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 Types of Classification

Binary Classification

What Is Structured Prediction/Classification?
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Multiclass Classification

Structured Classification



 Structures are important in natural language 
processing

Linguists also attempt to understand the rules regarding 
language structures

Why Structured Prediction?
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Phonetics

Morphology

Syntax Semantics

Pragmatics

and many 
more

R Wardhaugh. Introduction to Linguistics. 



 Challenges in NLP involve Understanding and

Generation

 Understanding the structures in natural languages is 
an essential step towards the goal

Why Structured Prediction?

9

M Bates. Models of natural language understanding.

D Jurafsky and JH Martin. Speech and language processing.

CD Manning and H Schütze. Foundations of Statistical Natural Language Processing.



 However, most of the time, structure prediction is

not straight-forward

Why Structured Prediction?

10

Why it is hard? --Natural languages encode all of 
the structures in a linear form

N Chomsky. Language and mind.

N Chomsky. Reflections on language.

MAK Halliday. Language structure and language function.

N Chomsky. Knowledge of language: Its nature, origin, and use.

D Biber, S Conrad, R Reppen. Corpus linguistics: Investigating language structure and use.



 Structured prediction helps to recover the structures 
in natural languages

Why Structured Prediction?

11

POS Tagging (Collins, ACL 2002; Gimenez & Marquez, LREC 
2004.; Shen et al., ACL 2007; Søegaard, ACL-HLT 2011; Sun, NIPS 2014; 
Collobert et al., JMLR 2011; Huang et al., 2015)

Chunking (Kudo & Matsumoto, NAACL 2001; Collins, ACL 2002; 
McDonald et al., HLT-EMNLP 2005; Sun et al., COLING 2008; Collobert 
et al, JMLR 2011; Huang et al., 2015 )

NER (Florian et al., HLT-NAACL 2003; Chieu, CoNLL 2003; Ando & 
Zhang, JMLR 2005; Collobert et al., JMLR 2011; Passos et al., CoNLL 
2014; Huang et al., 2015)

Parsing (Earley, 1970; Collins, EACL 1997; Klein & Manning, ACL 
2003; Sha & Pereira, HLT-NAACL 2003; Nivre, IWPT 2003; Collins, ACL 
2004; Nivre & Scholz, COLING 2004; McDonald, HLT-EMNLP 2005; 
Zhang & Clark, EMNLP 2008; Zhang & Nivre, ACL-HLT 2011;Socher, et 
at., EMNLP 2013; Chen & Manning, EMNLP 2014)

Word Segmentation, Summarization, Machine 
Translation...
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• Conditional Random Field

• Structure Perceptron

• MIRA

• Probabilistic Perceptron

Conventional 
Model

• Latent Dynamic CRF

• Latent Variable Perceptron
Latent    
Model

• Recurrent Neural Network

• Long Short-term Memory

• LSTM-CRF

Neural Model

Outline
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 Proposed by Lafferty et al. (2001)

 Maximize a conditional probability

 𝑝 𝑦 𝑥, 𝜃 =
1

𝑧(𝑥,𝜃)
exp  𝑘 𝜃𝑘𝑓𝑘(𝑦, 𝑥)

 𝑍 𝑥, 𝜃 =  𝑦′ exp  𝑘 𝜃𝑘𝑓𝑘(𝑦′, 𝑥)

 Global model

 Predict global structure, not local classifier

 Training: globally normalized objective

 Decode: Viterbi algorithm 

Conditional Random Fields (CRFs)

14
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 Proposed by Lafferty et al. (2001)

 Maximize a conditional probability

 𝑝 𝑦 𝑥, 𝜃 =
1

𝑧(𝑥,𝜃)
exp  𝑘 𝜃𝑘𝑓𝑘(𝑦, 𝑥)

 𝑍 𝑥, 𝜃 =  𝑦′ exp  𝑘 𝜃𝑘𝑓𝑘(𝑦′, 𝑥)

 Global model

 Predict global structure, not local classifier

 Training: globally normalized objective

 Decode: Viterbi algorithm 

Conditional Random Fields (CRFs)
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But the training speed is quite 

slow…



 Proposed by Collins (2002)

 Simple and fast

 No gradient computation

 Update only on error

 Viterbi decode

 Theoretical guarantee

 Converge if data is separable

Structured Perceptron

16

M

K L

G H
I J

A B C D E F



 Proposed by Collins (2002)

 Simple and fast

 No gradient computation

 Update only on error

 Viterbi decode

 Theoretical guarantee

 Converge if data is separable

Structured Perceptron

17



Structured Perceptron

18

 Inexact search

 Greedy search

 Beam search

 Parameter update

 Early update (Collins & Roark, ACL 2004)

