Lifelong Machine Learning for Natural Language Processing

Zhiyuan (Brett) Chen, Google
Bing Liu, University of Illinois at Chicago
Introduction
(Chen and Liu, 2016-book)

- Classic Machine Learning (ML) paradigm: isolated single-task learning
 - Given a dataset, run an ML algo. to build a model
 - Without considering the past learned knowledge

- Existing ML algorithms such as
 - SVM, NB, DT, Deep NN, CRF, and topic models
 - Have been very successful in practice

- Let’s call this: Machine Learning (ML) 1.0
Introduction: ML 1.0

- Weaknesses of “isolated learning”
 - Knowledge learned is not retained or accumulated
 - Needs a large number of training examples
 - Suitable for well-defined & narrow tasks in restricted env.

- Human beings never learn in isolation
 - We retain knowledge & use it to learn more knowlg.
 - Learn effectively from a few or no examples
 - Our knowledge learned and accumulated in the past
 - which allows us to learn with little data or effort
Introduction: An Example

- Nobody has ever given me 1000 positive and 1000 negative online reviews and ask me to build a classifier to classify Camera reviews
 - In fact, I don’t need any training data

- I have accumulated so much knowledge
 - about how people praise and criticize things

- If I don’t have the accumulated knowledge, NO
 - E.g., I don’t know Arabic and if someone gives me 2000 training reviews in Arabic, I cannot do it.
Introduction: ML 2.0
Thrun, 1996b; Silver et al 2013; Chen and Liu, 2014a, 2016-book

- Statistical ML is getting increasingly mature
- It’s time for Lifelong Machine Learning (LML)
 - Retain/accumulate learned knowledge in the past & use it to help future learning
 - become more knowledgeable & better at learning
 - Learn by mimicking “human learning”

- Let us call this paradigm Machine Learning 2.0
 - Without LML, it is unlikely we can build a truly intelligent system.
Outline

- A motivating example
- What is lifelong machine learning?
- Related learning paradigms
- Lifelong supervised learning
- Lifelong unsupervised learning
- Semi-supervised never-ending learning
- Lifelong reinforcement learning
- Summary
Outline

- A motivating example
- What is lifelong machine learning?
- Related learning paradigms
- Lifelong supervised learning
- Lifelong unsupervised learning
- Semi-supervised never-ending learning
- Lifelong reinforcement learning
- Summary
A Motivating Example
(Liu, 2012, 2015)

- My interest in LML stemmed from extensive experiences on sentiment analysis in a startup company many years ago.

- Sentiment analysis (SA)
 - Sentiment and target aspect: “The screen is great, but the voice quality is poor.”
 - Positive about screen but negative about voice quality
 - Extensive knowledge sharing across tasks/domains
 - Sentiment expressions & aspects
Knowledge Shared Across Domains

- After working on many SA projects for clients, I realized
 - a lot of concept sharing across domains
 - as we see more and more domains, fewer and fewer things are new.

- Easy to see sharing of sentiment words,
 - e.g., good, bad, poor, terrible, etc.

- There is also a great deal of aspect sharing
 - product feature sharing
Sharing of Product Features

- **Observation**: A great deal of product features (or aspects) overlapping across domains
 - Every product review domain has the aspect *price*
 - Most electronic products share the aspect *battery*
 - Many also share the aspect of *screen*.
 - Many also share *sound quality*
 -

- It is rather “silly” not to exploit such sharing in learning or extraction.
What does that Mean for Learning?

- How to systematically exploit such sharing?
 - Retain/accumulate knowledge learned in the past.
 - Leverage the knowledge for new task learning

- I.e., *lifelong machine learning* (LML)

- This leads to our own work
 - Lifelong topic modeling (Chen and Liu 2014a, b)
 - Lifelong sentiment classification (Chen et al 2015)
 - Several others
LML is Suitable for NLP

- **Knowledge, easily shared across domains**
 - Words and phrases almost have the same meaning in different domains or tasks.
 - Sentences in all domains follow the same syntax

- **Knowledge, useful in different types of tasks.**
 - NLP problems are closely related to each other
 - POS tagging, coreference resolution, entity recognition, …

- **Big data provides a great opportunity for LML**
 - Learn a large amount of knowledge to become
 - More and more knowledgeable & better at learning
LML is Useful in General

- LML is suitable for all learning
- It is hard to imagine:
 - We have to learn everything from scratch whenever we encounter a new problem or environment.
- If that were the case,
 - Intelligence is unlikely
Outline

- A motivating example
- What is lifelong machine learning?
- Related learning paradigms
- Lifelong supervised learning
- Lifelong unsupervised learning
- Semi-supervised never-ending learning
- Lifelong reinforcement learning
- Summary
Definition of LML
(Thrun 1995, Chen and Liu, 2016 – new book)

- The learner has performed learning on a sequence of tasks, from 1 to N.

- When faced with the $(N+1)$th task, it uses the relevant knowledge in its knowledge base (KB) to help learning for the $(N+1)$th task.

- After learning $(N+1)$th task, KB is updated with learned results from $(N+1)$th task.
Key Characteristics of LML
(Chen and Liu, 2016 – new book)

- Continuous learning process
- Knowledge accumulation in KB
- Use of past knowledge to help future learning
Lifelong Machine Learning System

Task Manager

\[T_1, T_2, \ldots, T_N, T_{N+1}, \ldots \]

Previously Learned Tasks

New Task

Future Learning Tasks

\[D_{N+1} \]

Knowledge-Based Learner

Output

Knowledge Base (KB)

Past Knowledge

Retained Knowledge
Components of LML

- **Knowledge Base (KB)**
 - Past Information Store (PIS)
 - Data, intermediate and final results
 - Meta-Knowledge Miner (MKM)
 - Meta-mining of PIS and MKS
 - Meta-Knowledge Store (MKS)
 - mined knowledge
 - Knowledge Reasoner (KR)
 - Make inference to generate more knowledge

- Most current systems don’t have all these
Components of LML (Contd)

- **Knowledge-Based Learner (KBL)**
 - Leverage past knowledge in KB in new learning
 - Task Knowledge Miner (TKM): identify/mine knowledge suitable for the task
 - Learner

- **Task Manager**
 - Receives and manages arriving tasks

- **Output**
 - Model for the current task
Two Types of Knowledge

- **Global knowledge**: Many existing LML methods assume that there is a *global latent structure* among tasks that are shared by all (Bou Ammar et al., 2014, Ruvolo and Eaton, 2013b, Tanaka and Yamamura, 1997, Thrun, 1996b, Wilson et al., 2007)

 - This global structure can be learned and leveraged in the new task learning.
 - These methods grew out of multi-task learning.
Two Types of Knowledge (Contd)

- **Local knowledge**: Many other methods do not assume such a *global latent structure* among tasks (Chen and Liu, 2014a,b, Chen et al., 2015, Fei et al., 2016, Liu et al., 2016, Shu et al., 2016)

- During the learning of a new task,
 - they select the pieces of prior knowledge to use based on the need of the new task.

- Called *local knowledge* because they are not assumed to form a coherent global structure.
Two Kinds of Tasks

- **Independent tasks**: each task is independent of other tasks
 - Each task can be learned independently, although using knowledge gained in other tasks may help this task learning
 - Much of the current research assume this.

- **Dependent tasks**: each task has some dependency on some other tasks, e.g.,
 - Cumulative learning (Fei et al 2016)
Outline

- A motivating example
- What is lifelong machine learning?
 - Related learning paradigms
 - Lifelong supervised learning
 - Lifelong unsupervised learning
 - Semi-supervised never-ending learning
 - Lifelong reinforcement learning
- Summary
Transfer learning

- **Source domain(s):** With labeled training data
- **Target domain:** With little/no labeled training data
- **Goal:** Leverage the information from the source domain(s) to help learning in the target domain
 - Only optimize the target domain/task learning
Transfer learning has been a popular research topic and researched in many fields, e.g.,

- Machine learning
- Data mining
- Natural language processing
- Computer vision

(Taylor and Stone, 2009, Pan & Yang, 2010). presented excellent surveys with extensive references.
One Transfer Learning Technique

- Structural correspondence learning (SCL) (Blitzer et al., 2006)

- Pivot features
 - Have the same characteristics or behaviors in both domains
 - Non-pivot features which are correlated with many of the same pivot features are assumed to correspond
Choosing Pivot Features

- For different applications, pivot features may be chosen differently, for example,
 - For part-of-speech tagging, frequently-occurring words in both domains are good choices (Blitzer et al., 2006)
 - For sentiment classification, pivot features are words that frequently-occur in both domains and also have high mutual information with the source label (Blitzer et al., 2007).
Finding Feature Correspondence

