MT literature.)
Strategy 2: Heuristic Best-First State Splitting

- For every hyperedge in the parse hypergraph, there can be very many corresponding hyperedges in the search hypergraph.

- Cube pruning (Chiang, 2007) is most widely-used approximate algorithm but see Heafield et al. (2013) for a faster alternative.

Cube Pruning

Arrange all the choices in a “cube”

(here: a square, generally an orthotope, also called a hyperrectangle)
Create the First Hyperedge

- Hyperedges created in cube: (0,0)

“Pop” Hyperedge

- Hyperedges created in cube: ε
- Hyperedges popped: (0,0)
Create Neighboring Hyperedges

- Hyperedges created in cube: (0,1), (1,0)
- Hyperedges popped: (0,0)

Pop Best Hyperedge

- Hyperedges created in cube: (0,1)
- Hyperedges popped: (0,0), (1,0)
Create Neighboring Hyperedges

- Hyperedges created in cube: (0,1), (1,1), (2,0)
- Hyperedges popped: (0,0), (1,0)

More of the Same

- Hyperedges created in cube: (0,1), (1,2), (2,1), (2,0)
- Hyperedges popped: (0,0), (1,0), (1,1)
Queue of Cubes

• Many parse hyperedges for any given span
• Each of them will have a cube
• We can create a queue of cubes

⇒ Always pop off the most promising hyperedge, regardless of cube

• May have separate queues for different target constituent labels

Strategy 3: Beam search

• Bin vertices according to source word span and category.
• Keep only the highest-scoring vertices for use later in the search.
Putting it All Together: The S2T Decoding Algorithm in Moses

Objective
Find the k-best synchronous derivations $d_1, d_2, \ldots d_k$

Outline
1. Project grammar
 Project weighted SCFG to weighted CFG $f : G \rightarrow G'$

2. Interleaved parse + search
 Span-by-span, build parse hypergraph wrt G' and build partial search hypergraph

3. Extract derivations
 Extract k-best derivations (Huang and Chiang, 2005)

Decoding: Components

- Vertices of the parse hypergraph are stored in a chart (includes input sentence)
- Hyperedges are enumerated but not stored in chart
- Terminology: PChart, PVertex, PHyperedge
Decoding: Components

- Parser generates PHyperedges for given span of PChart
- Parser has access to partially-completed PChart
- For now, the parser is a black-box component but we’ll return to parsing...

Syntax-based Statistical Machine Translation

Decoding: Components

- Vertices of the search hypergraph are stored in a chart (includes input sentence)
- Vertices are stored in stacks (one per span + category), which are sorted
- Hyperedges are stored (unlike in PChart)
- Terminology: SChart, SVertex, SHyperedge
Decoding: Components

- Cube pruning algorithm (or similar) produces SHyperedges from PHyperedges
- A single SVertex can be produced multiple times so must check for this ('recombination')

The Moses S2T Decoding Algorithm

1: initialize PChart and SChart by adding vertices for input words
2: for each span (in parser-defined order) do
3: p-hyperedges = ForestPrune(parser.EnumerateHyperedges(span, p-chart), s-chart)
4: for all p-hyperedges do
5: create a cube for it
6: create first s-hyperedge in cube
7: place cube in queue
8: end for
9: for specified number of pops do
10: pop off best s-hyperedge of any cube in queue
11: add it to a category-specific buffer
12: create its neighbors
13: end for
14: for category do
15: recombine s-hyperedges from buffer and move into s-chart stack
16: sort stack
17: end for
18: end for
Parsing for S2T Decoding

- Parser’s job is to enumerate PHyperedges, span-by-span.
- Parser has access to partially-filled PChart.

Can we just use CYK / CYK+ / Earley?
 - All require binarization (implicit or explicit).
 - Wasn’t a problem for Viterbi-LM case.

Idea 1 Binarize G'
 - Binary normal forms exist for monolingual CFG grammars.
 - But we still need to know the synchronous rules for +LM search.