 Margin Infused Relaxed Algorithm (MIRA) ( Crammer et al. 2006)

 Max-violation (Huang et al., NAACL 2012)

Figure from Huang et al. (2012)



 Current structured prediction methods are not ideal

 A trade-off between accuracy and speed…

For Large-scale Structured Prediction

19

low                            performance                        high

fast                                speed                             slow

CRFs

Structured Perceptron

MIRA

k-best MIRA



 A solution works well in practice for large-scale 
structured prediction problems

 Introducing probabilistic information into 
perceptrons

 This goes to Probabilistic Perceptron (SAPO) (Sun 
2015)

For Large-scale Structured Prediction

20

X. Sun. Towards shockingly easy structured 

classification: A search-based probabilistic 

online learning framework. 2015



 Proposed by Sun (2015)

 Same (or even higher) accuracy like CRF

 Fast training speed like perceptron

Probabilistic Perceptron (SAPO)

21

root   John   hit   the   ball   with   the   bat

root   John   hit   the   ball   with   the   bat

root   John   hit   the   ball   with   the   bat

……

root   John   hit   the   ball   with   the   bat

training sample

0.53

0.25

0.03

Probabilistic 

Perceptron 

Update

X. Sun. Towards shockingly easy structured 

classification: A search-based probabilistic 

online learning framework. 2015



 Proposed by Sun (2015)

Probabilistic Perceptron (SAPO)
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root   John   hit   the   ball   with   the   bat root   John   hit   the   ball   with   the   bat

Structured 

Perceptron 

Update

training sample 1-best sample

n-best samples with probability 

root   John   hit   the   ball   with   the   bat

root   John   hit   the   ball   with   the   bat

root   John   hit   the   ball   with   the   bat

……

root   John   hit   the   ball   with   the   bat

training sample

0.53

0.25

0.03

Probabilistic 

Perceptron 

Update



 Theoretical guarantee of convergence

Probabilistic Perceptron (SAPO)

23

Probabilistic perceptron converges!



 Experiment results

 Similar or even higher accuracy compared with CRFs, 
perceptron and MIRA

Probabilistic Perceptron (SAPO)

24

It indicates the number of samples is 

not the larger the better, why?



 Experiment results

 Much faster than 
CRFs 

 Nearly as fast as 
perceptrons

Probabilistic Perceptron (SAPO)

25



 Experiment result

No rising complexity of weights compared to MIRA or Perc.

Probabilistic Perceptron (SAPO)

26



 Probabilistic Perceptron Sun (2015)

For Large-scale Structured Prediction

27
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 Typical methods need large-scale annotations

 Problem in reality

 Lack of annotations

 Inaccurate annotations

 Latent Model

 Reduce Annotation Engineering

Outline
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 Latent-structures (hidden info) are important in 
natural language processing (Matsuzaki et al., ACL 2005; Petrov & Klein, NIPS 

2008)

Motivation

30

Parsing: Learn refined grammars with latent info
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 Latent-structures (hidden info) are important in 
natural language processing (Matsuzaki et al., ACL 2005; Petrov & Klein, NIPS 

2008)

Motivation

31

Parsing: Learn refined grammars with latent info
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 Latent-structures (hidden info) are important in 
dependency parsing (Honnibal & Johnson, TACL 2014)

 A transition system (arc-eager) extended with an EDIT 
transition 

Motivation

32



 Latent-structures (hidden info) are important in 
dependency parsing (Honnibal & Johnson, TACL 2014)

 Different transition sequences to the same gold-standard tree

Motivation
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 Latent-structures (hidden info) are important in 
dependency parsing (Honnibal & Johnson, TACL 2014)

Motivation

34

dynamic oracle
map a configuration to a set of transitions
partially annotated
latent variable



 Latent-structures (hidden info) are important in 
question answering (Fader et al., SIGKDD 2014)

Motivation

35

Latent Variable



 Latent-structures (hidden info) are important in 
multi-intent speech recognition (Xu & Sarikaya, INTERSPEECH 2013)

Motivation

36

Latent Variable



 Latent-structures (hidden info) are important in 
multi-intent speech recognition (Xu & Sarikaya, INTERSPEECH 2013)

Challenges

37

Problem 1:

Annotating latent info requires much 

more tags and human time
 Costly to annotate

Problem 2:

Different tasks have different latent info.
 Hard to annotate



 A solution without additional annotation

Latent-dynamic CRFs

38

Latent-dynamic CRFs (LDCRF)
[Morency et al., CVPR 2007; Sun et al., COLING 2008]

* No need to annotate latent info

Figure from Xu & Sarikaya, INTERSPEECH 2013.