- Compute the correlations of each pivot feature with non-pivot features in both domains by building binary pivot predictors

\[f_\ell(x) = \text{sgn}(\hat{\mathbf{w}}_\ell \cdot \mathbf{x}), \quad \ell = 1 \ldots m \]

- Using unlabeled data (predicting whether the pivot feature \(l \) occurs in the instance)
- The weight vector \(\hat{\mathbf{w}}_\ell \) encodes the covariance of the non-pivot features with the pivot feature
Finding Feature Correspondence

- Positive values in $\hat{\mathbf{w}}_\ell$:
 - Indicate that those non-pivot features are positively correlated with the pivot feature l in the source or the target

- Produce a correlation matrix \mathbf{W}

$$
\mathbf{W} = [\hat{\mathbf{w}}_1 | \ldots | \hat{\mathbf{w}}_m]
$$
Computing Low Dim. Approximation

- SVD is employed to compute a low-dimensional linear approximation θ

$$W = U D V^T \quad \theta = U^T_{[1:h,:]}$$

- θ: mapping from original space to new space

- The final set of features used for training and for testing: original features $x + \theta x$
Multi-Task Learning

Problem statement: Co-learn multiple related tasks simultaneously:
- All tasks have labeled data and are treated equally
- **Goal**: optimize learning/performance across all tasks through shared knowledge

Rationale: introduce inductive bias in the joint hypothesis space of all tasks (Caruana, 1997)
- By exploiting the task relatedness structure, or shared knowledge
One Multi-Task Model: GO-MTL
(Kumar et al., ICML 2012)

- GO-MTL: Grouping and Overlap in Multi-Task Learning
- Does not assume that all tasks are related
- Applicable to classification and regression
GO-MTL Assumptions

- All task models share latent basic model components
- Each task model is a linear combination of shared latent components
- The linear weight is sparse, to use a small number of latent components
Notations

- N tasks in total
- $k (< N)$ latent basis model components
- Each basis task is represented by l (a vector of size d)
- For all latent tasks, $L = (l_1, l_2, \ldots, l_k)$
- L is learned from N individual tasks.
 - E.g., weights/parameters of logistic regression or linear regression
The Approach

- s^t is a linear weight vector and is assumed to be sparse.

$$\theta^t = Ls^t$$

- Stacking $s^t (\theta^t)$ for all tasks, we get $S (\Theta)$. S captures the task grouping structure.

$$\Theta_{d \times N} = L_{d \times k} \times S_{k \times N}$$
Objective Function in GO-MTL

\[\sum_{t=1}^{N} \sum_{i=1}^{n_t} \mathcal{L}\left(f(x_i^t; Ls^t), y_i^t\right) + \mu \|S\|_1 + \lambda \|L\|_F^2 \]
Optimization Strategy

- Alternating optimization strategy to reach a local minimum.
- For a fixed L, optimize s^t:

\[
s^t = \arg\min_{s^t} \sum_{i=1}^{n_t} \mathcal{L}(f(x^t_i; Ls^t), y^t_i) + \mu \|s^t\|_1
\]

- For a fixed S, optimize L:

\[
\arg\min_{L} \sum_{t=1}^{N} \sum_{i=1}^{n_t} \mathcal{L}(f(x^t_i; Ls^t), y^t_i) + \lambda \|L\|_F^2
\]
A Large Body of Literature

- Two tutorials on MTL
 - Multi-Task Learning Primer. IJCNN’15, by Cong Li and Georgios C. Anagnostopoulos
Transfer, Multitask → Lifelong

- **Transfer learning vs. LML**
 - Transfer learning is not continuous
 - No retention or accumulation of knowledge
 - Only one directional: help target domain
Transfer, Multitask → Lifelong

- **Transfer learning vs. LML**
 - Transfer learning is not continuous
 - No retention or accumulation of knowledge
 - Only one directional: help target domain

- **Multitask learning vs. LML**
 - Multitask learning retains no knowledge except data
 - Hard to re-learn all when tasks are numerous

- Online (incremental) multi-task learning is LML
Online Learning

- The training data points come in a sequential order (online setting)
 - Computationally infeasible to train over the entire dataset
- Different from LML
 - Still performs the same learning task over time
 - LML aims to learn from a sequence of different tasks, retain and accumulate knowledge
Outline

- A motivating example
- What is lifelong machine learning?
- Related learning paradigms
- **Lifelong supervised learning**
- Lifelong unsupervised learning
- Semi-supervised never-ending learning
- Lifelong reinforcement learning
- Summary
Lifelong Supervised Learning (LSL)

- The learner has performed learning on a sequence of supervised learning tasks, from 1 to N.

- When faced with the ($N+1$)th task, it uses the relevant knowledge and labeled training data of the ($N+1$)th task to help learning for the ($N+1$)th task.
Early Work on Lifelong Learning
(Thrun, 1996b)

- **Concept learning tasks**: The functions are learned over the lifetime of the learner, \(f_1, f_2, f_3, \ldots \in F \).

- Each task: learn the function \(f: I \rightarrow \{0, 1\} \).
 \(f(x) = 1 \) means \(x \) is a particular concept.
 - For example, \(f_{\text{dog}}(x) = 1 \) means \(x \) is a dog.

- For \(n \)th task, we have its training data \(X \)
 - Also the training data \(X_k \) of \(k = 1, 2, \ldots, n-1 \) tasks.
The paper proposed a few approaches based on two learning algorithms,

- Memory-based, e.g., kNN or Shepard’s method
- Neural networks

Intuition: when we learn \(f_{\text{dog}}(x) \), we can use functions or knowledge learned from previous tasks, such as \(f_{\text{cat}}(x) \), \(f_{\text{bird}}(x) \), \(f_{\text{tree}}(x) \), etc.

- Data for \(f_{\text{cat}}(X) \), \(f_{\text{bird}}(X) \), \(f_{\text{tree}}(X) \)… are support sets.
Memory based Lifelong Learning

- First method: use the support sets to learn a new representation, or function
 \[g: I \rightarrow I' \]
 - which maps input vectors to a new space. The new space is the input space for the final kNN
 - Adjust \(g \) to minimize the energy function

 \[
 E := \sum_{k=1}^{n-1} \sum_{\{x,y=1\} \in X_k} \left(\sum_{\{x',y'=1\} \in X_k} \|g(x) - g(x')\| - \sum_{\{x',y'=0\} \in X_k} \|g(x) - g(x')\| \right)
 \]
 - \(g \) is a neural network, trained with Back-Prop.
 - kNN is then applied for the \(n \)th (new) task
Second Method

- It learns a distance function using support sets
 \[d : I \times I \rightarrow [0, 1] \]
- It takes two input vectors \(x \) and \(x' \) from a pair of examples \(<x, y>, <x', y'>\) of the same support set \(X_k (k = 1, 2, \ldots, n-1) \)
- \(d \) is trained with neural network using back-prop, and used as a general distance function
- Training examples are:
 \[\langle (x, x'), 1 \rangle \text{ if } y = y' = 1 \]
 \[\langle (x, x'), 0 \rangle \text{ if } (y=1 \land y'=0) \text{ or } (y=0 \land y'=1) \]
Making Decision

- Given the new task training set X_n and a test vector x, for each positive example, $(x', y' = 1) \in X_n$,
 - $d(x, x')$ is the probability that x is a member of the target concept.

- Decision is made by using votes from positive examples, $<x_1, 1>$, $<x_2, 1>$, ... $\in X_n$ combined with Bayes’ rule

$$P(f_n(x) = 1) = 1 - \left(1 + \prod_{(x', y' = 1) \in X_n} \frac{d(x, x')}{1 - d(x, x')} \right)^{-1}$$
LML Components in this Case

- **KB**
 - Store all the support sets.
 - Distance function \(d(x, x') \): the probability of example \(x \) and \(x' \) being the same concept.