Idea 2 Binarize G before projection to CFG
 - Binarization impossible for some SCFG rules with rank ≥ 4
 - Not necessarily a problem: non-binarizable cases are rare in word-aligned translation data (Zhang et al., 2006)
 - But tricky in practice: how do we weight rules? And what about grammar inflation?
How to Avoid Binarization

• Hopkins and Langmead (2010) define a grammar property called scope:

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c d e</td>
<td>0</td>
</tr>
<tr>
<td>a o c o e</td>
<td>0</td>
</tr>
<tr>
<td>a o o d e</td>
<td>1</td>
</tr>
<tr>
<td>o b c d e</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>a o o o e</td>
<td>2</td>
</tr>
<tr>
<td>o b c d o</td>
<td>2</td>
</tr>
<tr>
<td>o o c d o</td>
<td>3</td>
</tr>
<tr>
<td>o o o o o</td>
<td>6</td>
</tr>
</tbody>
</table>

• They prove that a sentence of length n can be parsed with a scope k grammar in $O(nk)$ chart updates without binarization.

• They demonstrate empirically that reducing a GHKM grammar to scope-3 by pruning does not harm translation quality compared to synchronous binarization (and pruning is much simpler).

• Chung et al. (2011) perform similar comparison and achieve same result.

Specialized Parsing Algorithms

• CYK+ and Earley are popular choices for S2T decoding.

• But storing large numbers of dotted rules is problematic in practice (Chung et al. 2011 find scope-3 slower than binarized grammar with Earley parser, which they attribute to dotted rule storage).

• Several parsing algorithms have been designed specifically for synchronous translation grammars: DeNero et al. (2009), Hopkins and Langmead (2010), Sennrich (2014).

• We use Sennrich (2014)’s recursive variant of CYK+:
 – Good performance on WMT-scale task: fast, low-memory overhead
 – Simpler than CYK+ and alternatives
 – No dotted rule storage
Parsing for S2T Decoding (Moses-style)

- Projected grammar G' is represented as a trie (sometimes called a prefix tree)
- Edges are labelled with terminals and non-terminals
- Labels along path (from root) represent prefix of rule RHS
- Vertices in black are associated with group of rules from G (sub-grouped by rule LHS)

Parsing for S2T Decoding - Example

- Sennrich (2014)’s parsing algorithm visits cells in right-to-left, depth-first order.
- We consider situation where all of PChart filled except for left-most diagonal.
- Recall that PVertices are stored, but PHyperedges are not.
• Tail prefix: []
• Recursion level: 0

• Tail prefix: []
• Recursion level: 0
• Look for edge labelled ‘jemand’ at root node
• Tail prefix: \([\text{jemand}_{1,1}]\)
• Recursion level: 0
• Look for edge labelled ‘jemand’ at root node - found

• Tail prefix: \([\text{jemand}_{1,1}]\)
• Recursion level: 0
• Check for rules at current node - none
• Tail prefix: [jemand,1,1]
• Recursion level: 0
• Now visit each cell along previous diagonal (recursive step)

• Tail prefix: [jemand,1,1]
• Recursion level: 1
• Look for edge labelled ‘mußte’ at current node
• Tail prefix: [jemand\textsubscript{1,1}, müßte\textsubscript{2,2}]
• Recursion level: 1
• Look for edge labelled ‘müßte’ at current node - found

• Tail prefix: [jemand\textsubscript{1,1}, müßte\textsubscript{2,2}]
• Recursion level: 1
• Now visit each cell along previous diagonal
Parsing for S2T Decoding - Example

- Tail prefix: [jemand_1,1, muβte_2,2]
- Recursion level: 2
- Look for edge labelled ‘Josef’ at current node

Syntax-based Statistical Machine Translation 136

Parsing for S2T Decoding - Example

- Tail prefix: [jemand_1,1, muβte_2,2]
- Recursion level: 2
- Look for edge labelled ‘Josef’ at current node - not found

Syntax-based Statistical Machine Translation 137
Parsing for S2T Decoding - Example

- Tail prefix: [jemand_{1,1}, müßte_{2,2}]
- Recursion level: 2
- Look for edge labelled ‘NP’ at current node

• Tail prefix: [jemand_{1,1}, müßte_{2,2}, NP_{3,4}]
• Recursion level: 2
• Look for edge labelled ‘NP’ at current node - found
• Tail prefix: [jemand_{1,1}, müßte_{2,2}, NP_{3,4}]
• Recursion level: 3
• And so on...
• Tail prefix: [jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}, haben_{6,6}]
• Recursion level: 4
• And so on . . .