 Latent-dynamic CRFs (LDCRF)
(Morency et al., CVPR 2007; Sun et al., COLING 2008)

Latent-dynamic CRFs

39

x1 x2 x3 x4 xn

h1 h2 h3 h4 hn

y1 y2 y3 y4 yn

x1 x2 x3 x4 xn

y1 y2 y3 y4 yn

LDCRF

Conditional 

random fields

We can think (informally) it as 

“CRF + unsup. learning on latent info”



 Latent-dynamic CRFs (LDCRF)
(Morency et al., CVPR 2007; Sun et al., COLING 2008)

Latent-dynamic CRFs

40

x1 x2 x3 x4 xn

h1 h2 h3 h4 hn

y1 y2 y3 y4 yn

LDCRF
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 Latent-dynamic CRFs (LDCRF)

 Training is slow 

 May need week-level time

 Solution

 Perceptron is much faster than CRF

 Latent CRF -> Latent perceptron

For Large-scale Structured Prediction

41

Sun et al. Latent variable perceptron algorithm for 

structured classification. IJCAI 2009.

Sun et al. Latent structured perceptrons for large-

scale learning with hidden information. TKDE 2013.



 For fast training of latent variable models
(Sun et al., IJCAI 2009; Sun et al., TKDE 2013)

Latent Variable Perceptron

42

Seg-0

Seg-1

Seg-2

noSeg-0

noSeg-1

noSeg-2

Restricted 

Viterbi 

output  by 

gold 

annotation

Global 

Viterbi 

output

A related work on machine translation: Liang et al., 2006



 For fast training of latent variable models
(Sun et al., IJCAI 2009; Sun et al., TKDE 2013)

Latent Variable Perceptron

43
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LDCRF:

Latent variable perceptron (Sun et al., 2009) :

Normally, batch training 

(do weight update after go over all samples) 

Online training

(do weight update on each sample)

{
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 LDCRF training method

Latent Variable Perceptron
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 LDCRF training method

Latent Variable Perceptron
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 Latent perceptron training

Latent Variable Perceptron
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 Latent perceptron training

Latent Variable Perceptron
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 Theoretical guarantee of convergence

 As far as traditional perceptron is separable, 
latent structured perceptron is also separable.

Latent Variable Perceptron

48



 Theoretical guarantee of convergence

 Latent perceptron still converges

Latent Variable Perceptron

49



 Experiment on synthetic data:
Much better accuracy than CRF & Perceptron

Latent Variable Perceptron

50
Significance of latent info

Averaged 

perceptron

LDCRF

Latent Perc

CRF



 Good performance in question answering (Fader et al. SIGKDD2014)

 Use query with partial anotation as latent variable

Latent Variable Perceptron

51

OQA is based on 

latent variable 

perceptron
(Sun et al., IJCAI 2009; 

Sun et al., TKDE 2013)



 Good performance in speech sentence classification 
(Xu & Sarikaya, INTERSPEECH 2013)

 Split multi-intent using latent variable

 Based on latent variable perceptron (Sun et al., IJCAI 2009; Sun et al., TKDE 2013)

Latent Variable Perceptron

52



 Good performance in semantic parsing (Zhou et al., IJCAI 2013)

 Hybrid tree as latent structure variable

 Based on latent variable perceptron (Sun et al., IJCAI 2009; Sun et al., TKDE 2013)

Latent Variable Perceptron

53

Better 
Performance



 Good performance in dependency parsing            
(Honnibal & Johnson, TACL 2014)

 Dynamic oracle/transitions as latent variable

 Train with latent variable perceptron (Sun et al., IJCAI 2009; Sun et al., TKDE 2013)

Latent Variable Perceptron

54

Much better 

compared with 

baseline model



 Good performance in coreference resolution 
(Fernandes et al., CL 2012)

 Use structures of coreference trees as latent variable

 Based on latent variable perceptron (Sun et al., IJCAI 2009; Sun et al., TKDE 2013)

Latent Variable Perceptron

55



 Latent Variable Perceptron 

 Proposed by Sun (2009, 2013)

 Fast and accurate

 Accuracy equal or even better than CRF

 Almost as fast as perceptron

 Suitable for large-scale structured prediction problems

For Large-scale Structured Prediction

56

Sun et al. Latent variable perceptron algorithm for 

structured classification. IJCAI 2009.

Sun et al. Latent structured perceptrons for large-

scale learning with hidden information. TKDE 2013.



 Latent Model can reduce annotation engineering

 Furthermore, how to reduce the cost of feature 
engineering?

