Practical Neural Networks for NLP (Part 1)

Chris Dyer, Yoav Goldberg, Graham Neubig
https://github.com/clab/dynet_tutorial_examples

November 1, 2016

Neural Nets and Language

- Tension: Language and neural nets
- Language is discrete and structured
- Sequences, trees, graphs
- Neural nets represent things with continuous vectors
- Poor "native support" for structure
- The big challenge is writing code that translates between the \{discrete-structured, continuous\} regimes
- This tutorial is about one framework that lets you use the power of neural nets without abandoning familiar NLP algorithms

Outline

- Part 1
- Computation graphs and their construction
- Neural Nets in DyNet
- Recurrent neural networks
- Minibatching
- Adding new differentiable functions

Outline

- Part 2: Case Studies
- Tagging with bidirectional RNNs
- Transition-based dependency parsing
- Structured prediction meets deep learning

Computation Graphs
 Deep Learning's Lingua Franca

expression:

X

graph:

A node is a \{tensor, matrix, vector, scalar\} value

An edge represents a function argument (and also an data dependency). They are just pointers to nodes.

A node with an incoming edge is a function of that edge's tail node.

A node knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial F}{\partial f(u)}$.

expression:

$$
\mathbf{x}^{\top} \mathbf{A}
$$

graph:
Functions can be nullary, unary, binary, ... n-ary. Often they are unary or binary.

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

Computation graphs are directed and acyclic (in DyNet)
expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

expression:

$$
y=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

variable names are just labelings of nodes.

Algorithms

- Graph construction
- Forward propagation
- Loop over nodes in topological order
- Compute the value of the node given its inputs
- Given my inputs, make a prediction (or compute an "error" with respect to a "target output")
- Backward propagation
- Loop over the nodes in reverse topological order starting with a final goal node
- Compute derivatives of final goal node value with respect to each edge's tail node
- How does the output change if I make a small change to the inputs?

Forward Propagation

graph:

The MLP

Constructing Graphs

Two Software Models

- Static declaration
- Phase 1: define an architecture
(maybe with some primitive flow control like loops and conditionals)
- Phase 2: run a bunch of data through it to train the model and/or make predictions
- Dynamic declaration
- Graph is defined implicitly (e.g., using operator overloading) as the forward computation is executed

Hierarchical Structure

Phrases

Sentences

Documents

Static Declaration

- Pros
- Offline optimization/scheduling of graphs is powerful
- Limits on operations mean better hardware support
- Cons
- Structured data (even simple stuff like sequences), even variablesized data, is ugly
- You effectively learn a new programming language ("the Graph Language") and you write programs in that language to process data.
- examples: Torch, Theano, TensorFlow

Dynamic Declaration

- Pros
- library is less invasive
- the forward computation is written in your favorite programming language with all its features, using your favorite algorithms
- interleave construction and evaluation of the graph
- Cons
- little time for graph optimization
- if the graph is static, effort can be wasted
- examples: Chainer, most automatic differentiation libraries, DyNet

Dynamic Structure?

- Hierarchical structures exist in language
- We might want to let the network reflect that hierarchy
- Hierarchical structure is easiest to process with traditional flow-control mechanisms in your favorite languages
- Combinatorial algorithms (e.g., dynamic programming)
- Exploit independencies to compute over a large space of operations tractably

VVAV \quad VY

- The state of the world before DyNet/cnn
- AD libraries are fast and good, but don't have support for deep learning must-haves (GPUs, optimization algorithms, primitives for implementing RNNs, etc.)
- Deep learning toolkits don't support dynamic graphs well

VVRY?

- The state of the world before DyNet/cnn
- AD libraries are fast and good, but don't have support for deep learning must-haves (GPUs, optimization algorithms, primitives for implementing RNNs, etc.)
- Deep learning toolkits don't support dynamic graphs well
- DyNet is a hybrid between a generic autodiff library and a Deep learning toolkit
- It has the flexibility of a good AD library
- It has most obligatory DL primitives
- (Although the emphasis is dynamic operation, it can run perfectly well in "static mode". It's quite fast too! But if you're happy with that, probably stick to TensorFlow/Theano/Torch.)

How does it work?