At this point we add a PVertex for each LHS from trie node’s rule group
• Tail prefix: [jemand\textsubscript{1,1}, mußte\textsubscript{2,2}, NP\textsubscript{3,4}, VBN\textsubscript{5,5}, haben\textsubscript{6,6}]
• Recursion level: 4
• At this point we add a PVertex for each LHS from trie node’s rule group

Together the PVertex and tail prefix constitute a complete PHyperedge.
Parsing for S2T Decoding - Example

• Tail prefix: [jemand, mußte, NP, VBN, haben]
• Recursion level: 4
• Reached end of sentence, so now the recursion stack unwinds

Syntax-based Statistical Machine Translation 146

Parsing for S2T Decoding - Example

• Tail prefix: [jemand, mußte, NP, VBN, haben]
• Recursion level: 3
• The recursion stack unwinds...
Parsing for S2T Decoding - Example

• Tail prefix: \([\text{jemand}_1,1, \text{müßte}_2,2, \text{NP}_3,4]\)
• Recursion level: 2
• The recursion stack unwinds.

• Tail prefix: \([\text{jemand}_1,1, \text{müßte}_2,2]\)
• Recursion level: 1
• The parser continues trying to extend the tail.
• Tail prefix: [jemand₁,₁]
• Recursion level: 1
• The parser continues trying to extend the tail.

• Tail prefix: [jemand₁,₁, VP₂,₆]
• Recursion level: 1
• PVertex S₁,₆ has already been added, but new tail means new PHyperedge
Decoding Performance in Practice

- S2T Moses system trained using all English-German data from WMT14
- Span limit can be used to reduce decoding time (limit is typically 10-15 for Hiero; can be higher or unlimited for S2T)

String-to-Tree Decoding - Summary

- Input sentence is a string.
- Decoding algorithm based on monolingual parsing.
- Hiero decoding is special-case of S2T decoding.
- To integrate an m-gram LM, the parse forest hypergraph is expanded to a (much-larger) search hypergraph.
- Heavy pruning is required in practice.
Tree-to-String Decoding

Reminder

- Translation rules are STSG rules with source-side syntax

```
PP-MP
  APPR  ADJA  NN
     für  britische
```

↔ as British x go

- Input is parse tree

```
TOP
  S-TOP
     PP-MO  VAFIN  NP-SB  AP-PD
      APPR  ADJA  NN  ist  PDS  nicht besonders schlüpfrig
          für  britische  Skandale  dieser
```

Syntax-based Statistical Machine Translation
Outline

Objective
Find the k-best synchronous derivations $d_1, d_2, \ldots d_k$

Outline
1. Project grammar
 Project weighted STSG to unweighted TSG $f : G \rightarrow G'$
2. Match rules
 Find rules from G' that match input tree, record in match hypergraph
3. Search
 In post-order traversal of match hypergraph, build partial search hypergraph
4. Extract derivations
 Extract k-best derivations (Huang and Chiang, 2005)

Syntax-based Statistical Machine Translation 156

Step 1: Project Grammar

- Take source-side of rule, ignore weights.

Syntax-based Statistical Machine Translation 157
Step 2: Match Rules, Build Match Hypergraph

- Look for rules that match input tree

- For each matching rule, add hyperedge to match hypergraph
Step 2: Match Rules, Build Match Hypergraph

- Match hypergraph encodes forest of possible derivation trees from G'

Step 3: Build Partial Search Hypergraph

- Cube pruning algorithm produces SHyperedges from MHyperedges
- Translations not necessarily constituents (unlike S2T)
Step 3: Build Partial Search Hypergraph

- Vertices are stored in stacks, one per input tree node

The T2S Decoding Algorithm

1. build match hypergraph by matching grammar rules to input tree
2. for each m-vertex (post-order) do
3. for all incoming m-hyperedges do
4. create a cube for it
5. create first s-hyperedge in cube
6. place cube in queue
7. end for
8. for specified number of pops do
9. pop off best s-hyperedge of any cube in queue
10. add it to a buffer
11. create its neighbors
12. end for
13. recombine s-hyperedges from buffer and move into stack
14. sort and prune stack
15. end for
Rule Matching by DFA Intersection

- Rules are encoded as DFAs. Scheme here is from Matthews et al. (2014)
- Input tree encoded in same way.
- Standard DFA intersection algorithm produces rule match hypergraph.