- **KBL**
 - Voting with Bayes’ rule.
Neural Network approaches

- Approach 1: based on that in (Caruana, 1993, 1997), which is actually a batch multitask learning approach.
 - Simultaneously minimize the error on both the support sets \(\{X_k\} \) and the training set \(X_n \)

- Approach 2: an *explanation-based neural network* (EBNN)
Neural Network approaches
Task Clustering (TC)
(Thrun and O’Sullivan, 1996)

- In general, not all previous N-1 tasks are similar to the Nth (new) task
- Based on a similar idea to the lifelong memory-based methods in (Thrun, 1996b)
 - It clusters previous tasks into groups or clusters
- When the (new) Nth task arrives, it first
 - selects the most similar cluster and then
 - uses the distance function of the cluster for classification in the Nth task
Some Other Early works on LML

- Constructive inductive learning to deal with learning problem when the original representation space is inadequate for the problem at hand (Michalski, 1993)
- Incremental learning primed on a small, incomplete set of primitive concepts (Solomonoff, 1989)
- Explanation-based neural networks MTL (Thrun, 1996a)
- MTL method of functional (parallel) transfer (Silver & Mercer, 1996)
- Lifelong reinforcement learning (Tanaka & Yamamura, 1997)
- Collaborative interface agents (Metral & Maes, 1998)
ELLA
(Ruvolo & Eaton, 2013a)

- ELLA: Efficient Lifelong Learning Algorithm
- It is based on GO-MTL (Kumar et al., 2012)
 - A batch multitask learning method
- ELLA is online multitask learning method
 - ELLA is more efficient and can handle a large number of tasks
 - Becomes a lifelong learning method
 - The model for a new task can be added efficiently.
 - The model for each past task can be updated rapidly.
Inefficiency of GO-MTL

Since GO-MTL is a batch multitask learning method, the optimization goes through all tasks and their training instances (Kumar et al., 2012).

\[\sum_{t=1}^{T} \sum_{i=1}^{n_t} \mathcal{L} \left(f(x_i^{(t)}; Ls^{(t)}), y_i^{(t)} \right) + \mu \| S \|_1 + \lambda \| L \|_F^2 \]

Very inefficient and impractical for a large number of tasks.

- It cannot incrementally add a new task efficiently
Initial Objective Function of ELLA

- Objective Function (**Average** rather than sum)

\[
e_T(L) = \frac{1}{T} \sum_{t=1}^{T} \min_{s^{(t)}} \left\{ \frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L} \left(f \left(x_i^{(t)}; Ls^{(t)} \right), y_i^{(t)} \right) + \mu \|s^{(t)}\|_1 \right\} + \lambda \|L\|_F^2 , \quad (1)
\]
Approximate Equation (1)

- Eliminate the dependence on all of the past training data through inner summation
 - By using the second-order Taylor expansion of around $\theta = \theta^{(t)}$ where
 - $\theta^{(t)}$ is an optimal predictor learned on only the training data on task t.
Removing inner summation

\[
\frac{1}{N} \sum_{t=1}^{N} \min_{s^t} \left\{ \| \hat{\theta}^t - Ls^t \|^2_{H^t} + \mu \| s^t \|_1 \right\} + \lambda \| L \|^2_F
\]

\[
H^t = \frac{1}{2} \nabla^2_\theta^t, \theta^t, \frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L} (f(x^t_i; \theta^t), y^t_i) \bigg| \theta^t = \hat{\theta}^t
\]

\[
\hat{\theta}^t = \arg\min_{\theta^t} \frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L} (f(x^t_i; \theta^t), y^t_i)
\]
Simplify optimization

- **GO-MTL**: when computing a single candidate L, an optimization problem must be solved to recompute the value of each $s(t)$.

- **ELLA**: after $s(t)$ is computed given the training data for task t, it will not be updated when training on other tasks. Only L will be changed.

- **Note**: (Ruvolo and Eaton, 2013b) added the mechanism to actively select the next task to learn.
ELLA Accuracy Result

- **ELLA vs. GO-MTL**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Problem Type</th>
<th>Batch MTL Accuracy</th>
<th>ELLA Relative Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Mine</td>
<td>Classification</td>
<td>0.7802 ± 0.013 (AUC)</td>
<td>99.73 ± 0.7%</td>
</tr>
<tr>
<td>Facial Expr.</td>
<td>Classification</td>
<td>0.6577 ± 0.021 (AUC)</td>
<td>99.37 ± 3.1%</td>
</tr>
<tr>
<td>Syn. Data</td>
<td>Regression</td>
<td>−1.084 ± 0.006 (-rMSE)</td>
<td>97.74 ± 2.7%</td>
</tr>
<tr>
<td>London Sch.</td>
<td>Regression</td>
<td>−10.10 ± 0.066 (-rMSE)</td>
<td>98.90 ± 1.5%</td>
</tr>
</tbody>
</table>

Batch MTL is GO-MTL
ELLA Speed Result

- **ELLA** vs. **GO-MTL**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Batch Runtime (seconds)</th>
<th>ELLA All Tasks (speedup)</th>
<th>ELLA New Task (speedup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Mine</td>
<td>231±6.2</td>
<td>1,350±58</td>
<td>39,150±1,682</td>
</tr>
<tr>
<td>Facial Expr.</td>
<td>2,200±92</td>
<td>1,828±100</td>
<td>38,400±2,100</td>
</tr>
<tr>
<td>Syn. Data</td>
<td>1,300±141</td>
<td>5,026±685</td>
<td>502,600±68,500</td>
</tr>
<tr>
<td>London Sch.</td>
<td>715±36</td>
<td>2,721±225</td>
<td>378,219±31,275</td>
</tr>
</tbody>
</table>

ELLA is 1K times faster than **GO-MTL** on all tasks, 30K times times on a new task.
LML Components of ELLA

- **KB**
 - Stores all the task data
 - Matrix L for K basis tasks and S

- **KBL**
 - Each task parameter vector is a linear combination of KS, i.e., $\theta^{(t)} = Ls^{(t)}$
 - Alternating optimization solving
Lifelong Sentiment Classification
(Chen, Ma, and Liu 2015)

“\textit{I bought a cellphone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is great too. …}”

Goal: classify docs or sentences as + or -.

- Need to manually label a lot of training data for each domain, which is highly labor-intensive

Can we not label for every domain or at least not label so many docs/sentences?
A Simple Lifelong Learning Method

Assuming we have worked on a large number of past domains with all their training data D

- Build a classifier using D, test on new domain
 - Note - using only one past/source domain as in *transfer learning* is not good.

- In many cases – improve accuracy by as much as 19% (= 80%-61%). Why?

- In some others cases – not so good, e.g., it works poorly for toy reviews. Why? “toy”
Lifelong Sentiment Classification
(Chen, Ma and Liu, 2015)

- It adopts a Bayesian optimization framework for LML using stochastic gradient decent.

- Lifelong learning uses
 - Word counts from the past data as priors.
 - Penalty terms to deal with domain dependent sentiment words and reliability of knowledge.
Naïve Bayesian Text Classification

- Key parameter

\[P(w|c_j) = \frac{\lambda + N_{c_j,w}}{\lambda |V| + \sum_{v=1}^{\|V\|} N_{c_j,v}} \]

- Only depends on the count of words in each class
Stored Information

- Probabilities of a word appearing in positive or negative
 \[P^t(w|+ \) and \[P^t(w| -) \]

- Word counts
 - Number of times that a word appears in positive class: \[N^t_+,w \]
 - Number of times that a word appears in negative class: \[N^t_-,w \]
Knowledge Base

- Two types of knowledge
 - Document-level knowledge
 - Domain-level knowledge
Knowledge Base

- Two types of knowledge
 - Document-level knowledge
 - Domain-level knowledge

(a) Document-level knowledge $N_{+\cdot, w}^{KB}$ (and $N_{-\cdot, w}^{KB}$): number of occurrences of w in the documents of the positive (and negative) class in the past tasks, i.e., $N_{+\cdot, w}^{KB} = \sum_\hat{t} N_{+\cdot, w}^{\hat{t}}$ and $N_{-\cdot, w}^{KB} = \sum_\hat{t} N_{-\cdot, w}^{\hat{t}}$.

EMNLP-2016, Austin Texas
Knowledge Base

- Two types of knowledge
 - Document-level knowledge
 - Domain-level knowledge

(b) Domain-level knowledge $M_{+,w}^{KB}$ (and $M_{-,w}^{KB}$): number of past tasks in which $P(w|+) > P(w|-)$ (and $P(w|+) < P(w|-)$).
Objective Function

- Maximize the probably difference

\[\sum_{i=1}^{\left| D^t \right|} \left(P(c_j | d_i) - P(c_f | d_i) \right) \]

- \(c_j \): labeled class in groundtruth
- \(c_f \): all classes other than \(c_j \)
Exploiting Knowledge via Penalties

- Penalty terms for two types of knowledge
 - Document-level knowledge
 - Domain-level knowledge
Exploiting Knowledge via Penalties

- Penalty terms for two types of knowledge
 - Document-level knowledge
 - Domain-level knowledge

\[\frac{1}{2} \alpha \sum_{w \in V_T} \left((X_{+,w} - N_{+,w}^t)^2 + (X_{-,w} - N_{-,w}^t)^2 \right) \]

- \(t \) is the new task
Exploiting Knowledge via Penalties

- Penalty terms for two types of knowledge
 - Document-level knowledge
 - Domain-level knowledge

\[
\frac{1}{2} \alpha \sum_{w \in V_S} \left(X_{+,w} - R_w \times X_{+,w}^0 \right)^2 \\
+ \frac{1}{2} \alpha \sum_{w \in V_S} \left(X_{-,w} - (1 - R_w) \times X_{-,w}^0 \right)^2
\]