- C++ backend based on Eigen
- Eigen also powers TensorFlow
- Custom ("quirky") memory management
- You probably don't need to ever think about this, but a few well-hidden assumptions make the graph construction and execution very fast.
- Thin Python wrapper on C++ API

Neural Networks in DyNet

The Major Players

- Computation Graph
- Expressions (~ nodes in the graph)
- Parameters
- Model
- a collection of parameters
- Trainer

Computation Graph and Expressions

import dynet as dy

```
dy.renew_cg() # create a new computation graph
v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
# v1 and v2 are expressions
v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1
v6 = dy.concatenate([v1,v2,v3,v5])
print v6
print v6.npvalue()
```


Computation Graph and Expressions

import dynet as dy

```
dy.renew_cg() # create a new computation graph
v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
# v1 and v2 are expressions
v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1
v6 = dy.concatenate([v1,v2,v3,v5])
print v6 expression 5/1
print v6.npvalue()
```


Computation Graph and Expressions

import dynet as dy

```
dy.renew_cg() # create a new computation graph
v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
# vl and v2 are expressions
v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1
v6 = dy.concatenate([v1,v2,v3,v5])
```

print v6
print v6.npvalue()

Computation Graph and Expressions

- Create basic expressions.
- Combine them using operations.
- Expressions represent symbolic computations.
- Use:
.value()
.npvalue()
.scalar_value()
.vec_value()
.forward()
to perform actual computation.

Model and Parameters

- Parameters are the things that we optimize over (vectors, matrices).
- Model is a collection of parameters.
- Parameters out-live the computation graph.

Model and Parameters

```
model = dy.Model()
pW = model.add_parameters((20,4))
pb = model.add_parameters(20)
dy.renew_cg()
x = dy.inputVector([1,2,3,4])
W = dy.parameter(pW) # convert params to expression
b = dy.parameter(p.b) # and add to the graph
y = W * x + b
```


Parameter Initialization

```
model = dy.Model()
pW = model.add_parameters((4,4))
pW2 = model.add_parameters((4,4), init=dy.GlorotInitializer())
pW3 = model.add_parameters((4,4), init=dy.NormalInitializer(0,1))
pW4 = model.parameters_from_numpu(np.eye(4))
```


Trainers and Backdrop

- Initialize a Trainer with a given model.
- Compute gradients by calling expr.backward() from a scalar node.
- Call trainer. update () to update the model parameters using the gradients.

Trainers and Backdrop

```
model = dy.Model()
trainer = dy.SimpleSGDTrainer(model)
P_v = model.add_parameters(10)
for i in xrange(10):
    dy.renew_cg()
    v = dy.parameter(p_v)
    v2 = dy.dot_product(v,v)
    v2.forward()
    v2.backward() # compute gradients
    trainer.update()
```


Trainers and Backdrop

```
model = dy.Model()
    trainer = dy.SimpleSGDTrainer(model,...)
    P_v = mode dy.MomentumSGDTrainer(model,...)
    for i in : dy.AdagradTrainer(model,...)
        dy.rer
            dy.AdadeltaTrainer(model,...)
        v}=\textrm{d
        v2 = c dy.AdamTrainer(model,...)
        v2.for
        v2.backward() # compute gradients
        trainer.update()
```


Training with DyNet

- Create model, add parameters, create trainer.
- For each training example:
- create computation graph for the loss
- run forward (compute the loss)
- run backward (compute the gradients)
- update parameters

Example: MLP for XOR

- Data:

$$
\begin{gathered}
\operatorname{xor}(0,0)=0 \\
\operatorname{xor}(1,0)=1 \\
\operatorname{xor}(0,1)=1 \\
\operatorname{xor}(1,1)=0 \\
\mathbf{x} \quad y
\end{gathered}
$$

- Model form:

$$
\hat{y}=\sigma(\mathbf{v} \cdot \tanh (\mathbf{U} \mathbf{x}+\mathbf{b}))
$$

- Loss:

$$
\ell= \begin{cases}-\log \hat{y} & y=1 \\ -\log (1-\hat{y}) & y=0\end{cases}
$$

```
data =[ ([0,1],0),
    ([1,0],0),
    ([0,0],1),
    ([1,1],1) ]
model = dy.Model()
pU = model.add_parameters((4,2))
pb = model.add_parameters(4)
pv = model.add_parameters(4)
trainer = dy.SimpleSGDTrainer(model)
closs = 0.0
```