Tree-to-String Decoding - Summary

- Input sentence is a parse tree.
- Tree constrains rule choice: much smaller search space than S2T
- Decoding algorithm based on rule matching with LM integration.
- LM integration identical to S2T.
A Sketch of Tree-to-Tree Decoding

- STSG with tree input.

- T2T decoding is combination of S2T and T2S:
 - Search state expanded to include target-side category
 - Rule matching used to select rules; further constrained by target categories
 - Multiple category-specific stacks per input tree node
 - LM integration identical to S2T / T2S.

- Exact T2T not widely used in practice due to syntactic divergence.
“Fuzzy” Syntax

- In a nutshell: move syntax out of grammar and into feature functions
 - Syntax becomes a soft constraint
 - Motivated by syntactic divergence problem in tree-to-tree model

 ![Diagram of syntax structures]

- “Learning to Translate with Source and Target Syntax” (Chiang, 2010)
 - Zhang et al (2011) use fuzzy syntax on source-side of string-to-tree model and explore alternative feature functions

Syntax-based Statistical Machine Translation

“Fuzzy” Syntax

- Parse trees on both sides of training data
- Uses Hiero rule extraction but with SAMT-style labelling

![Diagram of syntax structures]

- Only most frequent labelling kept (one-to-one correspondence with Hiero rules)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Source Tree</th>
<th>Target Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>ADJA+NN</td>
<td>britishe Skandale</td>
</tr>
<tr>
<td>r2</td>
<td>PP-MO</td>
<td>für ADJA+NN</td>
</tr>
<tr>
<td>q1</td>
<td>X</td>
<td>britishe Skandale</td>
</tr>
<tr>
<td>q2</td>
<td>X</td>
<td>für X1</td>
</tr>
</tbody>
</table>
“Fuzzy” Syntax

- Rule labels not used during parsing but retrieved for search

- Feature functions score substitutions
 - e.g. if a NP is rewritten as a ADJA+NN on source side then the feature $\text{subst}_{\text{NP} \rightarrow \text{ADJA+NN}}$ fires

- Tens of thousands of features
- Outperforms exact tree-to-tree (0.4 BLEU on Zh-En; 1.5 BLEU on Ar-En)

Forest-to-String

- Translation quality of T2S model depends on accuracy of 1-best (or k-best) parse tree(s) for input sentences
- Forest-to-string extends T2S by using (pruned) parse forest as input

- Algorithm is identical to T2S except for rule matching step
- “Forest-based Translation” (Mi et al., 2008)
Forest-to-String

- Using forest gives better speed-quality trade-off than using k-best trees

(Figure taken from Mi et al., 2008)

Tree Transformation

- Adapting training data for syntax-based MT is active area of research (tree binarization, label coarsening / refinement, word alignment edits)

- “Transforming Trees to Improve Syntactic Convergence” (Burkett and Klein, 2012) proposes tree restructuring method to improve rule extraction:

(Figure taken from Burkett and Klein, 2012)
Tree Transformation

- Defines six classes of transformation

- Error-based learning method using GHKM frontier node count as metric

- Sequence of transformations learned from subset of training data then applied to full corpus

- Gain of 0.9 BLEU over baseline on Chinese to English; outperforms simple left and right binarization

Dependency

A different view on syntax

SCFG phrase structure vs. Syntactic dependency grammar

Syntax-based Statistical Machine Translation
Phrase Structure is not Enough

Syntactically well-formed

semantically implausible

Dependency in SCFG

• Add head word to constituents

• Add mapping of head words to rules

\[VP(w_1) \rightarrow V(w_1) \, NP(w_2) \]

requires identification of head child
Semantic Plausibility

Score each lexical relationship

- Rule: \(VP(\text{chews}) \rightarrow V(\text{chews}) \ NP(\text{dogs}) \)
 - Feature: \(VP(\text{chews}) \rightarrow V-\text{HEAD}(\text{chews}) \) OK
 - Feature: \(VP(\text{chews}) \rightarrow NP(\text{dog}) \) BAD

