Practical Neural Networks for NLP (Part 1)

Chris Dyer, Yoav Goldberg, Graham Neubig

https://github.com/clab/dynet_tutorial_examples
Neural Nets and Language

- Tension: Language and neural nets
 - Language is discrete and structured
 - Sequences, trees, graphs
 - Neural nets represent things with continuous vectors
 - Poor “native support” for structure
- The big challenge is writing code that translates between the {discrete-structured, continuous} regimes
- This tutorial is about one framework that lets you use the power of neural nets without abandoning familiar NLP algorithms
Outline

• Part 1
 • Computation graphs and their construction
 • Neural Nets in DyNet
 • Recurrent neural networks
 • Minibatching
 • Adding new differentiable functions
Outline

• Part 2: Case Studies
 • Tagging with bidirectional RNNs
 • Transition-based dependency parsing
 • Structured prediction meets deep learning
Computation Graphs
Deep Learning’s Lingua Franca
expression:

A node is a \{tensor, matrix, vector, scalar\} value
An **edge** represents a function argument (and also an data dependency). They are just pointers to nodes.

A **node** with an incoming **edge** is a **function** of that edge’s tail node.

A **node** knows how to compute its value and the **value of its derivative w.r.t each argument (edge)** times a derivative of an arbitrary input $\frac{\partial F}{\partial f(u)}$.

$$f(u) = u^T$$

$$\frac{\partial f(u)}{\partial u} \frac{\partial F}{\partial f(u)} = \left(\frac{\partial F}{\partial f(u)} \right)^\top$$
expression:
\[x^T A \]

Functions can be nullary, unary, binary, ... \(n \)-ary. Often they are unary or binary.

graph:

\[f(U, V) = UV \]

\[f(u) = u^T \]
expression:
\[x^T A x \]

graph:

Computation graphs are directed and acyclic (in DyNet)
expression:
\[x^T A x \]

graph:

\[f(M, v) = Mv \]
\[f(U, V) = UV \]
\[f(u) = u^T \]

\[\frac{\partial f(x, A)}{\partial x} = (A^T + A)x \]
\[\frac{\partial f(x, A)}{\partial A} = xx^T \]
expression:
\[x^T Ax + b \cdot x + c \]

graph:

\[f(x_1, x_2, x_3) = \sum x_i \]

\[f(M, v) = Mv \]

\[f(U, V) = UV \]

\[f(u) = u^T \]

\[f(u, v) = u \cdot v \]
expression:

\[y = x^T A x + b \cdot x + c \]

graph:

\[f(x_1, x_2, x_3) = \sum_i x_i \]

\[f(M, v) = Mv \]

\[f(U, V) = UV \]

\[f(u) = u^T \]

\[f(u, v) = u \cdot v \]

variable names are just labelings of nodes.
Algorithms

• Graph construction

• Forward propagation
 • Loop over nodes in topological order
 • Compute the value of the node given its inputs
 • Given my inputs, make a prediction (or compute an “error” with respect to a “target output”)

• Backward propagation
 • Loop over the nodes in reverse topological order starting with a final goal node
 • Compute derivatives of final goal node value with respect to each edge’s tail node
 • How does the output change if I make a small change to the inputs?
Forward Propagation

graph:

\[f(x_1, x_2, x_3) = \sum_i x_i \]

\[f(M, v) = Mv \]

\[f(U, V) = UV \]

\[f(u) = u^\top \]

\[f(u, v) = u \cdot v \]
Forward Propagation

$\mathbf{f}(\mathbf{u}) = \mathbf{u}^T$

$\mathbf{f}(\mathbf{M}, \mathbf{v}) = \mathbf{Mv}$

$\mathbf{f}(\mathbf{U}, \mathbf{V}) = \mathbf{UV}$

$\mathbf{f}(\mathbf{x}, \mathbf{b}, \mathbf{c}) = \mathbf{x} \cdot \mathbf{b}$

$\mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \sum_{i} \mathbf{x}_i$
Forward Propagation

graph:

\[f(x_1, x_2, x_3) = \sum_i x_i \]

\[f(U, V) = UV \]

\[f(u) = u^T \]

\[f(u, v) = u \cdot v \]
Forward Propagation

graph:

\[f(x_1, x_2, x_3) = \sum_i x_i \]

\[f(M, v) = Mv \]

\[f(U, V) = UV \]

