
Practical Neural
Networks for NLP

(Part 1)
Chris Dyer, Yoav Goldberg, Graham Neubig

November 1, 2016 EMNLP

https://github.com/clab/dynet_tutorial_examples

https://github.com/clab/dynet_tutorial_examples

Neural Nets and Language
• Tension: Language and neural nets

• Language is discrete and structured

• Sequences, trees, graphs

• Neural nets represent things with continuous vectors

• Poor “native support” for structure

• The big challenge is writing code that translates between the
{discrete-structured, continuous} regimes

• This tutorial is about one framework that lets you use the power of
neural nets without abandoning familiar NLP algorithms

Outline
• Part 1

• Computation graphs and their construction

• Neural Nets in DyNet

• Recurrent neural networks

• Minibatching

• Adding new differentiable functions

Outline

• Part 2: Case Studies

• Tagging with bidirectional RNNs

• Transition-based dependency parsing

• Structured prediction meets deep learning

Computation Graphs
Deep Learning’s Lingua Franca

y = x

>
Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

y = x

>
Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument  
(and also an data dependency). They are just  
pointers to nodes.
A node with an incoming edge is a function of
that edge’s tail node.

f(u) = u>

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary,  
binary, … n-ary. Often they are unary or binary.

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic (in DyNet)

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x

>
Ax

@f(x,A)

@A
= xx

>

@f(x,A)

@x
= (A> +A)x

expression:

graph:

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.

Algorithms
• Graph construction

• Forward propagation

• Loop over nodes in topological order

• Compute the value of the node given its inputs

• Given my inputs, make a prediction (or compute an “error” with respect to a “target
output”)

• Backward propagation

• Loop over the nodes in reverse topological order starting with a final goal node

• Compute derivatives of final goal node value with respect to each edge’s tail
node

• How does the output change if I make a small change to the inputs?

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

x

>
Ax

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

x

>
Ax

Forward Propagation

x

>
Ax+ b · x+ c

The MLP
h = tanh(Wx+ b)

y = Vh+ a

x

f(M,v) = Mv

W

b

f(u,v) = u+ v
h

f(u) = tanh(u) V

a

f(M,v) = Mv

f(u,v) = u+ v

Constructing Graphs

Two Software Models
• Static declaration

• Phase 1: define an architecture  
(maybe with some primitive flow control like loops and
conditionals)

• Phase 2: run a bunch of data through it to train the
model and/or make predictions

• Dynamic declaration

• Graph is defined implicitly (e.g., using operator
overloading) as the forward computation is executed

Hierarchical Structure

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.

Static Declaration
• Pros

• Offline optimization/scheduling of graphs is powerful

• Limits on operations mean better hardware support

• Cons

• Structured data (even simple stuff like sequences), even variable-
sized data, is ugly

• You effectively learn a new programming language (“the Graph
Language”) and you write programs in that language to process data.

• examples: Torch, Theano, TensorFlow

Dynamic Declaration
• Pros

• library is less invasive

• the forward computation is written in your favorite programming
language with all its features, using your favorite algorithms

• interleave construction and evaluation of the graph

• Cons

• little time for graph optimization

• if the graph is static, effort can be wasted

• examples: Chainer, most automatic differentiation libraries, DyNet

Dynamic Structure?
• Hierarchical structures exist in language

• We might want to let the network reflect that hierarchy

• Hierarchical structure is easiest to process with
traditional flow-control mechanisms in your favorite
languages

• Combinatorial algorithms (e.g., dynamic programming)

• Exploit independencies to compute over a large
space of operations tractably

Why DyNet?
• The state of the world before DyNet/cnn

• AD libraries are fast and good, but don’t have support for deep learning
must-haves (GPUs, optimization algorithms, primitives for implementing
RNNs, etc.)

• Deep learning toolkits don’t support dynamic graphs well

• DyNet is a hybrid between a generic autodiff library and a Deep learning toolkit

• It has the flexibility of a good AD library

• It has most obligatory DL primitives

• (Although the emphasis is dynamic operation, it can run perfectly well in “static
mode”. It’s quite fast too! But if you’re happy with that, probably stick to
TensorFlow/Theano/Torch.)

Why DyNet?
• The state of the world before DyNet/cnn

• AD libraries are fast and good, but don’t have support for deep learning
must-haves (GPUs, optimization algorithms, primitives for implementing
RNNs, etc.)