 Neural Model

 Automatically extract features

Outline
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• Conditional Random Field

• Structured Perceptron

• MIRA

• Probabilistic Perceptron

Conventional 
Model

• Latent Dynamic CRF

• Latent Variable Perceptron

Latent  
Model

• Recurrent Neural Network

• Long Short-term Memory

• LSTM-CRF

Neural 
Model

Outline
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Reduce 
Annotation 
Engineering

Reduce 
Feature 
Engineering



 Problem in feature 
engineering

 Require linguistics
knowledge

 A lot of feature templates

 Ad-hoc, some features are 
not very reasonable

 Task-sensitive

 Neural networks

 Automatically learn features 
in hidden layers

Motivation

59



 Many kinds

Neural Network

60

 Convolutional NN

 image processing

 Recursive/Recurrent NN

 structured prediction

 Feed Forward NN

 logistic regression



 Recursive neural network (Socher et al., ICML 2011)

 Model hierarchical structures

 Condition on each sub-structure independently

Recursive Neural Network

61



 Recurrent neural network (Elman, Cognitive Science 1990) 

 Model time series

 Predict linear-chain structures

 Conditioned on all previous input

Recurrent Neural Network (RNN)

62Picture from Christopher Olah



 Problems

 Gradient Exploding/Vanishing (Pascanu et al., ICML 2013)

 Hard to capture long-term dependencies

Recurrent Neural Network (RNN)

63Figure from Denny Britz 



 Long short-term memory (Hochreiter and Schmidhuber 1997)

 A lasting linear memory

 Capture long distance dependency

 Three gates: input, forget and output gates

 Control modification to the memory

Long Short-term Memory (LSTM)

64



Introduction of Gates

65

 Gate

 Sigmoid-activated layer

 Output value from 0 to 1

 Member-wise multiplication

 How much to flow through

 Gates in LSTM

 Forget gate

 How much old memory needs to be remembered

Some Picture from Christopher Olah



 Gate

 Sigmoid-activated layer

 Output value from 0 to 1

 Member-wise multiplication

 How much to flow through

 Gates in LSTM

 Forget gate

 How much old memory needs to be remembered

 Input gate

Introduction of Gates
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 Gate

 Sigmoid-activated layer

 Output value from 0 to 1

 Member-wise multiplication

 How much to flow through

 Gates in LSTM

 Forget gate

 How much old memory needs to be remembered

 Input gate

 Output gate

Introduction of Gates

67Some Picture from Christopher Olah



 LSTM

 Situation-aware

 RNN

 Vanishing influence

Introduction of Gates

68
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Inputs
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Inputs
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 Problem of LSTM

 Can be slow for large models (hard to train)

 Structure complexity is higher

 Structure redundancy?

 Too much parameters

Long Short-term Memory (LSTM)

69Picture from Christopher Olah



 Peepholes

 Introduced by Gers (2000) 

 Include current memory when compute gates

Refinement of LSTM

70Picture from Christopher Olah



 Fully connected gates

 Included in Hochreiter and Schmidhuber (1997) 

 Gates are also recurrent

Refinement of LSTM

71Picture from Christopher Olah



 Gated recurrent unit (GRU)

 Introduced by Chung et al. (2014)

 Coupled forget and input gates with structure simplification

Refinement of LSTM

72Picture from Christopher Olah



More recent development

73

Encoder

A B C <EOS> W X Y Z

X Y Z <EOS>W

 Sequence to sequence neural network (Sutskever et al., NIPS 2014)

 Encoder & Decoder

 The encoder information is stored in a fixed-length vector



 Sequence to sequence neural network (Sutskever et al., NIPS 2014)

 Encoder & Decoder

 The encoder information is stored in a fixed-length vector

 Learn to align

 Neural machine translation

More recent development

74

Decoder

A B C <EOS> W X Y Z

X Y Z <EOS>W



 Attention-based neural network (Bahdanau et al. 2014; Luong et al. 2015)

 Each hidden state has an unique weight/attention/importance

Structured Neural Network in Machine Translation

75



 Training large-scale neural models is costly

 Numerous parameters

 Very slow

 A NMT model may take weeks (even months) to train

 How to accelerate training speed?