\[f(u) = u^\top \]

\[f(u, v) = u \cdot v \]
Forward Propagation

graph:

\[f(x_1, x_2, x_3) = \sum_i x_i \]

\[f(M, v) = Mv \]

\[f(U, V) = UV \]

\[f(u) = u^T \]

\[f(u, v) = u \cdot v \]
Forward Propagation

graph:

\[f(x_1, x_2, x_3) = \sum_i x_i \]

\[f(U, V) = UV \]

\[f(M, v) = Mv \]

\[f(u) = u^T \]

\[f(u, v) = u \cdot v \]
Forward Propagation

$$f(x_1, x_2, x_3) = \sum_i x_i$$

graph:

- $f(M, v) = Mv$
- $f(U, V) = UV$
- $f(u) = u^T$
- $f(u, v) = u \cdot v$

Nodes:
- x
- A
- b
- c
- $x^T A$
- x^T
Forward Propagation

\[f(x_1, x_2, x_3) = \sum_i x_i \]
\[x^\top Ax + b \cdot x + c \]
\[f(U, V) = UV \]
\[f(u) = u^\top \]
\[f(u, v) = u \cdot v \]
The MLP

\[h = \tanh(Wx + b) \]
\[y = Vh + a \]

\[f(u, v) = u + v \]
\[f(u) = \tanh(u) \]
\[f(M, v) = Mv \]
Constructing Graphs
Two Software Models

- **Static declaration**
 - Phase 1: define an architecture (maybe with some primitive flow control like loops and conditionals)
 - Phase 2: run a bunch of data through it to train the model and/or make predictions

- **Dynamic declaration**
 - Graph is defined implicitly (e.g., using operator overloading) as the forward computation is executed
Hierarchical Structure

Words

Phrases

Sentences

Documents

This film was completely unbelievable.
The characters were wooden and the plot was absurd.
That being said, I liked it.
Static Declaration

• Pros
 • Offline optimization/scheduling of graphs is powerful
 • Limits on operations mean better hardware support

• Cons
 • Structured data (even simple stuff like sequences), even variable-sized data, is ugly
 • You effectively learn a new programming language (“the Graph Language”) and you write programs in that language to process data.

• examples: Torch, Theano, TensorFlow
Dynamic Declaration

- **Pros**
 - library is less invasive
 - the forward computation is written in your favorite programming language with all its features, using your favorite algorithms
 - interleave construction and evaluation of the graph

- **Cons**
 - little time for graph optimization
 - if the graph is static, effort can be wasted

- examples: Chainer, *most automatic differentiation libraries*, DyNet
Dynamic Structure?

• Hierarchical structures exist in language
 • We might want to let the network reflect that hierarchy
 • Hierarchical structure is easiest to process with traditional flow-control mechanisms in your favorite languages
• Combinatorial algorithms (e.g., dynamic programming)
 • Exploit independencies to compute over a large space of operations tractably
Why DyNet?

• The state of the world before DyNet/cnn

• AD libraries are fast and good, but don’t have support for deep learning must-haves (GPUs, optimization algorithms, primitives for implementing RNNs, etc.)

• Deep learning toolkits don’t support dynamic graphs well
Why DyNet?

• The state of the world before DyNet/cnn
 • AD libraries are fast and good, but don’t have support for deep learning must-haves (GPUs, optimization algorithms, primitives for implementing RNNs, etc.)
 • Deep learning toolkits don’t support dynamic graphs well

• DyNet is a hybrid between a generic autodiff library and a Deep learning toolkit
 • It has the flexibility of a good AD library
 • It has most obligatory DL primitives

• (Although the emphasis is dynamic operation, it can run perfectly well in “static mode”. It’s quite fast too! But if you’re happy with that, probably stick to TensorFlow/Theano/Torch.)
How does it work?

• C++ backend based on Eigen

 • Eigen also powers TensorFlow

• Custom ("quirky") memory management

 • You probably don’t need to ever think about this, but a few well-hidden assumptions make the graph construction and execution very fast.