for ITER in xrange(1000):
random.shuffle(data)
for x, y in data:
for ITER in xrange (1000): $\quad \hat{y}=\sigma(\mathbf{v} \cdot \tanh (\mathbf{U} \mathbf{x}+\mathbf{b}))$ for x, y in data:

```
# create graph for computing loss
dy.renew_cg()
    U = dy.parameter(pU)
    b = dy.parameter(pb)
    v = dy.parameter(pv)
    x = dy.inputVector(x)
    predict
    yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
    # loss
    if y == 0:
        loss = -dy.log(1 - yhat)
    elif y == 1:
        loss = -dy.log(yhat)
    closs += loss.scalar_value() # forward
    loss.backward()
    trainer.update()
``` for \(x, y\) in data:
```


# create graph for computing loss

    dy.renew_cg()
    U = dy.parameter(pU)
    b = dy.parameter(pb)
    v = dy.parameter(pv)
    x = dy.inputVector(x)
        predict
    yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
    ```
 if \(y==0\) :
 \(\operatorname{loss}=-d y \cdot \log (1-y h a t)\)
 elif \(y==1:\)
 \(\operatorname{loss}=-d y \cdot \log (y h a t)\)
 closs += loss.scalar_value() \# forward
 loss.backward ()
 trainer.update() for \(x, y\) in data:
```


# create graph for computing loss

dy.renew_cg()
U = dy.parameter(pU)
b = dy.parameter(pb)
v = dy.parameter(pv)
x = dy.inputVector(x)
\# predict
yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
loss
if y == 0:
loss = -dy.log(1 - yhat)
elif y == 1:
loss = -dy.log(yhat)
\ell={$$
\begin{array}{ll}{-\operatorname{log}\hat{y}}&{y=1}\\{-\operatorname{log}(1-\hat{y})}&{y=0}\end{array}
$$

```
 closs += loss.scalar_value() \# forward
 loss.backward()
 trainer.update() for \(x, y\) in data:
```


# create graph for computing loss

dy.renew_cg()
U = dy.parameter(pU)
b = dy.parameter(pb)
v = dy.parameter(pv)
x = dy.inputVector(x)

# predict

yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))

# loss

$$
\begin{aligned}
& \text { if } y==: \\
& \text { loss }=-d y \cdot \log (1-\text { yhat }) \\
& \text { elif } y==1: \\
& \text { loss }=-d y \cdot \log (\text { yhat })
\end{aligned} \quad \ell= \begin{cases}-\log \hat{y} & y=1 \\
-\log (1-\hat{y}) & y=0\end{cases}
$$

```
closs += loss.scalar_value() \# forward loss.backward()
trainer.update() for \(x, y\) in data:
```


# create graph for computing loss

dy.renew_cg()
U = dy.parameter(pU)
b = dy.parameter(pb)
v = dy.parameter(pv)
x = dy.inputVector(x)
\# predict
yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
\# loss
if y == 0:
loss = -dy.log(1 - yhat)
elif Y == 1:
loss = -dy.log(yhat)
\ell={}{\begin{array}{ll}{-\operatorname{log}\hat{y}}\&{y=1}<br>{-\operatorname{log}(1-\hat{y})}\&{y=0}

```
 closs += loss.scalar_value() \# forward
 if ITER > 0 and ITER \% \(100==0\) :
 print "Iter:",ITER,"loss:", closs/400
 closs \(=0\)
for ITER in xrange(1000):
for \(x, y\) in data:
\# create graph for computing loss
dy.renew_cg()
U = dy.parameter(pu)
b = dy.parameter (pb)
\(\mathrm{v}=\mathrm{dy}\). parameter (pv)
\(\mathrm{x}=\mathrm{dy}\). inputVector(x)
\# predict
yhat \(=d y \cdot \operatorname{logistic}\left(d y \cdot d o t _p r o d u c t(v, d y \cdot \tanh (U * x+b))\right)\) \# loss
```

if $y=0$ :
loss $=-d y . l o g(1-y h a t)$

```
elif \(y==1\) :
loss \(=-d y . l o g(y h a t)\)
closs += loss.scalar_value() \# forward
loss.backward()
trainer.update()
for ITER in xrange(1000):

\section*{lets organize the code a bit} for \(x, y\) in data:
```


# create graph for computing loss

dy.renew_cg()
U = dy.parameter(pU)
b = dy.parameter(p.b)
v = dy.parameter(pv)
x = dy.inputVector(x)