 Parallel training

 Especially, asynchronous (lock-free) parallel training

For Large-Scale Structured Prediction

76



 Motivation

 Asynchronous parallel learning is very popular for 
traditional sparse feature models

 E.g., HogWild! (Niu et al. NIPS 2011)

 However, previous asynchronous parallel learning 
methods do not suit neural networks

 Because NN is dense feature model

 Previous parallel learning for dense feature models is 
mostly synchronous, e.g., mini-batch parallel learning, GPU 
parallel learning

Asynchronous Parallel Learning

77



 Motivation

 Asynchronous parallel learning is very popular for 
traditional sparse feature models

 E.g., HogWild! (Niu et al. NIPS 2011)

Asynchronous Parallel Learning

78

Reading parameters from shared memory

Computing Gradients

Writing parameters to shared memory

1. Simple Case  No problem



 Motivation

 Asynchronous parallel learning is very popular for 
traditional sparse feature models

 E.g., HogWild! (Niu et al. NIPS 2011)

Asynchronous Parallel Learning

79

2. This case is called 

Gradient Delay case

 More complicated, but 

problem solved for sparse 

feature models (Niu et al. NIPS 

2011)



 Motivation

 Asynchronous parallel learning is very popular for 
traditional sparse feature models

 E.g., HogWild! (Niu et al. NIPS 2011)

Asynchronous Parallel Learning

80



 3. Even more difficult case: Gradient Error Case

 Happens for dense feature models, like neural networks

 Actions (R, G & W) are time-consuming

 Read-overwrite and write-overwrite problems

Asynchronous Parallel Learning

81

Not well studied before, how to deal with this 

problem?



 Gradient error is inevitable in asynchronous training 
of neural networks in real-world tasks

Experimental observations

82



 Gradient error is inevitable in asynchronous training 
of neural networks in real-world tasks

Experimental observations

83

So asynchronous parallel learning is 

doomed for neural networks?

No, still this problem can be solved



 An asynchronous parallel learning solution for fast training of 
neural networks Proposed by Sun (COLING 2016)

 Asynchronous Parallel Learning with Gradient Error (AsynGrad) 

 Algorithm

A Recent Solution

84

X. Sun. Asynchronous Parallel Learning for Neural 

Networks and Structured Models with Dense Features. 

COLING 2016.



 Can AsynGrad still converge with gradient errors?

Theoretical Analysis

85

Even though there are gradient errors, AsynGrad does 

not diverge… it still converges near the optimum with a 

small distance, when the errors are bounded.

 The assumptions usually hold in the final convergence 

region

 Confirmed by real-world experiments

bounded gradient errors



Experiments on LSTM

86

Experiments show that AsynGrad still converge even 
with a high gradient error rate



 No loss on accuracy/F-score

 With substantially faster training speed

Experiments on LSTM

87

AsynGrad



 Gradient errors are common and inevitable in 
asynchronous training of dense feature models

 AsynGrad tolerates gradient errors

 For dense feature models, such as neural networks and dense-
CRF

 With faster speed and no loss on accuracy

 An alternative learning approach for large-scale
structured predictions using neural networks

AsynGrad

88



Thanks!

Any questions until now?

89
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 Models for large-scale structured prediction often 
suffer from overfitting

 Overfitting

 Low error rate in training set

 High error rate in test set

 Why overfitting?

 Complex model

 Too many parameters, too little data

 How to deal with?

 Penalty

 Reduce complexity

Overfitting

91



 Penalty parameters in loss function

 min
𝑤
𝑙𝑜𝑠𝑠 𝑥, 𝑦, 𝑤 + 𝜆𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝑤

 L1 regularizer

 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 = 𝜆 𝑤



𝑑

𝑑𝑤𝑗
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 = 𝜆𝑠𝑖𝑔𝑛(𝑤𝑗)

 L2 regularizer

 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 =
𝜆

2
𝑤 2



𝑑

𝑑𝑤𝑗
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 = 𝜆𝑤𝑗

Weight Regularization

92



 Motivation

 Reduce complexity of model structure

 Structure regularization (Sun. NIPS 2014)

 Complex structure -> Simple structure

 Faster

 Easy to implement

 Theoretical guarantee

Structure Regularization

93



 Complex structures (high complexity)

 Simple structures (low complexity)

Illustration

94



 Structure regularization (SR) can find good 
complexity

 Simply split the structures!

 Can (almost) be seen as a preprocessing step of the training 
data

Structure Regularization

95



 Will the split causes feature loss? – loss of long 
distance features?

Structure Regularization

96

No loss of any (long distance) features
We can first extract features, then split the structures

 Or, by simply copying observations to mini-samples, 

i.e., the split is only on tag-structures, like this:



 Is structure regularization also required for test data?

Structure Regularization

97

No, no use of SR for testing data (in current 

implementation & experiments)
Like other regularization methods, SR is only for 

the training

i.e., No SR on the test stage (no decomposition of 

test samples)!