• Deep learning toolkits don’t support dynamic graphs well

• DyNet is a hybrid between a generic autodiff library and a Deep learning toolkit

• It has the flexibility of a good AD library

• It has most obligatory DL primitives

• (Although the emphasis is dynamic operation, it can run perfectly well in “static
mode”. It’s quite fast too! But if you’re happy with that, probably stick to
TensorFlow/Theano/Torch.)

How does it work?
• C++ backend based on Eigen

• Eigen also powers TensorFlow

• Custom (“quirky”) memory management

• You probably don’t need to ever think about this,
but a few well-hidden assumptions make the
graph construction and execution very fast.

• Thin Python wrapper on C++ API

Neural Networks in
DyNet

The Major Players
• Computation Graph

• Expressions (~ nodes in the graph)

• Parameters

• Model

• a collection of parameters

• Trainer

Computation Graph
and Expressions

import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1,v2,v3,v5])

print v6
print v6.npvalue()

Computation Graph
and Expressions

import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1,v2,v3,v5])

print v6
print v6.npvalue()

expression 5/1

Computation Graph
and Expressions

import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1,v2,v3,v5])

print v6
print v6.npvalue()

array([1., 2., 3., 4., 2., 4., 6., 8., 4., 8., 12., 16.])

• Create basic expressions.

• Combine them using operations.

• Expressions represent symbolic computations.

• Use: 
.value()  
.npvalue()  
.scalar_value()  
.vec_value()  
.forward()  
 to perform actual computation.

Computation Graph
and Expressions

Model and Parameters

• Parameters are the things that we optimize over
(vectors, matrices).

• Model is a collection of parameters.

• Parameters out-live the computation graph.

Model and Parameters
model = dy.Model()

pW = model.add_parameters((20,4))
pb = model.add_parameters(20)

dy.renew_cg()
x = dy.inputVector([1,2,3,4])
W = dy.parameter(pW) # convert params to expression
b = dy.parameter(pb) # and add to the graph

y = W * x + b

Parameter Initialization
model = dy.Model()

pW = model.add_parameters((4,4))

pW2 = model.add_parameters((4,4), init=dy.GlorotInitializer())

pW3 = model.add_parameters((4,4), init=dy.NormalInitializer(0,1))

pW4 = model.parameters_from_numpu(np.eye(4))

Trainers and Backdrop

• Initialize a Trainer with a given model.

• Compute gradients by calling expr.backward()
from a scalar node.

• Call trainer.update() to update the model
parameters using the gradients.

Trainers and Backdrop
model = dy.Model()

trainer = dy.SimpleSGDTrainer(model)

p_v = model.add_parameters(10)

for i in xrange(10):
 dy.renew_cg()

 v = dy.parameter(p_v)
 v2 = dy.dot_product(v,v)
 v2.forward()

 v2.backward() # compute gradients

 trainer.update()

Trainers and Backdrop
model = dy.Model()

trainer = dy.SimpleSGDTrainer(model)

p_v = model.add_parameters(10)

for i in xrange(10):
 dy.renew_cg()

 v = dy.parameter(p_v)
 v2 = dy.dot_product(v,v)
 v2.forward()

 v2.backward() # compute gradients

 trainer.update()

 dy.SimpleSGDTrainer(model,...)

 dy.MomentumSGDTrainer(model,...)

 dy.AdagradTrainer(model,...)

 dy.AdadeltaTrainer(model,...)

 dy.AdamTrainer(model,...)

Training with DyNet
• Create model, add parameters, create trainer.

• For each training example:

• create computation graph for the loss

• run forward (compute the loss)

• run backward (compute the gradients)

• update parameters

Example: MLP for XOR
• Model form:

34

C H A P T E R 3

From Linear Models to
Multi-layer Perceptrons

3.1 LIMITATIONS OF LINEAR MODELS: THE XOR PROBLEM
The hypothesis class of linear (and log-linear) models is severely restricted. For example,
it cannot represent the XOR function, defined as:

xor(0, 0) = 0

xor(1, 0) = 1

xor(0, 1) = 1

xor(1, 1) = 0

That is, there is no parameterization w 2 R2, b 2 R such that:

(0, 0) ·w + b < 0

(0, 1) ·w + b � 0

(1, 0) ·w + b � 0

(1, 1) ·w + b < 0

To see why, consider the following plot of the XOR function, where blue Os denote
the positive class and green Xs the negative class.