• Thin Python wrapper on C++ API
Neural Networks in DyNet
The Major Players

• Computation Graph

• Expressions (~ nodes in the graph)

• Parameters

• Model
 • a collection of parameters

• Trainer
import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1, 2, 3, 4])
v2 = dy.inputVector([5, 6, 7, 8])
v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1, v2, v3, v5])

print v6
print v6.npvalue()
import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1, 2, 3, 4])
v2 = dy.inputVector([5, 6, 7, 8]) # v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1, v2, v3, v5])

print v6 # expression 5/1
print v6.npvalue()
import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1, 2, 3, 4])
v2 = dy.inputVector([5, 6, 7, 8])
v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1, v2, v3, v5])

print v6
print v6.npvalue()

array([1., 2., 3., 4., 2., 4., 6., 8., 4., 8., 12., 16.])
Computation Graph and Expressions

- Create basic expressions.
- Combine them using *operations*.
- Expressions represent *symbolic computations*.

Use:
- `value()`
- `npvalue()`
- `scalar_value()`
- `vec_value()`
- `forward()`

...to perform actual computation.
Model and Parameters

- **Parameters** are the things that we optimize over (vectors, matrices).
- **Model** is a collection of parameters.
- Parameters **out-live** the computation graph.
Model and Parameters

```python
model = dy.Model()

pW = model.add_parameters((20, 4))
pb = model.add_parameters(20)

dy.renew_cg()
x = dy.inputVector([1,2,3,4])
W = dy.parameter(pW)  # convert params to expression
b = dy.parameter(pb)  # and add to the graph

y = W * x + b
```
Parameter Initialization

model = dy.Model()

pNext = model.add_parameters((4,4))

pNext2 = model.add_parameters((4,4), init=dy.GlorotInitializer())

pNext3 = model.add_parameters((4,4), init=dy.NormalInitializer(0,1))

pNext4 = model.parameters_from_numpu(np.eye(4))
Trainers and Backdrop

- Initialize a Trainer with a given model.
- Compute gradients by calling `expr.backward()` from a scalar node.
- Call `trainer.update()` to update the model parameters using the gradients.
Trainers and Backdrop

```python
trainer = dy.SimpleSGDTrainer(model)
p_v = model.add_parameters(10)
for i in xrange(10):
    dy.renew_cg()
    v = dy.parameter(p_v)
    v2 = dy.dot_product(v, v)
    v2.forward()
    v2.backward()  # compute gradients

trainer.update()
```
Trainers and Backdrop

```python
model = dy.Model()

trainer = dy.SimpleSGDTrainer(model, ...)
p_v = model.add_parameters(10)
for i in xrange(10):
    dy.renew_cg()
    v = dy.parameter(p_v)
    v2 = dy.dot_product(v, v)
    v2.forward()
    v2.backward()  # compute gradients

trainer.update()
```

- dy.SimpleSGDTrainer(model, ...)
- dy.MomentumSGDTrainer(model, ...)
- dy.AdagradTrainer(model, ...)
- dy.AdadeltaTrainer(model, ...)
- dy.AdamTrainer(model, ...)
Training with DyNet

• Create model, add parameters, create trainer.

• For each training example:
 • create computation graph for the loss
 • run forward (compute the loss)
 • run backward (compute the gradients)
 • update parameters
Example: MLP for XOR

- Data:
 \[
 \begin{array}{ccc}
 \operatorname{xor}(0, 0) &=& 0 \\
 \operatorname{xor}(1, 0) &=& 1 \\
 \operatorname{xor}(0, 1) &=& 1 \\
 \operatorname{xor}(1, 1) &=& 0
 \end{array}
 \]

- Model form:
 \[
 \hat{y} = \sigma(\mathbf{v} \cdot \tanh(\mathbf{U}\mathbf{x} + \mathbf{b}))
 \]

- Loss:
 \[
 \ell = \begin{cases}
 - \log \hat{y} & \text{if } y = 1 \\
 - \log(1 - \hat{y}) & \text{if } y = 0
 \end{cases}
 \]
import dynet as dy
import random

data = [(0, 1), 0),
 ([1, 0], 0),
 ([0, 0], 1),
 ([1, 1], 1)]

model = dy.Model()
pU = model.add_parameters((4, 2))
pb = model.add_parameters(4)
pv = model.add_parameters(4)

trainer = dy.SimpleSGDTrainer(model)
closs = 0.0

for ITER in xrange(1000):
 random.shuffle(data)
 for x, y in data:

\[\hat{y} = \sigma(v \cdot \tanh(Ux + b)) \]
for ITER in xrange(1000):
 for x, y in data:
 \(\hat{y} = \sigma(v \cdot \tanh(Ux + b)) \)
for ITER in xrange(1000):
 for x,y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)