- \(R_w \): ratio of #tasks where \(w \) is positive / #all tasks
- \(X_{+,w}^0 = N_{+,w}^t + N_{+,w}^{KB} \) and \(X_{-,w}^0 = N_{-,w}^t + N_{-,w}^{KB} \)
One Result of LSC model

- Better F1-score (left) and accuracy (right) with more past tasks
LML Components of LSC

- **KB**
 - Word counts from previous tasks
 - Document-level knowledge
 - Domain-level knowledge

- **KBL**
 - LSC algorithm with regularization
Cumulative Learning
(Fei et al., 2016)

- Cumulative learning
 - Incrementally adding a new class without re-training the whole model from scratch
 - Learner becomes more knowledgeable
 - Detecting unseen classes in test data
 - Traditional supervised learning cannot do this
 - It needs open classification

- Self-learning: detect unseen/new things and learn them.
Cumulative Learning is LML

- At time point t, a t-class classifier F_t learned from past datasets $D^t = \{D_1, D_2, \ldots, D_t\}$ of classes $Y^t = \{l_1, l_2, \ldots, l_t\}$.
 - F_t classifies each test instance x to either one of the known classes in Y^t or the unknown class l_0.
 - $y = F_t(x), \ y \in \{l_1, l_2, \ldots, l_t, l_0\}$

- At time point $t+1$, a class l_{t+1} (D_{t+1}) is added, F_t is updated to a ($t+1$)-class classifier F_{t+1}
 - $y = F_{t+1}(x), \ y \in \{l_1, l_2, \ldots, l_t, l_{t+1}, l_0\}$
Learning cumulatively

- How to incrementally add a class without retraining from scratch?

- "Human learning": uses the past knowledge F_t to help learn the new class I_{t+1}.
 - Find similar classes SC from known classes Y_t. E.g
 - Old classes: $Y_t = \{ \text{movie, cat, politics, soccer} \}$.
 - New class: $I_{t+1} = \text{basketball}$
 - SC = \{soccer\}
 - Building F_{t+1} by focusing on separating I_{t+1} and SC.
Cumulative Learning Algorithm

- \(F_t = \{f_1, f_2, \ldots, f_t\} \), a set of binary classifiers.
- Identifying a set of similar classes \(SC \) to the new class \(l_{t+1} \) by:
 - Using each \(f_i \) to classify instances in \(D_{t+1} \).
 - \(SC \) is the set of classes that accept many from \(D_{t+1} \).
- Build \(f_{t+1} \) for \(l_{t+1} \) using classes in \(SC \) as negative data.
- Update each classifier for classes in \(SC \) by adding class \(l_{t+1} \) as an extra negative class.
Open Classification
(Fei and Liu, 2016)

- Traditional classification makes the closed world assumption:
 - Classes in testing have been seen in training
 - i.e., no new classes in the test data
- Not true in many real-life environments.
 - New data may contain unseen class documents
- We need open (world) classification
 - Detect the unseen class of documents
Open Classification

- **Open space risk formulation** (see Fei & Liu 2016)
 - Don’t give each class too much open space
 - SVM is one half space for each class: too much
- Ideally, a “ball” to cover each class l_i
 - Each “ball” is a binary classifier f_i
Open World Learning

- Build a set of 1-vs-rest classifiers, one for each training class l_i.
- The set of 1-vs-rest classifiers $F_t = \{f_1, f_2, \ldots, f_{t+1}\}$ works together to classify
 - Each binary classifier produces a probability $P(y|x)$
 - l_0: class of unknown

\[
y^* = \begin{cases}
\arg\max_{y \in Y_{t+1}} P(y|x) & \text{if } P(y|x) \geq \theta \\
 l_0 & \text{otherwise}
\end{cases}
\]
To detect unseen classes, Fei and Liu (2016) proposed **CBS learning**:
- Center-based similarity (CBS) space learning.

It performs space transformation
- Each document vector d is transformed to a CBS space vector
 1. Compute centers c_i for the positive class
 2. Compute similarities of each document to c_i.

This gives us a new data set in the CSB space.
Space Transformation and Learning

- We can use many similarity measures.
- After space transformation, we can run SVM to build a classification in the CBS space
 - CBS learning basically finds a ball for each class
Why does CBS Learning Work?

- SVM classifier

- SVM classification (test)
 - Wrong classification
Why does CBS Learning Work?

- CBS classifier

- CBS classification (test)
 - Correct now
Evaluation

Datasets

- Amazon reviews of 100 domains.
- 20 classes in 20newsgroup.

<table>
<thead>
<tr>
<th>Method</th>
<th>m=33%</th>
<th>66%</th>
<th>100%</th>
<th>m=33%</th>
<th>66%</th>
<th>100%</th>
<th>m=33%</th>
<th>66%</th>
<th>100%</th>
<th>m=33%</th>
<th>66%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-vs-rest-SVM</td>
<td>0.498</td>
<td>0.501</td>
<td>0.568</td>
<td>0.442</td>
<td>0.490</td>
<td>0.541</td>
<td>0.460</td>
<td>0.444</td>
<td>0.418</td>
<td>0.652</td>
<td>0.714</td>
<td>0.808</td>
</tr>
<tr>
<td>cbsSVM</td>
<td>0.580</td>
<td>0.632</td>
<td>0.639</td>
<td>0.546</td>
<td>0.581</td>
<td>0.619</td>
<td>0.579</td>
<td>0.565</td>
<td>0.569</td>
<td>0.662</td>
<td>0.728</td>
<td>0.835</td>
</tr>
<tr>
<td>CL-cbsSVM</td>
<td>0.549</td>
<td>0.610</td>
<td>0.623</td>
<td>0.511</td>
<td>0.574</td>
<td>0.616</td>
<td>0.536</td>
<td>0.552</td>
<td>0.549</td>
<td>0.644</td>
<td>0.716</td>
<td>0.820</td>
</tr>
<tr>
<td>CL-1-vs-rest-SVM</td>
<td>0.352</td>
<td>0.511</td>
<td>0.472</td>
<td>0.488</td>
<td>0.440</td>
<td>0.424</td>
<td>0.352</td>
<td>0.373</td>
<td>0.394</td>
<td>0.417</td>
<td>0.632</td>
<td>0.713</td>
</tr>
<tr>
<td>1-vs-set-linear</td>
<td>0.437</td>
<td>0.496</td>
<td>0.334</td>
<td>0.379</td>
<td>0.499</td>
<td>0.534</td>
<td>0.379</td>
<td>0.463</td>
<td>0.290</td>
<td>0.620</td>
<td>0.529</td>
<td>0.606</td>
</tr>
<tr>
<td>wsvm-linear</td>
<td>0.506</td>
<td>0.537</td>
<td>0.335</td>
<td>0.454</td>
<td>0.535</td>
<td>0.547</td>
<td>0.465</td>
<td>0.499</td>
<td>0.309</td>
<td>0.597</td>
<td>0.606</td>
<td>0.710</td>
</tr>
<tr>
<td>wsvm-rbf</td>
<td>0.347</td>
<td>0.382</td>
<td>0.398</td>
<td>0.278</td>
<td>0.357</td>
<td>0.544</td>
<td>0.264</td>
<td>0.289</td>
<td>0.095</td>
<td>0.417</td>
<td>0.643</td>
<td>0.812</td>
</tr>
<tr>
<td>P_1-svm-linear</td>
<td>0.507</td>
<td>0.539</td>
<td>0.337</td>
<td>0.454</td>
<td>0.536</td>
<td>0.550</td>
<td>0.465</td>
<td>0.499</td>
<td>0.303</td>
<td>0.598</td>
<td>0.608</td>
<td>0.712</td>
</tr>
<tr>
<td>P_1-svm-rbf</td>
<td>0.407</td>
<td>0.595</td>
<td>0.409</td>
<td>0.388</td>
<td>0.576</td>
<td>0.603</td>
<td>0.389</td>
<td>0.562</td>
<td>0.310</td>
<td>0.435</td>
<td>0.715</td>
<td>0.806</td>
</tr>
<tr>
<td>ExploratoryEM</td>
<td>0.419</td>
<td>0.523</td>
<td>0.618</td>
<td>0.366</td>
<td>0.514</td>
<td>0.576</td>
<td>0.377</td>
<td>0.480</td>
<td>0.538</td>
<td>0.559</td>
<td>0.690</td>
<td>0.823</td>
</tr>
</tbody>
</table>

(a) amazon (n=50) (b) amazon (n=75) (c) amazon (n=100) (d) 20newsgroup (n=20)
LML Components in this Case

- **KB**
 - Previous model $F_t = \{f_1, f_2, \ldots, f_t\}$
 - Training data from previous tasks