• Data:

x

y

ŷ = �(v · tanh(Ux+ b))

• Loss:

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0

import dynet as dy
import random

data =[([0,1],0),
 ([1,0],0),
 ([0,0],1),
 ([1,1],1)]

model = dy.Model()
pU = model.add_parameters((4,2))
pb = model.add_parameters(4)
pv = model.add_parameters(4)

trainer = dy.SimpleSGDTrainer(model)
closs = 0.0

for ITER in xrange(1000):
 random.shuffle(data)
 for x,y in data:

....

ŷ = �(v · tanh(Ux+ b))

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0

if ITER > 0 and ITER % 100 == 0:
 print "Iter:",ITER,"loss:", closs/400
 closs = 0

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000):

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000): lets organize the code a bit

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000):

x = dy.inputVector(x)
predict
yhat = predict(x)
loss
loss = compute_loss(yhat, y)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

lets organize the code a bit

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000):

x = dy.inputVector(x)
predict
yhat = predict(x)
loss
loss = compute_loss(yhat, y)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

def predict(expr):
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 y = dy.logistic(dy.dot_product(v,dy.tanh(U*expr+b)))
 return y

ŷ = �(v · tanh(Ux+ b))

for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

for ITER in xrange(1000):

x = dy.inputVector(x)
predict
yhat = predict(x)
loss
loss = compute_loss(yhat, y)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()

def compute_loss(expr, y):
 if y == 0:
 return -dy.log(1 - expr)
 elif y == 1:
 return -dy.log(expr)

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0

Key Points

• Create computation graph for each example.

• Graph is built by composing expressions.

• Functions that take expressions and return
expressions define graph components.

Word Embeddings and
LookupParameters

• In NLP, it is very common to use feature
embeddings.

• Each feature is represented as a d-dim vector.

• These are then summed or concatenated to form
an input vector.

• The embeddings can be pre-trained.

• They are usually trained with the model.

"feature embeddings"
• Each feature is assigned a vector.

• The input is a combination of feature vectors.

• The feature vectors are parameters of the model 
and are trained jointly with the rest of the network.

• Representation Learning: similar features will
receive similar vectors.

"feature embeddings"

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

• Features are completely independent from one another. The feature “word is
‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it is to “word is ‘cat’ ”.

Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at

6

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

• Features are completely independent from one another. The feature “word is
‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it is to “word is ‘cat’ ”.

Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at

6

Word Embeddings and
LookupParameters

• In DyNet, embeddings are implemented using  
LookupParameters.

vocab_size = 10000
emb_dim = 200

E = model.add_lookup_parameters((vocab_size, emb_dim))

Word Embeddings and
LookupParameters

• In DyNet, embeddings are implemented using  
LookupParameters.

vocab_size = 10000
emb_dim = 200

E = model.add_lookup_parameters((vocab_size, emb_dim))

dy.renew_cg()
x = dy.lookup(E, 5)
or
x = E[5]
x is an expression

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing, pages 1681–1691,
Beijing, China, July 26-31, 2015. c�2015 Association for Computational Linguistics

Deep Unordered Composition Rivals Syntactic Methods
for Text Classification

Mohit Iyyer,1 Varun Manjunatha,1 Jordan Boyd-Graber,2 Hal Daumé III1

1University of Maryland, Department of Computer Science and UMIACS
2University of Colorado, Department of Computer Science

{miyyer,varunm,hal}@umiacs.umd.edu, Jordan.Boyd.Graber@colorado.edu

Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-
timent analysis and factoid question an-
swering tasks while taking only a fraction
of the training time. While our model is
syntactically-ignorant, we show significant
improvements over previous bag-of-words
models by deepening our network and ap-
plying a novel variant of dropout. More-
over, our model performs better than syn-
tactic models on datasets with high syn-
tactic variance. We show that our model
makes similar errors to syntactically-aware
models, indicating that for the tasks we con-
sider, nonlinearly transforming the input is
more important than tailoring a network to
incorporate word order and syntax.

1 Introduction

Vector space models for natural language process-
ing (NLP) represent words using low dimensional
vectors called embeddings. To apply vector space
models to sentences or documents, one must first
select an appropriate composition function, which
is a mathematical process for combining multiple
words into a single vector.

Composition functions fall into two classes: un-

ordered and syntactic. Unordered functions treat in-
put texts as bags of word embeddings, while syntac-
tic functions take word order and sentence structure
into account. Previously published experimental

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).