 # predict
 yhat = dy.logistic(dy.dot_product(v, dy.tanh(U*x+b)))

 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward

 loss.backward() # backward
 trainer.update()
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)

 # predict
 yhat = dy.logistic(dy.dot_product(v, dy.tanh(U*x+b)))

 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward() # forward
 trainer.update() # backward
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v, dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1-yhat)
 elif y == 1:
 loss = -dy.log(yhat)
 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v, dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)
 closs += loss.scalar_value()
 loss.backward()
 trainer.update()
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v, dy.tanh(U*x + b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)
 closs += loss.scalar_value() # forward

if ITER > 0 and ITER % 100 == 0:
 print "Iter: ", ITER, "loss: ", closs / 400
 closs = 0
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v, dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)
 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 x = dy.inputVector(x)
 # predict
 yhat = dy.logistic(dy.dot_product(v, dy.tanh(U*x+b)))
 # loss
 if y == 0:
 loss = -dy.log(1 - yhat)
 elif y == 1:
 loss = -dy.log(yhat)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()

 x = dy.inputVector(x)
 # predict
 yhat = predict(x)
 # loss
 loss = compute_loss(yhat, y)

 closs += loss.scalar_value() # forward
 loss.backward()
 trainer.update()
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()

 x = dy.inputVector(x)
 # predict
 yhat = predict(x)
 # loss
 loss = compute_loss(yhat, y)

 closs += loss.scalar_value() # forward
 loss.backward() # forward
 trainer.update()

def predict(expr):
 U = dy.parameter(pU)
 b = dy.parameter(pb)
 v = dy.parameter(pv)
 y = dy.logistic(dy.dot_product(v, dy.tanh(U*expr+b)))
 return y

\[\hat{y} = \sigma(v \cdot \tanh(Ux + b)) \]
for ITER in xrange(1000):
 for x, y in data:
 # create graph for computing loss
 dy.renew_cg()

 x = dy.inputVector(x)
 # predict
 yhat = predict(x)
 # loss
 loss = compute_loss(yhat, y)

 closs += loss.scalar_value() # forward
 loss.backward() # forward
 trainer.update() # forward

def compute_loss(expr, y):
 if y == 0:
 return -dy.log(1 - expr)
 elif y == 1:
 return -dy.log(expr)
Key Points

• Create computation graph for each example.
• Graph is built by composing expressions.
• Functions that take expressions and return expressions define graph components.
Word Embeddings and LookupParameters

- In NLP, it is very common to use feature embeddings.
- Each feature is represented as a d-dim vector.
- These are then summed or concatenated to form an input vector.
- The embeddings can be pre-trained.
- They are usually trained with the model.
"feature embeddings"

- Each feature is assigned a vector.
- The input is a combination of feature vectors.
- The feature vectors are parameters of the model and are trained jointly with the rest of the network.
- **Representation Learning**: similar features will receive similar vectors.
"feature embeddings"

- **Sparse feature vector.** Each dimension represents a feature. Feature combinations receive their own dimensions. Feature values are binary. Dimensionality is very high.
- **Dense, embeddings-based feature vector.** Each core feature is represented as a vector. Each feature corresponds to several input vector entries. No explicit encoding of feature combinations. Dimensionality is low. The feature-to-vector mappings come from an embedding table.

- **Features are completely independent from one another.** The feature "word is 'dog'" is as dis-similar to "word is 'thinking'" than it is to "word is 'cat'".

- **Dense**
 - Each feature is a \(d\)-dimensional vector.
 - Dimensionality of vector is \(d\).
 - Similar features will have similar vectors – information is shared between similar features.

- One benefit of using dense and low-dimensional vectors is computational: the majority of neural network toolkits do not play well with very high-dimensional, sparse vectors. However, this is just a technical obstacle, which can be resolved with some engineering effort.