- **KBL**
 - Cumulative learning algorithm
20 Minutes Break
Outline

- A motivating example
- What is lifelong machine learning?
- Related learning paradigms
- Lifelong supervised learning
- Lifelong unsupervised learning
- Semi-supervised never-ending learning
- Lifelong reinforcement learning
- Summary
LTM: Lifelong Topic Modeling
(Chen and Liu, ICML-2014)

- Topic modeling (Blei et al 2003) finds topics from a collection of documents.
 - A document is a distribution over topics
 - A topic is a distribution over terms/words, e.g.,
 - \{price, cost, cheap, expensive, \ldots\}
LTM: Lifelong Topic Modeling
(Chen and Liu, ICML-2014)

- Topic modeling (Blei et al 2003) finds topics from a collection of documents.
 - A document is a distribution over topics
 - A topic is a distribution over terms/words, e.g.,
 - \{price, cost, cheap, expensive, …\}

- **Question**: how to find good past knowledge and use it to help new topic modeling tasks?
- **Data**: product reviews in the sentiment analysis context
Sentiment Analysis (SA) Context

- “The size is great, but pictures are poor.”
 - Aspects (product features): size, picture

Why lifelong learning can help SA?
- Online reviews: Excellent data with extensive sharing of aspect/concepts across domains
 - A large volume for all kinds of products

Why big (and diverse) data?
- Learn a broad range of reliable knowledge. More knowledge makes future learning easier.
Key Observation in Practice

- A fair amount of aspect overlapping across reviews of different products or domains
 - Every product review domain has the aspect *price*,
 - Most electronic products share the aspect *battery*
 - Many also share the aspect of *screen*.

- This sharing of concepts / knowledge across domains is true in general, not just for SA.
 - It is rather “silly” not to exploit such sharing in learning
Problem setting

- Given a large set of document collections (big data), $D = \{D_1, D_2, \ldots, D_N\}$, learn from each D_i to produce the results S_i. Let $S = \bigcup_i S_i$.
 - S is called topic base

- Goal: Given a test/new collection D^t, learn from D^t with the help of S (and possibly D).
 - D^t in D or D^t not in D
 - The results learned this way should be better than those without the guidance of S (and D)
What knowledge?

- Should be in the same aspect/topic
 => Must-Links
 e.g., \{picture, photo\}

- Should not be in the same aspect/topic
 => Cannot-Links
 e.g., \{battery, picture\}
LTM System
LTM Model

- **Step 1**: Run a topic model (e.g., LDA) on each domain D_i to produce a set of topics S_i called Topic Base

- **Step 2**: Mine prior knowledge (must-links) and use knowledge to guide modeling.
Algorithm 2 LTM(D^t, S)

1: $A^t \leftarrow$ GibbsSampling(D^t, \emptyset, N); // Run N Gibbs iterations with no knowledge (equivalent to LDA).
2: for $i = 1$ to N do
3: $K^t \leftarrow$ KnowledgeMining(A^t, S);
4: $A^t \leftarrow$ GibbsSampling(D^t, K^t, 1); // Run with knowledge K^t.
5: end for
Knowledge Mining Function

- **Topic matching**: find similar topics from topic base for each topic in the new domain

- **Pattern mining**: find frequent itemsets from the matched topics
An Example

Given a newly discovered topic:

\{price, book, cost, seller, money\}

- We find 3 matching topics from topic base S
 - Domain 1: \{price, color, cost, life, picture\}
 - Domain 2: \{cost, screen, price, expensive, voice\}
 - Domain 3: \{price, money, customer, expensive\}
An Example

Given a newly discovered topic:

\{price, book, cost, seller, money\}

- We find 3 matching topics from topic base S
 - Domain 1: \{price, color, cost, life, picture\}
 - Domain 2: \{cost, screen, price, expensive, voice\}
 - Domain 3: \{price, money, customer, expensive\}

If we require words to appear in at least two domains, we get two must-links (knowledge):

- \{price, cost\} and \{price, expensive\}.
- Each set is likely to belong to the same aspect/topic.
Knowledge Mining Function

Algorithm 3 KnowledgeMining(A^t, S)

1: for each p-topic $s_k \in S$ do
2: $j^* = \min_j \text{KL-Divergence}(a_j, s_k)$ for $a_j \in A^t$
3: if KL-Divergence(a_{j^*}, s_k) $\leq \pi$ then
4: $M_{j^*}^t \leftarrow M_{j^*}^t \cup s_k$
5: end if
6: end for
7: $K^t \leftarrow \bigcup_{j^*} \text{FIM}(M_{j^*}^t)$; // Frequent Itemset Mining.
Model Inference: Gibbs Sampling

- How to use the **must-links** knowledge?
 - e.g., \{price, cost\} & \{price, expensive\}

- Graphical model: same as LDA
- But the model inference is very different
 - Generalized Pólya Urn Model (GPU)
- **Idea**: When assigning a topic t to a word w, also assign a fraction of t to words in must-links sharing with w.
Simple Pólya Urn Model (SPU)

The rich get richer!
Interpreting LDA Under SPU

Drawing word w under a topic t:

Increase the probability of seeing w under t

Decrease the probability of seeing $w' \neq w$ under t
Interpreting LDA Under SPU
Interpreting LDA Under SPU

Topic 0

price

price
Generalized Pólya Urn Model (GPU)
Applying GPU

Topic 0

price
price
money
cost
Gibbs Sampling

\[P(z_i = t | z^{-i}, w, \alpha, \beta, A') \propto \frac{n_{d,t}^{-i} + \alpha}{\sum_{t' = 1}^{T} (n_{d,t'}^{-i} + \alpha)} \times \frac{\sum_{w'}^{V} A'_{t,w',w_i} \times n_{t,w'}^{-i} + \beta}{\sum_{v=1}^{V} (\sum_{w'=1}^{V} A'_{t,w',v} \times n_{t,w'}^{-i} + \beta)} \]
Figure 2. Top & Middle: Topical words Precision@5 & Precision@10 of coherent topics of each model respectively; Bottom: number of coherent (#Coherent) topics discovered by each model. The bars from left to right in each group are for LTM, LDA, and DF-LDA. On average, for Precision@5 and
LML Components of LTM

- **KB**
 - Stores topics/aspects generated in the past tasks
 - Knowledge: Must-Links

- **KBL**
 - LTM is based on Generalized Pólya Urn Model
AMC: Modeling with Small Datasets
(Chen and Liu, KDD-2014)

- The LTM model is not sufficient when the data is small for each task because
 - It cannot produce good initial topics for matching to identify relevant past topics.

- AMC mines must-links differently
 - Mine must-links from the PIS without considering the target task/data.
Cannot-Links

- In this case, we need to mine cannot-links, which is tricky because
 - There is a huge number of cannot-links $O(V^2)$
 - V is the vocabulary size

- We thus need to focus on only those terms that are relevant to target data D_t.
 - That is, we need to embed the process of finding cannot-links in the sampling
AMC System
Overall Algorithm

```
Algorithm 1 AMC(D^t, S, M)

1: A^t ← GibbsSampling(D^t, N, M, ∅); // ∅: no cannot-links.
2: for r = 1 to R do
3:     C ← C ∪ MineCannotLinks(S, A^t);
4:     A^t ← GibbsSampling(D^t, N, M, C);
5: end for
6: S ← Incorporate(A^t, S);
7: M ← MiningMustLinks(S);
```

- Sampling becomes much more complex
 - It proposed M-GPU model (multi-generalized Polya urn model)
Our Proposed M-GPU Model

Topic 0 Topic 1 Topic 2
Our Proposed M-GPU Model

Topic 0

Topic 1

Topic 2

price
Our Proposed M-GPU Model

Topic 0

money

Topic 1

cost

Topic 2

price

price

money

cost
Our Proposed M-GPU Model

\{price, color\}

Topic 0 Topic 1 Topic 2
Our Proposed M-GPU Model

\{\text{price, color}\}

Topic 0

\[8\]

“color”

Topic 1

\[1\]

“color”

Topic 2

\[1\]

“color”
Our Proposed M-GPU Model

Topic 0

Topic 1

Topic 2

8 "color"

1 "color"

1 "color"
Our Proposed M-GPU Model

Topic 0

9
“color”

Topic 1

1
“color”