# predict

yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))

```
\# loss

elif \(y==1\) :
 loss \(=\)-dy.log(yhat)
closs += loss.scalar_value() \# forward
loss.backward()
trainer.update()
for ITER in xrange(1000):

\section*{lets organize the code a bit} for \(x, y\) in data:
\# create graph for computing loss dy.renew_cg()
\(\mathrm{x}=\mathrm{dy}\). inputVector(x)
\# predict
yhat = predict(x)
\# loss
loss = compute_loss(yhat, y)
closs += loss.scalar_value() \# forward
loss.backward()
trainer.update()
for ITER in xrange(1000):
for \(x, y\) in data:
\# create graph for computing loss
dy.renew_cg()
\(\mathrm{x}=\mathrm{dy}\).inputVector(x)
\# predict
yhat = predict(x)
\# loss
loss \(=\) compute_loss (yhat, y)
closs += loss.scalar_value() \# forward
loss.backward()
trainer.update()
def predict(expr):

\section*{\(\hat{y}=\sigma(\mathbf{v} \cdot \tanh (\mathbf{U x}+\mathbf{b}))\)}
\(\mathrm{U}=\mathrm{dy}\). parameter (pu)
b = dy.parameter (pb)
\(\mathrm{v}=\mathrm{dy}\). parameter (pv)
\(y=d y . l o g i s t i c\left(d y . d o t _p r o d u c t(v, d y \cdot t a n h(U * e x p r+b))\right.\)
return \(y\)
for ITER in xrange(1000):
for \(x, y\) in data:
\# create graph for computing loss
dy.renew_cg()
\(x=d y . i n p u t V e c t o r(x)\)
\# predict
yhat = predict(x)
\# loss
loss = compute_loss(yhat, y)
closs += loss.scalar_value() \# forward
loss.backward()
trainer.update()
def compute_loss (expr, y):
if \(y==0\) :
return -dy.log(1 - expr)
\[
\ell= \begin{cases}-\log \hat{y} & y=1 \\ -\log (1-\hat{y}) & y=0\end{cases}
\]
elif \(y==1:\)
return -dy.log(expr)

\section*{Key Points}
- Create computation graph for each example.
- Graph is built by composing expressions.
- Functions that take expressions and return expressions define graph components.

\section*{Word Embeddings and LookupParameters}
- In NLP, it is very common to use feature embeddings.
- Each feature is represented as a d-dim vector.
- These are then summed or concatenated to form an input vector.
- The embeddings can be pre-trained.
- They are usually trained with the model.

\section*{"feature embeddings"}
- Each feature is assigned a vector.
- The input is a combination of feature vectors.
- The feature vectors are parameters of the model and are trained jointly with the rest of the network.
- Representation Learning: similar features will receive similar vectors.

\section*{"feature embeddings"}

\section*{Word Embeddings and LookupParameters}
- In DyNet, embeddings are implemented using LookupParameters.
```

vocab_size = 10000
emb_dim = 200
E = model.add_lookup_parameters((vocab_size, emb_dim))

```

\section*{Word Embeddings and LookupParameters}
- In DyNet, embeddings are implemented using LookupParameters.
```

vocab_size = 10000
emb_dim = 200
E = model.add_lookup_parameters((vocab_size, emb_dim))
dy.renew_cg()
x = dy.lookup(E, 5)

# Or

X=E[5]

# x is an expression

```

\title{
Deep Unordered Composition Rivals Syntactic Methods for Text Classification
}

Mohit Iyyer, \({ }^{1}\) Varun Manjunatha, \({ }^{1}\) Jordan Boyd-Graber, \({ }^{2}\) Hal Daumé III \({ }^{1}\)
\({ }^{1}\) University of Maryland, Department of Computer Science and UMIACS
\({ }^{2}\) University of Colorado, Department of Computer Science
\(\{\) miyyer, varunm, hal\}@umiacs.umd.edu, Jordan. Boyd. Graber@colorado.edu

"deep averaging network"
\[
C B O W\left(w_{1}, \ldots, w_{n}\right)=\sum_{i=1}^{n} \mathbf{E}\left[w_{i}\right]
\]

\section*{lets define this network}

"deep averaging network"
\[
g^{1}=g^{2}=\tanh
\]
\[
C B O W\left(w_{1}, \ldots, w_{n}\right)=\sum_{i=1}^{n} \mathbf{E}\left[w_{i}\right]
\]
```

pW1 = model.add_parameters((HID, EDIM))
pb1 = model.add_parameters(HID)
pW2 = model.add_parameters((NOUT, HID))
pb2 = model.add_parameters(NOUT)

```

"deep averaging network"
\[
\begin{array}{r}
g^{1}=g^{2}=\tanh \\
C B O W\left(w_{1}, \ldots, w_{n}\right)=\sum_{i=1}^{n} \mathbf{E}\left[w_{i}\right]
\end{array}
\]
```

pW1 = model.add_parameters((HID, EDIM))
p.b1 = model.add_parameters(HID)
pW2 = model.add_parameters((NOUT, HID))
pb2 = model.add_parameters(NOUT)
E = model.add_lookup_parameters((V, EDIM))
w

```
"deep averaging network"
```