- The main benefit of the dense representations is in generalization power: if we believe some features may provide similar clues, it is worthwhile to provide a representation that is able to capture these similarities. For example, assume we have observed the word 'dog' many times during training, but only observed the word 'cat' a handful of times, or not at all.
Word Embeddings and LookupParameters

• In DyNet, embeddings are implemented using `LookupParameters`.

```python
vocab_size = 10000
emb_dim = 200

E = model.add_lookup_parameters((vocab_size, emb_dim))
```
Word Embeddings and LookupParameters

- In DyNet, embeddings are implemented using `LookupParameters`.

```python
vocab_size = 10000
emb_dim = 200

E = model.add_lookup_parameters((vocab_size, emb_dim))

dy.renew_cg()
x = dy.lookup(E, 5)
# or
x = E[5]
# x is an expression
```
Deep Unordered Composition Rivals Syntactic Methods for Text Classification

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, Hal Daumé III

1University of Maryland, Department of Computer Science and UMIACS
2University of Colorado, Department of Computer Science

{miyyer, varunm, hal}@umiacs.umd.edu, Jordan.Boyd.Graber@colorado.edu
scores of labels

$softmax(\square)$

$g^2(\mathbf{W}^2 \square + \mathbf{b}^2)$

$g^1(\mathbf{W}^1 \square + \mathbf{b}^1)$

$CBOW(\square)$

w_1, \ldots, w_n

"deep averaging network"

$CBOW(w_1, \ldots, w_n) = \sum_{i=1}^{n} \mathbf{E}[w_i]$
lets define this network

$$CBOW(w_1, \ldots, w_n) = \sum_{i=1}^{n} E[w_i]$$

$g^1 = g^2 = \tanh$

scores of labels

$$softmax(\square)$$

$$g^2(W^2\square + b^2)$$

$$g^1(W^1\square + b^1)$$

$$CBOW(\square)$$

w_1, \ldots, w_n

"deep averaging network"
pW1 = model.add_parameters((HID, EDIM))
pb1 = model.add_parameters(HID)
pW2 = model.add_parameters((NOUT, HID))
pb2 = model.add_parameters(NOUT)
E = model.add_lookup_parameters((V, EDIM))

scores of labels
softmax(□)
g2(W2□ + b2)
g1(W1□ + b1)
CBOW(□)
w1, ..., wn

"deep averaging network"

\[g^1 = g^2 = \tanh \]

\[CBOW(w_1, \ldots, w_n) = \sum_{i=1}^{n} E[w_i] \]
pW1 = model.add_parameters((HID, EDIM))
pb1 = model.add_parameters(HID)
pW2 = model.add_parameters((NOUT, HID))
pb2 = model.add_parameters(NOUT)
E = model.add_lookup_parameters((V, EDIM))

scores of labels
softmax(□)

\[g^2(W^2\mathbf{\cdot} + b^2) \]
\[g^1(W^1\mathbf{\cdot} + b^1) \]
\[CBOW(\mathbf{\cdot}) \]
\[w_1, \ldots, w_n \]

"deep averaging network"

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)
def predict_labels(doc):
x = encode_doc(doc)
h = layer1(x)
y = layer2(h)
return dy.softmax(y)

def layer1(x):
 W = dy.parameter(pW1)
b = dy.parameter(pb1)
return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
b = dy.parameter(pb2)
return dy.tanh(W*x+b)

for (doc, label) in data:
dy.renew_cg()
probs = predict_labels(doc)
def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

for (doc, label) in data:
 probs = predict_labels(doc)
def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)
def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)
```python
def predict_labels(doc):
    x = encode_doc(doc)
    h = layer1(x)
    y = layer2(h)
    return dy.softmax(y)

def encode_doc(doc):
    doc = [w2i[w] for w in doc]
    embs = [E[idx] for idx in doc]
    return dy.esum(embs)

def layer1(x):
    W = dy.parameter(pW1)
    b = dy.parameter(pb1)
    return dy.tanh(W*x+b)

def layer2(x):
    W = dy.parameter(pW2)
    b = dy.parameter(pb2)
    return dy.tanh(W*x+b)
```

```
for (doc, label) in data:
    dy.renew_cg()
    probs = predict_labels(doc)
```
def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def encode_doc(doc):
 doc = [w2i[w] for w in doc]
 embs = [E[idx] for idx in doc]
 return dy.esum(embs)

def layer1(x):
 W = dy.parameter(pW1)
 b = dy.parameter(pb1)
 return dy.tanh(W*x+b)

def layer2(x):
 W = dy.parameter(pW2)
 b = dy.parameter(pb2)
 return dy.tanh(W*x+b)