However, there is a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products
and nonlinearities at every node of a syntactic parse
tree, which limits it to smaller datasets that can be
reliably parsed.

We introduce a deep unordered model that ob-
tains near state-of-the-art accuracies on a variety of
sentence and document-level tasks with just min-
utes of training time on an average laptop computer.
This model, the deep averaging network (DAN),
works in three simple steps:

1. take the vector average of the embeddings
associated with an input sequence of tokens

2. pass that average through one or more feed-
forward layers

3. perform (linear) classification on the final
layer’s representation

The model can be improved by applying a novel
dropout-inspired regularizer: for each training in-
stance, randomly drop some of the tokens’ embed-
dings before computing the average.

We evaluate DANs on sentiment analysis and fac-
toid question answering tasks at both the sentence
and document level in Section 4. Our model’s suc-
cesses demonstrate that for these tasks, the choice
of composition function is not as important as ini-
tializing with pretrained embeddings and using a
deep network. Furthermore, DANs, unlike more
complex composition functions, can be effectively
trained on data that have high syntactic variance. A

1681

"Document Averaging Networks"

text classification

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

CBOW (w1, . . . , wn) =
nX

i=1

E[wi]

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

CBOW (w1, . . . , wn) =
nX

i=1

E[wi]

g1 = g2 = tanh

lets define this network

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

CBOW (w1, . . . , wn) =
nX

i=1

E[wi]

g1 = g2 = tanh

pW1 = model.add_parameters((HID, EDIM))
pb1 = model.add_parameters(HID)

pW2 = model.add_parameters((NOUT, HID))
pb2 = model.add_parameters(NOUT)

E = model.add_lookup_parameters((V, EDIM))

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

pW1 = model.add_parameters((HID, EDIM))
pb1 = model.add_parameters(HID)

pW2 = model.add_parameters((NOUT, HID))
pb2 = model.add_parameters(NOUT)

E = model.add_lookup_parameters((V, EDIM))

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"
def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def encode_doc(doc):
 doc = [w2i[w] for w in doc]
 embs = [E[idx] for idx in doc]
 return dy.esum(embs)

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"
def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def encode_doc(doc):
 doc = [w2i[w] for w in doc]
 embs = [E[idx] for idx in doc]
 return dy.esum(embs)

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

 loss = do_loss(probs,label)
 loss.forward()
 loss.backward()
 trainer.update()

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)

 loss = do_loss(probs,label)
 loss.forward()
 loss.backward()
 trainer.update()

def do_loss(probs, label):
 label = l2i[label]
 return -dy.log(dy.pick(probs,label))

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def classify(doc):
 dy.renew_cg()
 probs = predict_labels(doc)

 vals = probs.npvalue()
 return i2l[np.argmax(vals)]

TF/IDF?
def encode_doc(doc):
 doc = [w2i[w] for w in doc]
 embs = [E[idx] for idx in doc]
 return dy.esum(embs)

def encode_doc(doc):
 weights = [tfidf(w) for w in doc]
 doc = [w2i[w] for w in doc]
 embs = [E[idx]*w for w,idx in zip(weights,doc)]
 return dy.esum(embs)

Encapsulation with Classes
class MLP(object):
 def __init__(self, model, in_dim, hid_dim, out_dim, non_lin=dy.tanh):
 self._W1 = model.add_parameters((hid_dim, in_dim))
 self._b1 = model.add_parameters(hid_dim)
 self._W2 = model.add_parameters((out_dim, hid_dim))
 self._b2 = model.add_parameters(out_dim)
 self.non_lin = non_lin

 def __call__(self, in_expr):
 W1 = dy.parameter(self._W1)
 W2 = dy.parameter(self._W2)
 b1 = dy.parameter(self._b1)
 b2 = dy.parameter(self._b2)
 g = self.non_lin
 return W2*g(W1*in_expr + b1)+b2

x = dy.inputVector(range(10))

mlp = MLP(model, 10, 100, 2, dy.tanh)

y = mlp(v)

Summary
• Computation Graph

• Expressions (~ nodes in the graph)

• Parameters, LookupParameters

• Model (a collection of parameters)

• Trainers

• Create a graph for each example, then 
compute loss, backdrop, update.

Outline
• Part 1

• Computation graphs and their construction

• Neural Nets in DyNet

• Recurrent neural networks

• Minibatching

• Adding new differentiable functions

Recurrent Neural Networks
• NLP is full of sequential data

• Words in sentences

• Characters in words

• Sentences in discourse

• …

• How do we represent an arbitrarily long history?