- Rule: \(S(\text{chews}) \rightarrow NP(\text{bone}) \ VP(\text{chews}) \)
 - Feature: \(S(\text{chews}) \rightarrow NP(\text{bone}) \) BAD
 - Feature: \(S(\text{chews}) \rightarrow V-\text{HEAD}(\text{chews}) \) OK

Informed by Source

- Languages with case marking
 - different word order
 - same dependency relationships

- Give preference to translations that preserve dependency relationships
Verb Frames

- Check if full verb frame is properly filled
 - intransitive / transitive / ditransitive
 - not just binary relationships
 - appropriate type of subjects / objects
- However: tracking verb frame is not trivial

Towards Semantics

- Different syntax — same verb-noun semantic relationships
 - The bone is chewed by the dog.
 - The dog chews the bone.
 - The bone, the dog chews.
 - A dog chewed a bone.
- Even more abstract representations
 e.g., Abstract Meaning Representation (AMR):

(c / chew-01
 :arg0 (d / dog)
 :arg1 (b / bone))

- Generation of these types of representation open research problem
String-to-Dependency: Shen et al. (2008)

- Hiero rules but with unlabelled dependencies on target side
- Target-side allowed one head to which floating dependencies can attach

```
<table>
<thead>
<tr>
<th>Rule</th>
<th>Source</th>
<th>Target</th>
<th>Dependency</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>[X \rightarrow [X1 \to \text{flog nach} \to X2]</td>
<td></td>
<td></td>
<td>Fixed</td>
</tr>
<tr>
<td>r2</td>
<td>[X \rightarrow \to \text{flog nach} \to X1]</td>
<td></td>
<td></td>
<td>Fixed</td>
</tr>
<tr>
<td>r3</td>
<td>[X \rightarrow \to \text{nach} \to X1]</td>
<td></td>
<td></td>
<td>Floating (left)</td>
</tr>
<tr>
<td>r4</td>
<td>[X \rightarrow \to \text{flog nach} \to X2]</td>
<td></td>
<td></td>
<td>Ill-formed</td>
</tr>
</tbody>
</table>
```

- “A New String-to-Dependency Machine Translation Algorithm with a Target Dependency Language Model” (Shen et al., 2008)

String-to-Dependency

- Decoding algorithm modified to combine dependency structures.
- Restriction to well-formed rules reduces grammar size from 140M to 26M rules (no significant effect on translation quality).
- Gains of 1.2 BLEU on Zh-En from addition of dependency LM (Markov model over dependency heads).
References

- Parsing and Hypergraphs

- What's in a Translation Rule?
 Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. HLT-NAACL 2004.

- A Hierarchical Phrase-based Model for Statistical Machine Translation
 David Chiang. ACL 2005.

- Better k-best Parsing
 Liang Huang and David Chiang. IWPT 2005.

- Syntax Augmented Machine Translation via Chart Parsing
 Andreas Zollmann and Ashish Venugopal. WMT 2006.

- Synchronous Binarization for Machine Translation
 Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight. NAACL 2006.

- Hierarchical Phrase-Based Translation

References

- A New String-to-Dependency Machine Translation Algorithm with a Target Dependency Language Model

- Forest-Based Translation
 Haitao Mi, Liang Huang, and Qun Liu. ACL 2008.

- Efficient Parsing for Transducer Grammars
 John DeNero, Mohit Bansal, Adam Pauls, and Dan Klein. NAACL 2009.

- SCFG Decoding Without Binarization
 Mark Hopkins and Greg Langmead. EMNLP 2010.

- Learning to Translate with Source and Target Syntax
 David Chiang, ACL 2010.

- Issues Concerning Decoding with Synchronous Context-free Grammar
 Tagyoung Chung, Licheng Fang, and Daniel Gildea. ACL 2011.

- Transforming Trees to Improve Syntactic Convergence
 David Burkett and Dan Klein. EMNLP 2012.
References

- Grouping Language Model Boundary Words to Speed K-Best Extraction from Hypergraphs
 Kenneth Heafield, Philipp Koehn, and Alon Lavie. NAACL 2013.

- Tree Transduction Tools for cdec

- A CYK+ Variant for SCFG Decoding Without a Dot Chart
 Rico Sennrich. SSST 2014.