Topic 2

0
“color”
AMC results

Metrics: Topic Coherence (Mimno et al., 2011)
AMC results

<table>
<thead>
<tr>
<th>AMC</th>
<th>LTM</th>
<th>LDA</th>
<th>Size & Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>money</td>
<td>shot</td>
<td>image</td>
<td>AMC</td>
</tr>
<tr>
<td>buy</td>
<td>money</td>
<td>price</td>
<td>size</td>
</tr>
<tr>
<td>price</td>
<td>review</td>
<td>movie</td>
<td>small</td>
</tr>
<tr>
<td>range</td>
<td>price</td>
<td>stabilization</td>
<td>smaller</td>
</tr>
<tr>
<td>cheap</td>
<td>cheap</td>
<td>picture</td>
<td>weight</td>
</tr>
<tr>
<td>expensive</td>
<td>camcorder</td>
<td>technical</td>
<td>compact</td>
</tr>
<tr>
<td>deal</td>
<td>condition</td>
<td>photo</td>
<td>hand</td>
</tr>
<tr>
<td>point</td>
<td>con</td>
<td>dslr</td>
<td>big</td>
</tr>
<tr>
<td>performance</td>
<td>sony</td>
<td>move</td>
<td>pocket</td>
</tr>
<tr>
<td>extra</td>
<td>trip</td>
<td>short</td>
<td>LCD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>place</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMC</th>
<th>LTM</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy</td>
<td>small</td>
<td>big</td>
</tr>
<tr>
<td>small</td>
<td>canon</td>
<td>pocket</td>
</tr>
<tr>
<td>pocket</td>
<td>feature</td>
<td>shot</td>
</tr>
<tr>
<td>feature</td>
<td>lens</td>
<td>dslr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reduction</td>
</tr>
</tbody>
</table>

Table 2: Example topics of AMC, LTM and LDA from the Camera domain. Errors are italicized and marked in red.
LML Components of AMC

- **KB**
 - Stores topics/aspects generated in the past tasks
 - Knowledge: Must-Links and Cannot-Links

- **KBL**
 - AMC is based on multi-generalized Pólya Urn Model
LAST Model

- Lifelong aspect-based sentiment topic model (Wang et al., 2016)

Knowledge

- Aspect-opinion pair, e.g., {shipping, quick}
- Aspect-aspect pair, e.g., {shipping, delivery}
- Opinion-opinion pair, e.g., {quick, fast}
Lifelong Information Extraction
(Liu et al., 2016)

- Specifically: **aspect extraction**

- “The size is great, but pictures are poor.”
 - Aspects (product features): size, picture

- An effective approach
 - Double Propagation (DP) (Qiu et al. 2011): a syntactic rule-based extraction method
 - Still has a lot of room for improvement.
Problem and Solution

Problem of syntactic rule-based methods

- hard to design a set of rules to perform extraction with high precision and recall.

Possible solution

- Use prior knowledge mined by exploiting the abundance of reviews for all kinds of products since many products share aspects.
 - e.g., many electronic products have aspect battery.
How to Use Prior Knowledge?

- Use extracted aspects from reviews of a large number of other products to help extract aspects from reviews of the current product.
 - Using recommendation.

- This work uses DP as the base and improve its results dramatically through
 - aspect recommendation.
Algorithm AER, short for Aspect Extraction based on Recommendation.
Step 1: Base Extraction

- Use the DP method (DPextract) to extract an initial (or base) set T^- of aspects employing a set R^- of high precision rules.
 - Set T^- of extracted aspects has very high precision but low recall.

- Extract a set T^+ of aspects from a larger set R^+ of high recall rules also using DPextract.
 - Set T^+ of extracted aspects has very high recall but low precision.
Step 2: Recommendation

- **Recommend** more aspects using T^- as the base to improve the recall. To ensure recommendation quality, AER requires:
 - Aspects must be from $T = T^+ - T^-$.

- **Two forms of recommendation**
 - similarity-based (Sim-recom) and
 - association-based (AR-recom).
Similarity-based Recommendation

- Solve the problem of missing synonymous aspects.
 - e.g., we can recommend “photo” and “image” through “picture” as they are similar in meaning.

- Employ word vectors trained from a large corpus of 5.8 million reviews for similarity comparison.
 - But can also be trained using past data.
Algorithm Sim-recom

Algorithm 2 Sim-recom(\mathcal{T}^-, \mathcal{T})

Input: Aspect sets \mathcal{T}^- and \mathcal{T}
Output: Recommended aspect set \mathcal{T}^s

1: for each aspect term $t \in \mathcal{T}$ do
2: if $(\text{Sim}(t, \mathcal{T}^-) \geq \epsilon)$ then
3: $\mathcal{T}^s \leftarrow \mathcal{T}^s \cup \{t\}$;
4: end if
5: end for

- For each term $t \in T$, if the similarity between t and any term in T^- is at least ϵ, then recommend t as an aspect
Association-based Recommendation

- It aims to solve the problem of **missing correlated or co-occurring aspects**.
 - e.g., we can recommend “**battery**” through “**picture**” as they are highly related -- pictures are taken by digital devices which need batteries.

- **To mine aspect associations,**
 - apply **association rule mining** to **aspects** extracted from reviews of previous products/domains.
The set of aspects extracted from each domain in the past forms a transaction in DB.

Apply an association rule mining algorithm to DB to generate a set of rules.

An association rule in could be:

- **antecedent**: picture, display
- **consequent**: video, purchase
Algorithm AR-recom

Algorithm 3 AR-recom(\mathcal{T}^-, \mathcal{T})

Input: Aspect sets \mathcal{T}^- and \mathcal{T}

Output: Recommended aspect set \mathcal{T}^a

1: for each association rule $r \in R^a$ do
2: if (ante(r) \subseteq \mathcal{T}^-) then
3: $\mathcal{T}^a \leftarrow \mathcal{T}^a \cup (\text{cons}(r) \cap \mathcal{T})$;
4: end if
5: end for

- For each association rule $r \in R^a$,
 - if ante(r) is a subset of T^-, then recommend the terms in cons(r) \cap T as aspects.
Evaluation

- Compared Approaches
 - SimR uses only aspect similarities for recommendation.
 - ARR uses only aspect associations for recommendation.
 - AER uses both aspect similarities and associations for recommendation.
Experimental Results

(Overall results)

Table 2: Precision, Recall and F$_1$-score of DP, DP$^-$, DP$^+$, SimR, ARR and AER evaluated based on multiple aspect term occurrences.

<table>
<thead>
<tr>
<th>Data</th>
<th>DP</th>
<th></th>
<th></th>
<th>DP$^-$</th>
<th></th>
<th></th>
<th>DP$^+$</th>
<th></th>
<th></th>
<th>SimR</th>
<th></th>
<th></th>
<th>ARR</th>
<th></th>
<th></th>
<th>AER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F$_1$</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>D1</td>
<td>70.7</td>
<td>91.0</td>
<td>79.6</td>
<td>84.8</td>
<td>66.8</td>
<td>74.8</td>
<td>66.2</td>
<td>96.3</td>
<td>78.5</td>
<td>82.4</td>
<td>87.7</td>
<td>85.0</td>
<td>89.0</td>
<td>73.7</td>
<td>80.6</td>
<td>80.5</td>
<td>89.8</td>
</tr>
<tr>
<td>D2</td>
<td>73.6</td>
<td>89.5</td>
<td>80.8</td>
<td>95.2</td>
<td>59.8</td>
<td>73.4</td>
<td>65.7</td>
<td>95.9</td>
<td>78.0</td>
<td>82.1</td>
<td>89.7</td>
<td>85.7</td>
<td>88.4</td>
<td>71.3</td>
<td>78.9</td>
<td>82.6</td>
<td>94.8</td>
</tr>
<tr>
<td>D3</td>
<td>76.5</td>
<td>90.2</td>
<td>82.8</td>
<td>85.7</td>
<td>54.8</td>
<td>66.9</td>
<td>65.6</td>
<td>95.1</td>
<td>77.6</td>
<td>86.4</td>
<td>86.2</td>
<td>86.3</td>
<td>91.7</td>
<td>67.3</td>
<td>77.6</td>
<td>86.5</td>
<td>87.2</td>
</tr>
<tr>
<td>D4</td>
<td>69.7</td>
<td>88.7</td>
<td>78.1</td>
<td>81.3</td>
<td>67.2</td>
<td>73.6</td>
<td>62.2</td>
<td>95.6</td>
<td>75.4</td>
<td>76.6</td>
<td>90.8</td>
<td>83.1</td>
<td>92.0</td>
<td>70.6</td>
<td>79.9</td>
<td>81.8</td>
<td>92.8</td>
</tr>
<tr>
<td>D5</td>
<td>63.0</td>
<td>89.6</td>
<td>74.0</td>
<td>88.9</td>
<td>63.7</td>
<td>74.2</td>
<td>58.8</td>
<td>94.3</td>
<td>72.4</td>
<td>87.0</td>
<td>82.9</td>
<td>84.9</td>
<td>91.5</td>
<td>78.5</td>
<td>84.5</td>
<td>88.0</td>
<td>88.5</td>
</tr>
<tr>
<td>Avg</td>
<td>70.7</td>
<td>89.8</td>
<td>79.1</td>
<td>87.2</td>
<td>62.5</td>
<td>72.6</td>
<td>63.7</td>
<td>95.4</td>
<td>76.4</td>
<td>82.9</td>
<td>87.5</td>
<td>85.0</td>
<td>90.5</td>
<td>72.3</td>
<td>80.4</td>
<td>83.9</td>
<td>90.6</td>
</tr>
<tr>
<td>D6</td>
<td>73.8</td>
<td>88.8</td>
<td>80.6</td>
<td>91.7</td>
<td>58.7</td>
<td>71.6</td>
<td>66.3</td>
<td>95.1</td>
<td>78.1</td>
<td>82.9</td>
<td>80.2</td>
<td>81.5</td>
<td>90.0</td>
<td>70.4</td>
<td>79.0</td>
<td>86.9</td>
<td>80.2</td>
</tr>
<tr>
<td>D7</td>
<td>65.5</td>
<td>91.6</td>
<td>76.4</td>
<td>67.6</td>
<td>45.4</td>
<td>54.3</td>
<td>55.8</td>
<td>97.4</td>
<td>70.9</td>
<td>74.2</td>
<td>83.3</td>
<td>78.5</td>
<td>86.2</td>
<td>73.6</td>
<td>79.4</td>
<td>73.0</td>
<td>92.3</td>
</tr>
<tr>
<td>D8</td>
<td>71.0</td>
<td>91.4</td>
<td>79.9</td>
<td>61.5</td>
<td>61.5</td>
<td>72.9</td>
<td>62.1</td>
<td>96.3</td>
<td>75.5</td>
<td>79.2</td>
<td>83.7</td>
<td>81.4</td>
<td>87.8</td>
<td>76.8</td>
<td>81.9</td>
<td>80.7</td>
<td>83.5</td>
</tr>
<tr>
<td>Avg</td>
<td>70.1</td>
<td>90.6</td>
<td>79.0</td>
<td>82.9</td>
<td>55.2</td>
<td>66.3</td>
<td>61.4</td>
<td>96.2</td>
<td>74.8</td>
<td>78.8</td>
<td>82.4</td>
<td>80.5</td>
<td>88.0</td>
<td>73.6</td>
<td>80.1</td>
<td>80.2</td>
<td>85.3</td>
</tr>
</tbody>
</table>