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)
 loss = do_loss(probs, label)
 loss.forward()
 loss.backward()
 trainer.update()
def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def do_loss(probs, label):
 label = l2i[label]
 return -dy.log(dy.pick(probs, label))

for (doc, label) in data:
 dy.renew_cg()
 probs = predict_labels(doc)
 loss = do_loss(probs, label)
 loss.forward()
 loss.backward()
 trainer.update()
def predict_labels(doc):
 x = encode_doc(doc)
 h = layer1(x)
 y = layer2(h)
 return dy.softmax(y)

def classify(doc):
 dy.renew_cg()
 probs = predict_labels(doc)
 vals = probs.npvalue()
 return i2l[np.argmax(vals)]
def encode_doc(doc):
 doc = [w2i[w] for w in doc]
 embs = [E[idx] for idx in doc]
 return dy.esum(embs)

def encode_doc(doc):
 weights = [tfidf(w) for w in doc]
 doc = [w2i[w] for w in doc]
 embs = [E[idx]*w for w,idx in zip(weights,doc)]
 return dy.esum(embs)
Encapsulation with Classes

class MLP(object):
 def __init__(self, model, in_dim, hid_dim, out_dim, non_lin=dy.tanh):
 self._W1 = model.add_parameters((hid_dim, in_dim))
 self._b1 = model.add_parameters(hid_dim)
 self._W2 = model.add_parameters((out_dim, hid_dim))
 self._b2 = model.add_parameters(out_dim)
 self.non_lin = non_lin

 def __call__(self, in_expr):
 W1 = dy.parameter(self._W1)
 W2 = dy.parameter(self._W2)
 b1 = dy.parameter(self._b1)
 b2 = dy.parameter(self._b2)
 g = self.non_lin
 return W2*dy.g(W1*in_expr + b1)+b2

x = dy.inputVector(range(10))

mlp = MLP(model, 10, 100, 2, dy.tanh)

y = mlp(v)
Summary

- Computation Graph
- Expressions (~ nodes in the graph)
- Parameters, LookupParameters
- Model (a collection of parameters)
- Trainers

- Create a graph for each example, then compute loss, backdrop, update.
Outline

• Part 1
 • Computation graphs and their construction
 • Neural Nets in DyNet
 • Recurrent neural networks
 • Minibatching
 • Adding new differentiable functions
Recurrent Neural Networks

- NLP is full of sequential data
 - Words in sentences
 - Characters in words
 - Sentences in discourse
 - ...

- How do we represent an arbitrarily long history?
Recurrent Neural Networks

• NLP is full of sequential data
 • Words in sentences
 • Characters in words
 • Sentences in discourse
 • ...

• How do we represent an arbitrarily long history?
 • we will train neural networks to build a representation of these arbitrarily big sequences
Recurrent Neural Networks

Feed-forward NN

\[h = g(Vx + c) \]
\[\hat{y} = Wh + b \]
Recurrent Neural Networks

Feed-forward NN
\[
 h = g(Vx + c) \\
 \hat{y} = Wh + b
\]

Recurrent NN
\[
 h_t = g(Vx_t + Uh_{t-1} + c) \\
 \hat{y}_t = Wh_t + b
\]
Recurrent Neural Networks

\[h_t = g(Vx_t + Uh_{t-1} + c) \]
\[\hat{y}_t = Wh_t + b \]

How do we train the RNN’s parameters?
Recurrent Neural Networks

\[h_t = g(Vx_t + Uh_{t-1} + c) \]

\[\hat{y}_t = Wh_t + b \]
Recurrent Neural Networks

- The unrolled graph is a well-formed (DAG) computation graph—we can run backprop
 - Parameters are tied across time, derivatives are aggregated across all time steps
 - This is historically called “backpropagation through time” (BPTT)
Parameter Tying

\[h_t = g(Vx_t + Uh_{t-1} + c) \]

\[\hat{y}_t = Wh_t + b \]
Parameter Tying

\[
\frac{\partial F}{\partial U} = \sum_{t=1}^{4} \frac{\partial h_t}{\partial U} \frac{\partial F}{\partial h_t}
\]
What else can we do?

\[h_t = g(Vx_t + Uh_{t-1} + c) \]

\[\hat{y}_t = Wh_t + b \]
“Read and summarize”

\[h_t = g(Vx_t + Uh_{t-1} + c) \]
\[\hat{y} = Wh|\mathbf{x}| + b \]