 Structure & weight regularization

Structure Regularization

98

The implementation is very simple



Theoretical Analysis: Overfitting Risk

99

Expected 

risk 

(risk on test 

data)

Empirical 

risk 

(risk on 

training data)

Overfitting risk 

(risk of overfitting from 

training data to test data)



Theoretical Analysis: Overfitting Risk
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Complexity of structure (nodes of a training sample with 

structured dependencies)

 Complex structure leads to higher overfitting risk



Theoretical Analysis: Overfitting Risk

101

Strength of structure regularization (strength of 

decomposition)

 Stronger SR leads to reduction of overfitting risk



Theoretical Analysis: Overfitting Risk

102

Number of training samples 
 More training samples leads to reduction of overfitting risk



Theoretical Analysis: Overfitting Risk

103

Conclusions from our analysis:

1. Complex structure  low empirical risk & high overfitting risk

2. Simple structure  high empirical risk & low overfitting risk

3. Need a balanced complexity of structures 



Theoretical Analysis: Overfitting Risk

104

 In other words, more intuitively:
1. Too complex structure  high accuracy on training + very easy to 

overfit  low accuracy on testing

2. Too simple structure  very low accuracy on training + not easy to 

overfit  low accuracy on testing

Proper structure  good accuracy on training + not easy to overfit 

 high accuracy on testing



Theoretical Analysis: Overfitting Risk

105

1. Simple structure  low overfitting risk & high empirical risk

2. Complex structure  high overfitting risk & low empirical risk

3. Need a balanced complexity of structures

Some intuition in the proof (as in the full version paper):

1) The decomposition can improve stability

2) Better stability leads to better generalization (less overfitting) 



Theoretical Analysis: Learning Speed
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using structure regularization can 

quadratically accelerate the 

convergence rate

 SR also with faster speed 

(a by-product of simpler structures)



 If the original obj. function is convex, can still keep 
the convexity of the objective function

 No conflict with the weight regularization

 E.g, L2, and/or L1 regularization

 General purpose and model-independent 
(because act like a preprocessing step)

 E.g., can be used for different types of models, including CRFs, 
perceptrons, & neural networks

Some Advantages
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State-of-the-art scores on competitive tasks

Experiments-1: Accuracy
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 Also with faster speed 

(a by-product of simpler structures)

Experiments-2：Learning Speed
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 Question: Is structure complexity matters in structured 
prediction?

 Theoretical analysis to the question

 1) Yes it matters

 2) High complexity of structures  high overfitting risk

 3) Low complexity  high empirical risk

 4) We need to find an optimal complexity of structures

 Proposed a solution

 Split the original structure to find the optimal complexity

 Better accuracies in real tasks, & faster (a by-product)

For Large-scale Structured Prediction

110

This work is published at NIPS 2014:
Xu Sun. Structure Regularization for Structured Prediction. In 

Advances in Neural Information Processing Systems (NIPS). 

2402-2410. 2014



Drop Out
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 Proposed by Srivastava et al.(2014)

 Part of neurons do not participate in forward pass 
and backpropagation

 Only use in training

 Advantage

 Fewer parameters per training sample

 Reduce training time



 Experiment on MINST (Srivastava, et al. JMLR 2014)

Drop Out
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 Experiment on Penn Tree Bank (Zaremba, et al. 2015)

 Language modeling measured by perplexity

Drop Out
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 StrutReg

 decomposition of structure

 randomly

 LSTM

 forget useless information

 learned

 Drop Out

 deactivate neurons

 randomly

 ReLU

 sparse activation

 forced

Discussion of Techniques
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Picture credit: Christopher Olah



Discussion of Techniques

115

Relations?

Struct 
Reg

Drop 
Out

LSTM

ReLU

reduce complexity



Outline
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Introduction

Model

Regularization

How-tos

Conventional Model

Latent Model

Neural Model



 Conventional models can achieve the state-of-the-
arts results

 stable for production setup

 Latent models are good for tasks short of 
annotations

 Neural models are promising

 especially for high-level tasks

 sentiment analysis

 summarization, composition, translation

 many nice frameworks available

 theano, torch, tensorflow

 caffe, cntk

How to choose a model
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 For models other than neural models

 Perceptron

online, fast convergence

 For neural models

 Mini-batch SGD

 Using GPUs can lead to significant speed-ups, compared to use 
CPUs only

How to Choose an Optimizer

118

momentum-based
momentum

Nesterov Accelerated Gradient (NAG)

better results, more tuning

parameter-scaling
AdaGrad

AdaDelta

Adam

RMSProp

less tuning, fast



Long Valley

Visualization of Optimization Algorithms

119Picture from Alec Radford



Saddle Point

Visualization of Optimization Algorithms

120Picture from Alec Radford 



Beale's Function

Visualization of Optimization Algorithms

121Picture from Alec Radford



Noisy Data

Visualization of Optimization Algorithms

122Picture from Alec Radford



Thanks!
Any Question?
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Sequence Tagging