Table 3: Precision, Recall and F$_1$-score of DP, DP$^-$, DP$^+$, SimR, ARR, and AER evaluated based on distinct aspect terms.

<table>
<thead>
<tr>
<th>Data</th>
<th>DP</th>
<th></th>
<th></th>
<th>DP$^-$</th>
<th></th>
<th></th>
<th>DP$^+$</th>
<th></th>
<th></th>
<th>SimR</th>
<th></th>
<th></th>
<th>ARR</th>
<th></th>
<th></th>
<th>AER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F$_1$</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>D1</td>
<td>60.0</td>
<td>83.9</td>
<td>70.0</td>
<td>83.9</td>
<td>44.1</td>
<td>57.8</td>
<td>46.6</td>
<td>91.4</td>
<td>61.7</td>
<td>72.6</td>
<td>78.5</td>
<td>75.5</td>
<td>71.9</td>
<td>52.0</td>
<td>60.4</td>
<td>72.8</td>
<td>81.7</td>
</tr>
<tr>
<td>D2</td>
<td>59.6</td>
<td>78.8</td>
<td>67.9</td>
<td>93.8</td>
<td>34.3</td>
<td>50.3</td>
<td>46.3</td>
<td>89.4</td>
<td>61.0</td>
<td>70.9</td>
<td>80.6</td>
<td>75.4</td>
<td>70.0</td>
<td>51.1</td>
<td>59.1</td>
<td>72.7</td>
<td>86.6</td>
</tr>
<tr>
<td>D3</td>
<td>58.1</td>
<td>81.4</td>
<td>67.9</td>
<td>87.5</td>
<td>44.9</td>
<td>59.3</td>
<td>45.9</td>
<td>87.6</td>
<td>60.3</td>
<td>74.8</td>
<td>73.5</td>
<td>74.1</td>
<td>75.1</td>
<td>49.9</td>
<td>60.0</td>
<td>75.5</td>
<td>75.5</td>
</tr>
<tr>
<td>D4</td>
<td>53.9</td>
<td>74.7</td>
<td>62.6</td>
<td>77.2</td>
<td>42.4</td>
<td>54.7</td>
<td>46.1</td>
<td>88.0</td>
<td>60.5</td>
<td>65.4</td>
<td>78.2</td>
<td>71.2</td>
<td>68.8</td>
<td>48.4</td>
<td>56.8</td>
<td>68.8</td>
<td>80.7</td>
</tr>
<tr>
<td>D5</td>
<td>52.8</td>
<td>76.3</td>
<td>62.4</td>
<td>88.9</td>
<td>36.2</td>
<td>51.4</td>
<td>45.6</td>
<td>87.1</td>
<td>59.8</td>
<td>76.3</td>
<td>60.6</td>
<td>67.6</td>
<td>79.6</td>
<td>54.2</td>
<td>64.5</td>
<td>79.1</td>
<td>68.8</td>
</tr>
<tr>
<td>Avg</td>
<td>56.9</td>
<td>79.0</td>
<td>66.1</td>
<td>86.2</td>
<td>40.4</td>
<td>54.7</td>
<td>46.1</td>
<td>88.7</td>
<td>60.7</td>
<td>72.0</td>
<td>74.3</td>
<td>72.8</td>
<td>73.1</td>
<td>51.1</td>
<td>60.1</td>
<td>73.8</td>
<td>78.7</td>
</tr>
<tr>
<td>D6</td>
<td>63.4</td>
<td>78.5</td>
<td>70.1</td>
<td>90.5</td>
<td>43.1</td>
<td>58.4</td>
<td>52.2</td>
<td>88.5</td>
<td>65.6</td>
<td>74.6</td>
<td>67.7</td>
<td>71.0</td>
<td>80.1</td>
<td>55.3</td>
<td>65.4</td>
<td>83.1</td>
<td>69.4</td>
</tr>
<tr>
<td>D7</td>
<td>55.3</td>
<td>84.8</td>
<td>67.0</td>
<td>62.5</td>
<td>33.3</td>
<td>43.5</td>
<td>42.6</td>
<td>94.3</td>
<td>58.6</td>
<td>62.9</td>
<td>82.9</td>
<td>71.5</td>
<td>64.6</td>
<td>61.4</td>
<td>63.0</td>
<td>64.7</td>
<td>86.9</td>
</tr>
<tr>
<td>D8</td>
<td>56.5</td>
<td>80.8</td>
<td>66.5</td>
<td>86.7</td>
<td>43.7</td>
<td>58.1</td>
<td>44.2</td>
<td>90.7</td>
<td>59.5</td>
<td>66.1</td>
<td>72.9</td>
<td>69.3</td>
<td>76.3</td>
<td>55.8</td>
<td>64.5</td>
<td>69.7</td>
<td>70.3</td>
</tr>
<tr>
<td>Avg</td>
<td>58.4</td>
<td>81.3</td>
<td>67.9</td>
<td>79.9</td>
<td>40.0</td>
<td>53.3</td>
<td>46.3</td>
<td>91.2</td>
<td>61.2</td>
<td>67.9</td>
<td>74.5</td>
<td>70.6</td>
<td>73.7</td>
<td>57.5</td>
<td>64.3</td>
<td>72.5</td>
<td>75.5</td>
</tr>
</tbody>
</table>
LML Components of AER

- **KB**
 - Word vectors
 - Aspects extracted from previous tasks
 - Learned association rules

- **KBL**
 - DP + Two forms of recommendations
Lifelong Relaxation Labeling
(Shu et al., 2016)

- **Relaxation Labeling (RL)** is an unsupervised graph-based label propagation algorithm.
 - Unsupervised classification

- It is augmented with lifelong learning (**Lifelong-RL**) to exploit past knowledge learned from previous tasks.
Relaxation Labeling (RL)

- Graph consists of nodes and edges.
 - Node: object to be labeled
 - Edge: a binary relationship between two nodes.
- Each node n_i in the graph is associated with a multinomial distribution $P(L(n_i))$
 - $L(n_i)$ is the label of n_i on a label set Y.
- Each edge has two conditional distributions:
 - $P(L(n_i) \mid L(n_j))$ and $P(L(n_j) \mid L(n_i))$
Relaxation Labeling (contd)

- Neighbors $Ne(n_i)$ of a node n_i are associated with a weight distribution $w(n_j | n_i)$
 $$\sum_{n_j \in Ne(n_i)} w(n_j | n_i) = 1.$$
- RL iteratively updates the label distribution of each node until convergence.
- Initially, we have $P^0(L(n_i))$. Let $\Delta P^{r+1}(L(n_j))$ be the change of $P(L(n_j))$ at iteration $r + 1$.

$$\Delta P^{r+1}(L(n_i)) = \sum_{n_j \in Ne(n_i)} \left(w(n_j | n_i) \times \sum_{y \in Y} P(L(n_i) | L(n_j) = y) \times P^r(L(n_j) = y) \right)$$
Updated label distribution for iteration $r + 1$ is computed as follows:

$$
Pr^{r+1}(L(n_i)) = \frac{Pr^r(L(n_i)) \times (1 + \Delta Pr^{r+1}(L(n_i)))}{\sum_{y \in Y} Pr^r(L(n_i) = y) \times (1 + \Delta Pr^{r+1}(L(n_i) = y))}
$$

The final label of node n_i is its highest probable label.

$$
L(n_i) = \arg\max_{y \in Y} P(L(n_i) = y)
$$
What past knowledge can be used?