Summarize a sequence into a single vector. (For prediction, translation, etc.)
Example: Language Model

\[u = Wh + b \]
\[p_i = \frac{\exp u_i}{\sum_j \exp u_j} \]
\[h \in \mathbb{R}^d \]
\[|V| = 100,000 \]
Example: Language Model

\[u = Wh + b \]
\[p_i = \frac{\exp u_i}{\sum_j \exp u_j} \]
\[h \in \mathbb{R}^d \]
\[|V| = 100,000 \]

\[p(e) = p(e_1) \times \]
\[p(e_2 \mid e_1) \times \]
\[p(e_3 \mid e_1, e_2) \times \]
\[p(e_4 \mid e_1, e_2, e_3) \times \]

histories are sequences of words…
Example: Language Model

\[p(tom \mid \langle s \rangle) \times p(likes \mid \langle s \rangle, tom) \]
\[\times p(\text{beer} \mid \langle s \rangle, tom, likes) \]
\[\times p(\langle/s\rangle \mid \langle s \rangle, tom, likes, \text{beer}) \]
Language Model Training

\[\hat{p}_1 \xrightarrow{\text{softmax}} h_1 \]
\[\xrightarrow{\text{softmax}} h_2 \]
\[\xrightarrow{\text{softmax}} h_3 \]
\[\xrightarrow{\text{softmax}} h_4 \]
\[\xrightarrow{\text{softmax}} \hat{p}_1 \]

\(\langle s \rangle \xrightarrow{\text{softmax}} x_1 \xrightarrow{\text{softmax}} x_2 \xrightarrow{\text{softmax}} x_3 \xrightarrow{\text{softmax}} x_4 \xrightarrow{\text{softmax}} \langle /s \rangle \)
Language Model Training

\[
\hat{p}_1 \xrightarrow{\text{softmax}} h_1 \xrightarrow{\text{softmax}} h_2 \xrightarrow{\text{softmax}} h_3 \xrightarrow{\text{softmax}} h_4
\]

\[
\text{cost}_1 \quad \text{cost}_2 \quad \text{cost}_3 \quad \text{cost}_4
\]

\[
\log \text{loss/cross entropy}
\]
Alternative RNNs

• Long short-term memories (LSTMs; Hochreiter and Schmidhuber, 1997)

• Gated recurrent units (GRUs; Cho et al., 2014)

• All follow the basic paradigm of “take input, update state”
Recurrent Neural Networks in DyNet

• Based on “*Builder” class (*=SimpleRNN/LSTM)

• Add parameters to model (once):

```python
# LSTM (layers=1, input=64, hidden=128, model)
RNN = dy.LSTMBuilder(1, 64, 128, model)
```

• Add parameters to CG and get initial state (per sentence):

```python
s = RNN.initial_state()
```

• Update state and access (per input word/character):

```python
s = s.add_input(x_t)
```

```python
h_t = s.output()
```
RNNLM Example: Parameter Initialization

Lookup parameters for word embeddings
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64))

Word-level LSTM (layers=1, input=64, hidden=128, model)
RNN = dy.LSTMBuilder(1, 64, 128, model)

Softmax weights/biases on top of LSTM outputs
W_sm = model.add_parameters((nwords, 128))
b_sm = model.add_parameters(nwords)
RNNLM Example: Sentence Initialization

```python
# Build the language model graph

def calc_lm_loss(wids):
    dy.renew_cg()

    # parameters -> expressions
    W_exp = dy.parameter(W_sm)
    b_exp = dy.parameter(b_sm)

    # add parameters to CG and get state
    f_init = RNN.initial_state()

    # get the word vectors for each word ID
    wembs = [WORDS_LOOKUP[wid] for wid in wids]

    # Start the rnn by inputting "<s>"
    s = f_init.add_input(wembs[-1])
    ...
```
RNNLM Example:
Loss Calculation and State Update

process each word ID and embedding
losses = []
for wid, we in zip(wids, wembs):

 # calculate and save the softmax loss
 score = W_exp * s.output() + b_exp
 loss = dy.pickneglogsoftmax(score, wid)
 losses.append(loss)

 # update the RNN state with the input
 s = s.add_input(we)

return the sum of all losses
return dy.esum(losses)
Mini-batching
Implementation Details: Minibatching

• Minibatching: group together multiple similar operations

• Modern hardware
 • pretty fast for elementwise operations
 • very fast for matrix-matrix multiplication
 • has overhead for every operation (esp. GPUs)

• Neural networks consist of
 • lots of elementwise operations
 • lots of matrix-vector products
Minibatching

Single-instance RNN

\[h_t = g(Vx_t + Uh_{t-1} + c) \]
\[\hat{y}_t = Wh_t + b \]

Minibatch RNN

\[H_t = g(VX_t + UH_{t-1} + c) \]
\[\hat{Y}_t = WH_t + b \]

We batch across instances, not across time.
Minibatching Sequences

• How do we handle sequences of different lengths?