• we will train neural networks to build a representation of these
arbitrarily big sequences

Recurrent Neural Networks
• NLP is full of sequential data

• Words in sentences

• Characters in words

• Sentences in discourse

• …

• How do we represent an arbitrarily long history?

• we will train neural networks to build a representation of these
arbitrarily big sequences

Recurrent Neural Networks

h = g(Vx+ c)

ŷ = Wh+ b

Feed-forward NN

ŷ

h

x

Recurrent Neural Networks

h = g(Vx+ c)

ŷ = Wh+ b

Feed-forward NN Recurrent NN
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

ŷ

h

x

xt

ht

ŷt

Recurrent Neural Networks

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

How do we train the RNN’s parameters?

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

cost2

y2

cost3

y3

cost4

y4

F

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

F

Recurrent Neural Networks

• The unrolled graph is a well-formed (DAG)
computation graph—we can run backprop

• Parameters are tied across time, derivatives are
aggregated across all time steps

• This is historically called “backpropagation
through time” (BPTT)

Parameter Tying

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

cost2

y2

cost3

y3

cost4

y4

F

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

U

Parameter Tying

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

U

@F
@U

=
4X

t=1

@ht

@U

@F
@ht

What else can we do?

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

cost2

y2

cost3

y3

cost4

y4

F

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

“Read and summarize”

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

Summarize a sequence into a single vector.  
(For prediction, translation, etc.)

Example: Language Model

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

Example: Language Model

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

p(e) =p(e1)⇥
p(e2 | e1)⇥
p(e3 | e1, e2)⇥
p(e4 | e1, e2, e3)⇥
· · ·

 istories are sequences of words…h

Example: Language Model

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

⇠
likes

⇥p(likes | hsi, tom)

x3

h3

softmax

⇠

beer

⇥p(beer | hsi, tom, likes)

x4

h4

softmax

⇠

</s>

⇥p(h/si | hsi, tom, likes, beer)

Language Model Training

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom
⇠

likes

x3

h3

softmax

⇠

beer

x4

h4

softmax

⇠

</s>

Language Model Training

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4

F

{log
 lo

ss/
 

cro
ss

en
tro

py

Alternative RNNs

• Long short-term memories (LSTMs; Hochreiter and
Schmidthuber, 1997)

• Gated recurrent units (GRUs; Cho et al., 2014)

• All follow the basic paradigm of “take input, update
state”

Recurrent Neural Networks
in DyNet

• Based on “*Builder” class (*=SimpleRNN/LSTM)

LSTM (layers=1, input=64, hidden=128, model)
RNN = dy.LSTMBuilder(1, 64, 128, model)

• Add parameters to model (once):

• Add parameters to CG and get initial state (per sentence):
s = RNN.initial_state()

• Update state and access (per input word/character):
s = s.add_input(x_t)
h_t = s.output()

RNNLM Example:
Parameter Initialization

Lookup parameters for word embeddings
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64))

Word-level LSTM (layers=1, input=64, hidden=128, model)
RNN = dy.LSTMBuilder(1, 64, 128, model)

Softmax weights/biases on top of LSTM outputs
W_sm = model.add_parameters((nwords, 128))
b_sm = model.add_parameters(nwords)

RNNLM Example:
Sentence Initialization

Build the language model graph
def calc_lm_loss(wids):
 dy.renew_cg()

 # parameters -> expressions
 W_exp = dy.parameter(W_sm)
 b_exp = dy.parameter(b_sm)

 # add parameters to CG and get state
 f_init = RNN.initial_state()

 # get the word vectors for each word ID
 wembs = [WORDS_LOOKUP[wid] for wid in wids]

 # Start the rnn by inputting "<s>"
 s = f_init.add_input(wembs[-1])

…

RNNLM Example:
Loss Calculation and State Update

 # process each word ID and embedding
 losses = []
 for wid, we in zip(wids, wembs):

 # calculate and save the softmax loss
 score = W_exp * s.output() + b_exp
 loss = dy.pickneglogsoftmax(score, wid)
 losses.append(loss)

 # update the RNN state with the input
 s = s.add_input(we)

 # return the sum of all losses
 return dy.esum(losses)

…

Mini-batching

Implementation Details:
Minibatching

• Minibatching: group together multiple similar operations

• Modern hardware

• pretty fast for elementwise operations

• very fast for matrix-matrix multiplication

• has overhead for every operation (esp. GPUs)

• Neural networks consist of

• lots of elementwise operations

• lots of matrix-vector products

Minibatching
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Single-instance RNN

Ht = g(VXt +UHt�1 + c)

Ŷt = WHt + b

Minibatch RNN

We batch across instances,  
not across time.

z }| {

x1 x1 x1 X1

anything wrong here?