Lifelong-RL uses two forms of knowledge

- **Prior edges**: graphs are usually not given or fixed but are built based on text data.
 - If the data is small, many edges may be missing
 - But such edges may existing in the graphs of some previous tasks

- **Prior labels**: initial $P^0(L(n_j))$ is quite hard to set, but results from previous tasks can be used to set it more accurately.
Lifelong-RL for a SA task
(Shu et al., 2016)

- Problem: opinion target labeling
 - Separating entities and aspects
 - Example: “Although the engine is slightly weak, this car is great.”
 - Entity: car; Aspect: engine
 - Target extract often cannot distinguish the two

- Suitable for lifelong learning
 - Shared edges, and shared entities and aspects and their labels across domains
Lifelong-RL architecture

- Relation modifiers indicate edges.
- Type modifiers and prior labels help set $P^0(L(n_i))$
LML Components of Lifelong-RL

- **KB**
 - Edges from previous tasks
 - Node labels from previous tasks

- **KBL**
 - Relaxation labeling
Outline

- A motivating example
- What is lifelong machine learning?
- Related learning paradigms
- Lifelong supervised learning
- Lifelong unsupervised learning
- Semi-supervised never-ending learning
- Lifelong reinforcement learning
- Summary
Never Ending Language Learner
(Carlson et al., 2010; Mitchell et al., 2015)

- **NELL**: Never Ending Language Learner
- Perhaps the only live LML system
 - it has been reading the Web to extract certain types of information (or knowledge)
 - 24/7 since January 2010.

- NELL has accumulated millions of facts with attached confidence weights
 - called beliefs,
Input to NELL

- **An ontology** defining a set of target categories and relations to be learned,
 - a handful of seed training examples for each, and
 - a set of coupling constraints about categories and relations (Person & Sport are mutually exclusive).
- **Webpages** crawled from the Web
- **Interactions with human trainers** to correct some mistakes made by NELL
Goal of NELL

- **Reading - extract facts** from webpages to populate the initial ontology
 - *category* of a noun or noun phrase, e.g., Los Angeles is a *city*
 - *relations* of a pair of noun phrases
 - hasMajor(Stanford, Computer Science)

- **Learn** to perform the above extraction tasks better each day.
Instance of category: which noun phrases refer to which specified semantic categories
 - For example, Los Angeles is in the category city.

Relationship of a pair of noun phrases, e.g., given a name of an organization and the location, check if
 - hasOfficesIn(<organization>, <location>).
NELL Knowledge Fragment
Semi-supervised Learning

- **Training examples**
 - human-labeled instances in NELL’s ontology
 - labeled examples contributed over time through NELL’s crowdsourcing website,
 - a set of NELL self-labeled training examples corresponding to NELL’s current knowledge base,
 - a large amount of unlabeled Web text.

- 2nd and 3rd sets of the training examples propel NELL’s **lifelong learning**
NELL Architecture

Data Resources (e.g., corpora) → Knowledge Base

Knowledge Base:
- beliefs
- candidate facts

Knowledge Integrator

Subsystem Components:
- CPL
- CSEAL
- CMC
- RL
Coupled Pattern Learner (CPL)

- **CPL**: extractors extracting both category and relation instances using contextual patterns.
 - **Examples**
 - Category pattern: “mayor of X” and
 - Relation pattern: “X plays for Y”

- Such patterns can also be learned.
- **Mutual exclusion & type-checking constraints**
 - filter candidate facts to ensure quality
Coupled SEAL (CSEAL)

- **CSEAL**: an extraction and learning system that extracts facts from semi-structured webpages using wrapper induction
- Based on **set expansion** or **PU learning**
 - *Wrapper*: html strings specifying the left and right context of an entity.
- Mutual exclusion & type-checking constraints:
 - filtered out likely errors
Coupled Morphological Classifier (CMC)

- **CMC**: a set of binary classifiers, one for each category,
 - To classify whether the extracted candidate facts/beliefs by other subsystems are indeed of their respective categories.

- **Positive training examples**:
 - beliefs in the current knowledge base.

- **Negative training examples**
 - beliefs satisfying mutual exclusion constraints
Rule Learner (RL)

- Its goal is to learn probabilistic Horn clauses
 - to use them to infer new relations from the existing relations in the knowledge base.

- Reasoning capability
 - represents an important advance of NELL
 - It does not exist in most current LML systems.
Coupling Constraints in NELL

- **Multi-view co-training coupling constraint**
 - **Agreement**: the same category or relation learned from different data sources, or views.

- **Subset/superset coupling constraint**
 - When a new category is added to NELL’s ontology, its parents (supersets) are also specified.

- **Horn clause coupling constraint**
 - E.g., “X living in Chicago” and “Chicago being a city in U.S.” → “X lives in U.S.”
LML Components of NELL

- **KB**
 - Extracted facts and relations
 - Reasoning capability

- **KBL**
 - All the learners and extractors
ALICE: Lifelong Info. Extraction
(Banko and Etzioni 2007)

- Similar to NELL, Alice performs similar continuous/lifelong information extraction of
 - concepts and their instances,
 - attributes of concepts, and
 - various relationships among them.
- The knowledge is iteratively updated

- Extraction based on syntactic patterns like
 - \((<x> \text{ such as } <y>) \) and \((\text{fruit such as } <y>) \),
Lifelong Strategy

- The output knowledge upon completion of a learning task is used in two ways:
 - to update the current domain theory (i.e., domain concept hierarchy and abstraction) and
 - to generate subsequent learning tasks.

- This behavior makes Alice a lifelong agent
 - i.e., Alice uses the knowledge acquired during the nth task to specify its future learning agenda.

EMNLP-2016, Austin Texas
Outline

- A motivating example
- What is lifelong machine learning?
- Related learning paradigms
- Lifelong supervised learning
- Lifelong unsupervised learning
- Semi-supervised never-ending learning
- Lifelong reinforcement learning
- Summary
Reinforcement Learning

- An agent learns actions through trial and error interactions with a dynamic environment.

- The agent gets reward/penalty after each action.

- Each action changes the state of the environment.

- The agent usually needs a large amount of quality experience (cost is high).
Lifelong Reinforcement Learning (LRL)

- Utilize the experience accumulated from other tasks
- Learn faster in a new task with fewer interactions
Example LRL Works

- Lifelong robot learning with knowledge memorization (Thrun and Mitchell 1995)
- Treating each environment as a task (Tanaka and Yamamura 1997)
- Hierarchical Bayesian approach (Wilson et al., 2007)
- Policy Gradient Efficient Lifelong Learning Algorithm (PG-ELLA) (Bou Ammar et al., 2014)
Outline

- A motivating example
- What is lifelong machine learning?
- Related learning paradigms
- Lifelong supervised learning
- Lifelong unsupervised learning
- Semi-supervised never-ending learning
- Lifelong reinforcement learning
- Summary
Summary

- This tutorial gave an introduction to LML with a focus on NLP applications

- Existing LML research is still in its infancy
 - Understanding of LML is very limited
 - Current research mainly focuses on
 - Only one type of tasks in a system

- LML needs big data – to learn a large amount of reliable knowledge of different types.
 - The more we know the better we can learn
Summary

(Chen and Liu 2016-book)

There are many challenges for LML, e.g.,
- Correctness of knowledge
- Applicability of knowledge
- Knowledge representation and reasoning
- Learn with tasks of multiple types
- Self-motivated learning
- Compositional learning
- Learning in interaction with humans & systems
Coming Soon (Nov 2016)
(Chen and Liu 2016-book)

- Introduction
- Related Learning Paradigms
- Lifelong Supervised Learning
- Lifelong Unsupervised Learning
- Lifelong Semi-supervised Learning for Information Extraction
- Lifelong Reinforcement Learning
- Conclusion
Thank You!

Q & A

Reference (7)

Reference (8)