- Calculate loss
- Mask
- Sum to sentence loss

this is an example</s>
this is another</s>

[Diagram showing minibatching process]
Mini-batching in Dynet

• DyNet has special minibatch operations for lookup and loss functions, everything else automatic

• You need to:
 • Group sentences into a mini batch (optionally, for efficiency group sentences by length)
 • Select the “t”th word in each sentence, and send them to the lookup and loss functions
Function Changes

wid = 5
wemb = WORDS_LOOKUP[wid]
loss = dy.pickneglogsoftmax(score, wid)

wids = [5, 2, 1, 3]
wemb = dy.lookup_batch(WORDS_LOOKUP, wids)
loss = dy.pickneglogsoftmax_batch(score, wids)
Implementing Functions
Standard Functions

addmv, affine_transform, average, average_cols, binary_log_loss, block_dropout, cdiv, colwise_add, concatenate, concatenate_cols, const_lookup, const_parameter, contract3d_1d, contract3d_1d_1d, conv1d_narrow, conv1d_wide, cube, cwise_multiply, dot_product, dropout, erf, exp, filter1d_narrow, fold_rows, hinge, huber_distance, input, inverse, kmax_pooling, kmh_ngram, l1_distance, lgamma, log, log_softmax, logdet, logistic, logsumexp, lookup, max, min, nobackprop, noise, operator*, operator+, operator-, operator/, pairwise_rank_loss, parameter, pick, pickneglogsoftmax, pickrange, poisson_loss, pow, rectify, reshape, select_cols, select_rows, softmax, softsign, sparsemax, sparsemax_loss, sqrt, square, squared_distance, squared_norm, sum, sum_batches, sum_cols, tanh, trace_of_product, transpose, zeroes
What if I Can’t Find my Function?

- e.g. Geometric mean
 \[y = \sqrt{x_0 \times x_1} \]

- **Option 1:** Connect multiple functions together

- **Option 2:** Implement forward and backward functions directly
 \[\rightarrow \text{C++ implementation w/ Python bindings} \]
Implementing Forward

- Backend based on Eigen operations

\[\text{geom}(x_0, x_1) := \sqrt{x_0 \times x_1} \]

nodes.cc

```cpp
template<class MyDevice>
void GeometricMean::forward_dev_impl(const MyDevice & dev,
                                      const vector<const Tensor*>& xs,
                                      Tensor& fx) const {
    fx.tvec().device(*dev.edevice) =
        (xs[0]->tvec() * xs[1]->tvec()).sqrt();
}
```

dev: which device — CPU/GPU
xs: input values
fx: output value
Implementing Backward

• Calculate gradient for all args

\[
\frac{\partial \text{geom}(x_0, x_1)}{\partial x_0} = \frac{x_1}{2 \times \text{geom}(x_0, x_1)}
\]

nodes.cc

```cpp
template<class MyDevice>
void GeometricMean::backward_dev_impl(const MyDevice & dev, 
const vector<const Tensor*>& xs, 
const Tensor & fx, 
const Tensor& dEdf, 
unsigned i, 
Tensor& dEdxi) const {
    dEdxi.tvec().device(*dev.edevice) +=
    xs[i==1?0:1] * fx.inv() / 2 * dEdf;
}
```

dev: which device, CPU/GPU
xs: input values
dEdf: derivative of loss w.r.t f
i: index of input to consider
dEdxi: derivative of loss w.r.t. x[i]
Other Functions to Implement

- nodes.h: class definition
- nodes-common.cc: dimension check and function name
- expr.h/expr.cc: interface to expressions
- dynet.pxd/dynet.pyx: Python wrappers
Gradient Checking

• Things go wrong in implementation (forgot a “2” or a “-“)
• Luckily, we can check forward/backward consistency automatically
• Idea: small steps (h) approximate gradient

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x + h) - f(x - h)}{2h}$$

• Easy in DyNet: use GradCheck(cg) function

Uses Backward Only Forward
Questions/Coffee Time!