Minibatching Sequences
• How do we handle sequences of different lengths?

this is an example </s>
this is another </s> </s>

pad
calculate  
loss

mask

1 
1� 1 

1� 1 
1� 1 

1� 1 
0�

sum to sentence loss

Mini-batching in Dynet
• DyNet has special minibatch operations for lookup

and loss functions, everything else automatic

• You need to:

• Group sentences into a mini batch (optionally, for
efficiency group sentences by length)

• Select the “t”th word in each sentence, and send
them to the lookup and loss functions

Function Changes

wids = [5, 2, 1, 3]
wemb = dy.lookup_batch(WORDS_LOOKUP, wids)
loss = dy.pickneglogsoftmax_batch(score, wids)

wid = 5
wemb = WORDS_LOOKUP[wid]
loss = dy.pickneglogsoftmax(score, wid)

Implementing Functions

Standard Functions
addmv, affine_transform, average, average_cols, binary_log_loss,
block_dropout, cdiv, colwise_add, concatenate, concatenate_cols,
const_lookup, const_parameter, contract3d_1d, contract3d_1d_1d,
conv1d_narrow, conv1d_wide, cube, cwise_multiply, dot_product,
dropout, erf, exp, filter1d_narrow, fold_rows, hinge, huber_distance,
input, inverse, kmax_pooling, kmh_ngram, l1_distance, lgamma,
log, log_softmax, logdet, logistic, logsumexp, lookup, max, min,
nobackprop, noise, operator*, operator+, operator-, operator/,
pairwise_rank_loss, parameter, pick, pickneglogsoftmax, pickrange,
poisson_loss, pow, rectify, reshape, select_cols, select_rows,
softmax, softsign, sparsemax, sparsemax_loss, sqrt, square,
squared_distance, squared_norm, sum, sum_batches, sum_cols,
tanh, trace_of_product, transpose, zeroes

What if I Can’t Find my
Function?

• e.g. Geometric mean  

• Option 1: Connect multiple functions together

• Option 2: Implement forward and backward
functions directly 
→ C++ implementation w/ Python bindings

y = sqrt(x_0 * x_1)

Implementing Forward
• Backend based on Eigen operations

template<class MyDevice>
void GeometricMean::forward_dev_impl(const MyDevice & dev,
 const vector<const Tensor*>& xs,
 Tensor& fx) const {
 fx.tvec().device(*dev.edevice) =  
 (xs[0]->tvec() * xs[1]->tvec()).sqrt();
}

nodes.cc
geom(x0, x1) :=

p
x0 ⇤ x1

dev: which device — CPU/GPU
xs: input values
fx: output value

Implementing Backward
• Calculate gradient for all args @geom(x0, x1)

@x0
=

x1

2 ⇤ geom(x0, x1)

template<class MyDevice>
void GeometricMean::backward_dev_impl(const MyDevice & dev,
 const vector<const Tensor*>& xs,
 const Tensor& fx,
 const Tensor& dEdf,
 unsigned i,
 Tensor& dEdxi) const {
 dEdxi.tvec().device(*dev.edevice) +=
 xs[i==1?0:1] * fx.inv() / 2 * dEdf;
}

nodes.cc

dev: which device, CPU/GPU
xs: input values
fx: output value

dEdf: derivative of loss w.r.t f  
i: index of input to consider
dEdxi: derivative of loss w.r.t. x[i]

Other Functions to
Implement

• nodes.h: class definition
• nodes-common.cc: dimension check and function name
• expr.h/expr.cc: interface to expressions
• dynet.pxd/dynet.pyx: Python wrappers

Gradient Checking
• Things go wrong in implementation (forgot a “2” or

a “-“)
• Luckily, we can check forward/backward

consistency automatically
• Idea: small steps (h) approximate gradient

@f(x)

@x

⇡ f(x+ h)� f(x� h)

2h

• Easy in DyNet: use GradCheck(cg) function

Uses Backward Only Forward

Questions/Coffee Time!