Tree/Graph Structure

Take-home Msg
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Sequence Tagging

Tree/Graph Structure

Take-home Msg

Chinese Word Segmentation

POS Tagging/Named Entity Recognition



 Sequence 

 the most basic/simplest structures in NLP

 Tag each item in the sequence using a given label 
set

 Common to see

 World segmentation

 Part-of-Speech tagging

 Named entity recognition

 Chunking

 Event trigger identification

 …

Sequence Tagging

135



 Conventional models

 CRF, Structured perceptron, … 

 Work well, but

 Feature engineering

 Local context / Global information

 …

 Neural models

 CNN, RNN, LSTM, LSTM-CRF,…

 Performances

 Comparable to state of the arts

 Combinations may give top performances

Sequence Tagging
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 The Task

地面 积 了 厚厚 的 雪 (The ground is covered with thick
snow)

这 块 地 面积 还 真 不小 (This area is really not small)

 Challenges

 Feature engineering

 Long distance dependencies

 Neural Network Practice

 CNN/RNN to capture local information, instead of fixed 
windows

 RNN to capture long distance dependencies, or sentence-
level/global information

Chinese Word Segmentation

137

[Xu and Sun, 2016]



 NN to model local features

 TNN to capture tag/word features and their combinations

 CNN, RNN, LSTM, BLSTM to capture local features, beyond
fixed window size

 Choice of character/word level

 Word level features are still important, but not easy to
incorporate in models

 Explore word level information in a beam-search framework
[Zhang et al., 2016, Cai and Zhao, 2016] 

 Word level features give 0.5%

 Combinations

 Combining neural and discrete features gives top
performances

Model Local Information
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 Long Distance Dependencies

 Gated Recursive NN [Chen et al., 2015, Xu and Sun, 2016]

 LSTM [Chen et al., 2015b, Zhang et al., 2016, Cai and Zhao,
2016]

 Search Strategy

 CRF framework

 Viterbi

 Beam-search style

 Fully explore word level information

 Transition based [Zhang et al., 2016]

 Beam search [Cai and Zhao, 2016]

Global View
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 Gated Recursive Neural Networks

 Dependency based Gated Recursive Neural 
Networks

Models

140[Chen et al., 2015a] [Xu and Sun, 2016]



 LSTM 

 LSTM + Gated Combination Neural Networks

 Bi-LSTM

Models

141[Cai and Zhao, 2016][Chen et al., 2015b]



 Conventional models are still strong

 Neural models can be promising, and sometimes 
complementary to conventional models

 Long distance dependencies

 Word level features

 BiLSTM works to capture local context information

 Various NN models to sentence level/long-distance 
information

 CRF is still attractive 

Performances on Benchmarks
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 Typical Sequence Labeling tasks

 Conventional models have achieved  over ~90%

 Again

 Feature engineering 

 Language issues

 Local/Global

 Label bias

 Neural Network Practice

 BLSTM/CNN to capture local context, both forward and 
backward

 CRF with Viterbi to find the best sequence

POS/NER/Chunking
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 NN models seem be capable of handling language 
issues to some extent

 CNN

 BLSTM  Dominating!

 Character level modeling

 BLSTM works better than LSTM

 Look at both past and future

 Traditional lexicon features are still there

 Extra resources, like dictionary, gazetteers, or Wiki, are always 
welcome 

Feature Extraction
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 BLSTM-CRF with feature concatenation 

 work nice for POS, NER, Chunking

Models

146

[Huang et al., 2015]



 Typical BLSTM-CRF for  POS / NER

 Word / Character Level

Models

147

[Lample et al., 2016]

[Ling et al., 2015]



 BLSTM+CNN for NER

Models

148

[Chiu and Nicols., 2016]



 Handling with different languages

 Handling with OOV

 using CNN

 character-level modeling

Language Issues

149
[dos Santos and Guimaraes, 2015] [Ling et al., 2015]
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 Event Trigger Identification

犯 罪 嫌 疑 人 都 落 入 法 网

The suspects were arrested [arrest_jail]

 NN models work to help

 Feature extraction 

 Both local and global features (CNN, BLSTM)

 Language issues: character level modeling

Misc
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 BLSTM+CNN for event trigger identification

 CNN to capture local context

Models

153[Zeng et al., 2016]
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Tree/Graph Structure