for (doc, label) in data:
dy.renew_cg()
probs = predict_labels(doc)

```
```

def predict_labels(doc):
$x$ = encode_doc (doc)
h = layerl(x)
y = layer2(h)
return dy.softmax (y)

```

def layerl(x):
\(\mathrm{W}=\mathrm{dy}\). parameter(pW1)
b = dy.parameter(pb1) return dy.tanh (\(W^{*} x+b\))
def layer2(x):
\(\mathrm{W}=\mathrm{dy}\). parameter (pW2)
b = dy.parameter(pb2) return dy.tanh (\(\mathrm{W}^{*} \mathrm{x}+\mathrm{b}\))
```

for (doc, label) in data:
dy.renew_cg()
probs = predict_labels(doc)

```
def predict_labels(doc):
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{h}=\text { layer1 }(\mathrm{x}) \\
& \mathrm{y}=\text { layer2 } \mathrm{h}) \\
& \text { return dy. softmax }(\mathrm{y})
\end{aligned}
\]} \\
\hline \\
\hline \\
\hline
\end{tabular}
```

def layerl(x):
W = dy.parameter(pW1)
b = dy.parameter(pb1)
return dy.tanh (W*x+b)

```
def layer2(x):
\(\mathrm{W}=\mathrm{dy} \cdot \mathrm{parameter}(\mathrm{pW} 2)\)
b = dy.parameter (pb2) return \(d y \cdot \tanh \left(W^{*} x+b\right)\)

"deep averaging network"
```

for (doc, label) in data:
dy.renew_cg()
probs = predict_labels(doc)

```
def predict_labels(doc): \(\mathrm{x}=\) encode_doc (doc)
h = layer1(x)
y = layer2(h)
return dy.softmax (y)

def layerl(x):
\(\mathrm{W}=\mathrm{dy}\). parameter(pW1)
b = dy.parameter(pb1) return dy.tanh (\(\mathrm{W}^{*} \mathrm{x}+\mathrm{b}\))
def layer2(x):
W = dy.parameter(pW2)
b = dy.parameter(pb2) return dy.tanh (\(W^{*} \mathrm{x}+\mathrm{b}\))
```

for (doc, label) in data:
dy.renew_cg()
probs = predict_labels(doc)

```
def predict labels(doc): \(x=\) encode_doc (doc)
h = layer1(x)
y = layer2(h)
return dy.softmax (y)

def layerl(x):
W = dy.parameter(pW1)
b = dy.parameter(pb1)
return dy.tanh (W*x+b)
def layer2(x):
W = dy.parameter(pW2)
b = dy.parameter(p.b2) return dy.tanh (\(\mathrm{W}^{*} \mathrm{x}+\mathrm{b}\))
def predict labels(doc):
\(x=\) encode_doc(doc)
h = layer1(x)
y = layer2(h)
return dy.softmax (y)
def encode_doc(doc):
doc \(=\) [w2i[w] for w in doc]
embs = [E[idx] for idx in doc]
return dy.esum(embs)

def layerl(x):
W = dy.parameter(pW1)
b = dy.parameter(p.b1)
return dy.tanh (\(W^{*} x+b\))
def layer2(x):
for (doc, label) in data: dy.renew_cg()
probs = predict_labels(doc)
\(\mathrm{W}=\mathrm{dy}\). parameter(pW2)
b = dy.parameter(pb2)
return dy.tanh (\(\mathrm{W}^{*} \mathrm{x}+\mathrm{b}\))
def predict labels(doc):
\(x=\) encode_doc(doc)
h = layer1(x)
y = layer2(h)
return dy.softmax (y)
def encode_doc(doc): doc \(=\) [w2i[w] for \(w\) in doc] embs = [E[idx] for idx in doc] return dy.esum(embs)
def layerl(x):
\(\mathrm{W}=\mathrm{dy}\). parameter(pW1)
b = dy.parameter(p.b1)
return dy.tanh (\(W^{*} \mathrm{x}+\mathrm{b}\))
def layer2(x):
\(\mathrm{W}=\mathrm{dy}\). parameter (pW2)
b = dy.parameter (pb2) return dy.tanh (\(\mathrm{W}^{*} \mathrm{x}+\mathrm{b}\))
for (doc, label) in data: dy.renew_cg()
probs = predict_labels(doc)
loss \(=\) do loss (probs, label)
loss. forward()
loss.backward() trainer.update()
```

def predict_labels(doc):
$\mathrm{x}=$ encode_doc(doc)
h = layer1(x)
y = layer2(h)
return dy.softmax (y)

```
def do_loss(probs, label):
label = l2i[label]

"deep averaging network"
def predict_labels(doc):
\(x\) = encode_doc (doc)
h = layer1(x)
y = layer2(h)
return dy.softmax (y)

"deep averaging network"
```