Sequence Tagging

Take-home Message

Dependency Parsing

Semantic Role Labelling



 One of most common/important structures in NLP

 Both the tree/graph structures and their tags are 
latent

 Building bricks

 Syntactic parsing

 Event extraction

 Semantic role labeling

 …

Tree/Graph Structures
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 The Task

 Conventional Models

 Transition based

 Graph based

 However,

 Feature engineering

 Label bias   ---->  locally/globally normalized

 Neural Network Practice

 Transition/Graph based

 NN models to extract various features

 choose from greedy search, beam search or approximate global
normalization

Dependency Parsing
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 Most DL based works in dependency parsing follows 
the transition based framework.

 lower complexity

 higher efficiency

 more choices of features

 Follow normal transition styles

 but, most are based on greedy search

 Various NN models used to produce dense features

 normal NNs

 LSTM

 BLSTM, both word level and character level

 [Chen and Manning, 2014], [Weiss et al., 2015], [Dyer et al., 2015], [Ballesteros et al., 2015], 
[Zhou et la., 2015], [Kiperwasser and GoldBerg, 2016], [Andor et al., 2016]

Transition based models
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 Key features, such as words, POS and dep labels, as 
well as their combinations can be transformed into 
dense format through a neural network 

Features
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[Chen and Manning, 2014]



 Or, features could be captured through LSTM units

Features

159

[Dyer et al., 2015] [Ballesteros et al., 2015]

[Kiperwasser and GoldBerg, 2016]



 No global considerations about future decisions

 look ahead with limited context 

 label bias

 May be error propagations

 Training a global normalized model may not be trivial

 Complexity

 Space

 And, it is found that, in many parsers, beam search has
minimal impact in the results. [Dyer et al., 2015]

 However, sometimes, better than beam-search based 
methods [Kiperwasser and GoldBerg, 2016]

Greedy Search
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 One solution is to use the output layers of the NN 
model to learn a structured perceptron with a beam 
search

 gives 0.8% 

Beam Search

161[Weiss et al., 2015]



 Local normalized models may suffer from local optimal 
(greedy search), label bias, etc.

 Perform global normalization exactly

 maximize the whole action sequence

 It is not trivial !

 too many possible action sequences

 expensive (impossible) to enumerate and compute

 Or, do it approximately ?

Approximate Global Normalization
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 Contrastive Learning [Hinton, 2002; LeCun and Huang, 2005; 
Liang and Jordan, 2008; Vickrey et al., 2010]

 reward observed data

 penalize noisy data

 In the beam search case:                        

 Give gold sequence with higher probability

 Give incorrect sequences in the beam with lower 
probabilities 

 Early update may be helpful

 gives more than 1.5%

Approximate Global Normalization
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[Zhou et al., 2014]



 The importance of looking ahead

Approximate Global Normalization

164[Andor et al., 2016]



 Global Training 

 Backward propagation with beam search 

 with early update

 slow

 Works for multiple tasks:

 Dependency parsing

 POS tagging

 Sentence Compression 

 Insight:

 Global models are more expressive

Approximate Global Normalization

165[Andor et al., 2016]
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 The Task

[HeA0 ] had trouble raising [fundsA1 ]. [Roth and Lapata, 
2016]

 Conventional Models

 Pipeline

 predicate identification, argument identification, argument 
classification 

 However,

 Feature engineering, local features, global features, …

 Pipeline

 Neural Practice

 NN models to extract various features, or as local classifiers

 In a sequence labeling style, an End-to-End system

Semantic Role Labeling
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 Step by step: predicate identification, argument identification, 
argument classification 

 Each step: local classifiers with feature extraction, using CNN, or 
LSTM

Pipeline System

168

CNN LSTM

[Fortland and Martin, 2015] [Roth and Lapata, 2016]



 Multi-Layered LSTM with CRF to Sequence Tagging.

[Zhou and Xu, 2016]

End-to-End System
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 Handle long distance dependencies

 CNN

 good at capturing local features, or work on dependency path 

 not so good at End-to-End systems, or extracting features from 
plain word sequence for SRL

 LSTM

 good at capturing both local features, and global information, 
either for local decisions, or sentence level re-ranking

 more powerful in capturing features of various levels

 deep LSTM can also be used to build End-to-End SRL systems

CNN v.s. LSTM

170
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Tree/Graph Structure

Sequence Tagging

Take-home Messages



 Standard settings for Sequence Tagging

 BLSTM + CRF

 character modeling or CNN for fine modeling

 fused with successful traditional features

 perhaps, beam search for various features

 But Use as many useful resources as you can !

 More complex structures

 BLSTM + Transition base systems

 choose from greedy search / beam search

 But

Choose globally normalized models if you can!

How-tos

172
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