def classify(doc):
dy.renew_cg()
probs = predict_labels(doc)
vals = probs.npvalue()
return i2l[np.argmax(vals)]

```

\section*{TF/IDF?}
```

def encode_doc(doc):
doc = [w2i[w] for w in doc]
embs = [E[idx] for idx in doc]
return dy.esum(embs)

```
\(\downarrow\)
def encode_doc(doc):
 weights \(=\) [tfidf(w) for \(w\) in doc]
 doc \(=\) [w2i[w] for \(w\) in doc]
 embs \(=\) [E[idx]*W for \(w, i d x\) in zip(weights,doc)]
 return dy.esum(embs)

\section*{Encapsulation with Classes}
```

class MLP(object):
def __init__(self, model, in_dim, hid_dim, out_dim, non_lin=dy.tanh):
self._\overline{W1 = model.add_parameters((hid_dim, in_dim))}
self._bl = model.add_parameters(hid_dim)
self._W2 = model.add_parameters((out_dim, hid_dim))
self._b2 = model.add_parameters(out_dim)
self.\overline{non_lin = non_lin}
def __call__(self, in_expr):
W1 = dy.parameter(self._W1)
W2 = dy.parameter(self._W2)
b1 = dy.parameter(self._b1)
b2 = dy.parameter(self._b2)
g = self.non_lin
return W2*g(\overline{W1*in_expr + bl) +b2}
x = dy.inputVector(range(10))
mlp = MLP(model, 10, 100, 2, dy.tanh)
y =mlp(v)

```

\section*{Summary}
- Computation Graph
- Expressions (~ nodes in the graph)
- Parameters, LookupParameters
- Model (a collection of parameters)
- Trainers
- Create a graph for each example, then compute loss, backdrop, update.

\section*{Outline}
- Part 1
- Computation graphs and their construction
- Neural Nets in DyNet
- Recurrent neural networks
- Minibatching
- Adding new differentiable functions

\section*{Recurrent Neural Networks}
- NLP is full of sequential data
- Words in sentences
- Characters in words
- Sentences in discourse
- How do we represent an arbitrarily long history?

\section*{Recurrent Neural Networks}
- NLP is full of sequential data
- Words in sentences
- Characters in words
- Sentences in discourse
- How do we represent an arbitrarily long history?
- we will train neural networks to build a representation of these arbitrarily big sequences

\section*{Recurrent Neural Networks}

Feed-forward NN
\[
\begin{aligned}
& \mathbf{h}=g(\mathbf{V} \mathbf{x}+\mathbf{c}) \\
& \hat{\mathbf{y}}=\mathbf{W h}+\mathbf{b}
\end{aligned}
\]

\section*{Recurrent Neural Networks}

Feed-forward NN
\[
\begin{aligned}
& \mathbf{h}=g(\mathbf{V} \mathbf{x}+\mathbf{c}) \\
& \hat{\mathbf{y}}=\mathbf{W h}+\mathbf{b}
\end{aligned}
\]

\section*{Recurrent Neural Networks}
\[
\begin{aligned}
\mathbf{h}_{t} & =g\left(\mathbf{V} \mathbf{x}_{t}+\mathbf{U h}_{t-1}+\mathbf{c}\right) \\
\hat{\mathbf{y}}_{t} & =\mathbf{W h}_{t}+\mathbf{b}
\end{aligned}
\]

How do we train the RNN's parameters?

\section*{Recurrent Neural Networks}

\section*{Recurrent Neural Networks}

- The unrolled graph is a well-formed (DAG) computation graph-we can run backprop
- Parameters are tied across time, derivatives are aggregated across all time steps
- This is historically called "backpropagation through time" (BPTT)

\section*{Parameter Tying}

\section*{Parameter Tying}

\[
\frac{\partial \mathcal{F}}{\partial \mathbf{U}}=\sum_{t=1}^{4} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{U}} \frac{\partial \mathcal{F}}{\partial \mathbf{h}_{t}}
\]

\section*{What else can we do?}

\section*{"Read and summarize"}
\[
\begin{aligned}
\mathbf{h}_{t} & =g\left(\mathbf{V x}_{t}+\mathbf{U} \mathbf{h}_{t-1}+\mathbf{c}\right) \\
\hat{\mathbf{y}} & =\mathbf{W} \mathbf{h}_{|\boldsymbol{x}|}+\mathbf{b}
\end{aligned}
\]

Summarize a sequence into a single vector. (For prediction, translation, etc.)

\section*{Example: Language Model}

\[
\begin{aligned}
\mathbf{u} & =\mathbf{W h}+\mathbf{b} & & \mathbf{h} \in \mathbb{R}^{d} \\
p_{i} & =\frac{\exp u_{i}}{\sum_{j} \exp u_{j}} & & |V|=100,000
\end{aligned}
\]

\section*{Example: Language Model}

\[
\begin{aligned}
\mathbf{u} & =\mathbf{W h}+\mathbf{b} & & \mathbf{h} \in \mathbb{R}^{d} \\
p_{i} & =\frac{\exp u_{i}}{\sum_{j} \exp u_{j}} & & |V|=100,000
\end{aligned}
\]
\[
p(\boldsymbol{e})=p\left(e_{1}\right) \times
\]
\[
\begin{aligned}
& p\left(e_{2} \mid e_{1}\right) \times \\
& p\left(e_{3} \mid e_{1}, e_{2}\right) \times \\
& p\left(e_{4} \mid e_{1}, e_{2}, e_{3}\right) \times
\end{aligned} \text { histories are sequences of words... }
\]

\section*{Example: Language Model}
\[
p(\text { tom } \mid\langle\mathbf{s}\rangle) \times p(\text { likes } \mid\langle\mathbf{s}\rangle, \text { tom })
\]
\[
\times p(\text { beer } \mid\langle\mathrm{s}\rangle, \text { tom, likes })
\]
\[
\times p(\langle/ \mathrm{s}\rangle \mid\langle\mathrm{s}\rangle, \text { tom, likes, beer })
\]

\section*{Language Model Training}

\section*{Language Model Training}

\section*{Alternative RNNs}
- Long short-term memories (LSTMs; Hochreiter and Schmidthuber, 1997)
- Gated recurrent units (GRUs; Cho et al., 2014)
- All follow the basic paradigm of "take input, update state"

\section*{Recurrent Neural Networks in DyNet}
- Based on "*Builder" class (*=SimpleRNN/LSTM)
- Add parameters to model (once):
```


# LSTM (layers=1, input=64, hidden=128, model)

RNN = dy.LSTMBuilder(1, 64, 128, model)

```
- Add parameters to CG and get initial state (per sentence):
```

s = RNN.initial_state()

```
- Update state and access (per input word/character):
```

s = s.add_input(x_t)
h_t = s.output()

```

\section*{RNNLM Example: Parameter Initialization}
```


# Lookup parameters for word embeddings

WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64))

# Word-level LSTM (layers=1, input=64, hidden=128, model)

RNN = dy.LSTMBuilder(1, 64, 128, model)

# Softmax weights/biases on top of LSTM outputs

W_sm = model.add_parameters((nwords, 128))
b_sm = model.add_parameters(nwords)

```

\section*{RNNLM Example: Sentence Initialization}
```


# Build the language model graph

def calc_lm_loss(wids):
dy.renew_cg()
\# parameters -> expressions
W_exp = dy.parameter(W_sm)
b_exp = dy.parameter(b_sm)
\# add parameters to CG and get state
f_init = RNN.initial_state()
\# get the word vectors for each word ID
wembs = [WORDS_LOOKUP[wid] for wid in wids]
\# Start the rnn by inputting "<s>"
s = f_init.add_input(wembs[-1])

```

\section*{RNNLM Example: \\ Loss Calculation and State Update}
```


# process each word ID and embedding

losses = []
for wid, we in zip(wids, wembs):
\# calculate and save the softmax loss
score = W_exp * s.output() + b_exp
loss = dy.pickneglogsoftmax(score, wid)
losses.append(loss)
\# update the RNN state with the input
s = s.add_input(we)

# return the sum of all losses

return dy.esum(losses)

```

Mini-batching

\section*{Implementation Details: Minibatching}
- Minibatching: group together multiple similar operations
- Modern hardware
- pretty fast for elementwise operations
- very fast for matrix-matrix multiplication
- has overhead for every operation (esp. GPUs)
- Neural networks consist of
- lots of elementwise operations
- lots of matrix-vector products

\section*{Minibatching}

Single-instance RNN
\[
\begin{aligned}
\mathbf{h}_{t} & =g\left(\mathbf{V} \mathbf{x}_{t}+\mathbf{U} \mathbf{h}_{t-1}+\mathbf{c}\right) \\
\hat{\mathbf{y}}_{t} & =\mathbf{W} \mathbf{h}_{t}+\mathbf{b}
\end{aligned}
\]

Minibatch RNN

\[
\begin{aligned}
& \mathbf{H}_{t}=g\left(\mathbf{V X}_{t}+\mathbf{U H}_{t-1}+\mathbf{c}\right) \\
& \hat{\mathbf{Y}}_{t}=\mathbf{W H}_{t}+\mathbf{b} \\
& \quad \text { anything wrong here? } \\
& \text { We batch across instances, } \\
& \text { not across time. }
\end{aligned}
\]

\section*{Minibatching Sequences}
- How do we handle sequences of different lengths?

\section*{Mini-batching in Dynet}
- DyNet has special minibatch operations for lookup and loss functions, everything else automatic
- You need to:
- Group sentences into a mini batch (optionally, for efficiency group sentences by length)
- Select the "t"th word in each sentence, and send them to the lookup and loss functions

\section*{Function Changes}
```

wid = 5
wemb = WORDS_LOOKUP[wid]
loss = dy.pickneglogsoftmax(score, wid)
\downarrow

```
```

wids = [5, 2, 1, 3]

```
wids = [5, 2, 1, 3]
wemb = dy.lookup_batch(WORDS_LOOKUP, wids)
wemb = dy.lookup_batch(WORDS_LOOKUP, wids)
loss = dy.pickneglogsoftmax_batch(score, wids)
```

loss = dy.pickneglogsoftmax_batch(score, wids)

```

\section*{Implementing Functions}

\section*{Standard Functions}
addmv, affine_transform, average, average_cols, binary_log_loss, block_dropout, cdiv, colwise_add, concatenate, concatenate_cols, const_lookup, const_parameter, contract3d_1d, contract3d_1d_1d, conv1d_narrow, conv1d_wide, cube, cwise_multiply, dot_product, dropout, erf, exp, filter1d_narrow, fold_rows, hinge, huber_distance, input, inverse, kmax_pooling, kmh_ngram, I1_distance, Igamma, log, log_softmax, logdet, logistic, logsumexp, lookup, max, min, nobackprop, noise, operator*, operator+, operator-, operator/, pairwise_rank_loss, parameter, pick, pickneglogsoftmax, pickrange, poisson_loss, pow, rectify, reshape, select_cols, select_rows, softmax, softsign, sparsemax, sparsemax_loss, sqrt, square, squared_distance, squared_norm, sum, sum_batches, sum_cols, tanh, trace_of_product, transpose, zeroes

\section*{What if I Can't Find my Function?}
- e.g. Geometric mean
\[
y=\operatorname{sqrt}\left(x_{-} 0 \text { * } x_{-} 1\right)
\]
- Option 1: Connect multiple functions together
- Option 2: Implement forward and backward functions directly
\(\rightarrow\) C++ implementation w/ Python bindings

\section*{Implementing Forward}
- Backend based on Eigen operations
\[
\operatorname{geom}\left(x_{0}, x_{1}\right):=\sqrt{x_{0} * x_{1}}
\]
nodes.cc
```

template<class MyDevice>
void GeometricMean::forward_dev_impl(const MyDevice \& dev,
const vector<const Tensor*>\& xs,
Tensor\& fx) const {
fx.tvec().device(*dev.edevice) =
(xs[0]->tvec() * xs[1]->tvec()).sqrt();
}

```
dev: which device - CPU/GPU
xs: input values
fx: output value

\section*{Implementing Backward}
- Calculate gradient for all args \(\frac{\partial \operatorname{geom}\left(x_{0}, x_{1}\right)}{\partial x_{0}}=\frac{x_{1}}{2 * \operatorname{geom}\left(x_{0}, x_{1}\right)}\) nodes.cc
```

template<class MyDevice>
void GeometricMean::backward_dev_impl(const MyDevice \& dev,
const vector<const Tensor*>\& xs,
const Tensor\& fx,
const Tensor\& dEdf,
unsigned i,
Tensor\& dEdxi) const {
dEdxi.tvec().device(*dev.edevice) +=
xs[i==1?0:1] * fx.inv() / 2 * dEdf;
}

```
dev: which device, CPU/GPU dEdf: derivative of loss w.r.t f xs: input values fx: output value
i: index of input to consider dEdxi: derivative of loss w.r.t. x[i]

\section*{Other Functions to Implement}
- nodes.h: class definition
- nodes-common.cc: dimension check and function name
- expr.h/expr.cc: interface to expressions
- dynet.pxd/dynet.pyx: Python wrappers

\section*{Gradient Checking}
- Things go wrong in implementation (forgot a " 2 " or a "-")
- Luckily, we can check forward/backward consistency automatically
- Idea: small steps (\(h\)) approximate gradient
\[
\frac{\partial f(x)}{\partial x} \approx \frac{\frac{f(x+h)-f(x-h)}{2 h}}{\text { Onward }}
\]

Uses Backward
- Easy in DyNet: use GradCheck(cg) function

Questions/Coffee Time!```

