Improving Students’ Writing with Automated Grammatical Error Correction

Hwee Tou Ng

Department of Computer Science
National University of Singapore

15 October 2013
Grammatical Error Correction (GEC)

- Task: Detect and correct grammatical errors
 - Input: English essays written by learners of English
 - Output: Corrected essays
Sample Grammatical Errors

- **Article or determiner**
 - In *late* nineteenth century, ...
 - *late* → *the late*

- **Preposition**
 - They must pay more *on* the welfare of the old people
 - *on* → *for*

- **Noun number**
 - Such powerful *device* shall not be made available.
 - *device* → *devices*
Sample Grammatical Errors

- Verb form
 - Our society is progressed well.
 - progressed → progressing

- Subject–verb agreement
 - Some people still prefers to be single.
 - prefers → prefer
Impact of GEC Research

Five times more people are learning English in China, than there are people in England. The world belongs to those who see its potential.

HSBC
The world's local bank
Impact of GEC Research

- More than one billion people worldwide are learning English as a second language
- More non-native English speakers than native speakers
- Of particular relevance in the Asian context
- A complete end-to-end application
Grammar checking is one of the first commercial NLP applications

Microsoft Word Grammar Check

- Heidorn, Jansen, et al. (IBM T J Watson, then Microsoft Research)
- A hand-crafted rule-based approach
- Limited coverage (detects none of the 5 sample grammatical errors shown)
Current Landscape

- Commercial software available:
Current Landscape

- A somewhat neglected research topic
 - Relatively less published research in the NLP literature
State of the Art

- Up till 2010, unclear what that is
- Few annotated learner corpora for evaluation
- Existing corpora either small or proprietary

“... a reasonably sized public data set for evaluation and an accepted annotation standard are still sorely missing. Anyone developing such a resource and making it available to the research community would have a major impact on the field, ...”

Leacock et al., 2010
Much recent research interest

Three shared tasks:
 ◦ Helping Our Own (HOO) 2011 (Dale and Kilgarriff, 2011)
 ◦ Helping Our Own (HOO) 2012 (Dale et al., 2012)
 ◦ CoNLL 2013 Shared Task (Ng et al., 2013)
Automated Essay Scoring

- Task: output a single score only for an essay
- Different from grammatical error correction
- Less informative to a learner
- The Hewlett Foundation sponsored the Automated Student Assessment Prize (ASAP) in Feb – Apr 2012
- Recent work of Yannakoudakis, Briscoe, Medlock, ACL 2011
The first shared task on grammatical error correction

Goal: Help NLP authors in writing their papers ("helping our own")

Annotated corpus (publicly available):
- Parts of 19 papers from the ACL Anthology
- # of word tokens in development data = 22,806
- # word tokens in test data = 18,789
All error types (about 80) from the Cambridge University Press Error Coding System (Nicholls, 2003)

Participants mostly address article and preposition errors only

6 participating teams

Top performance: UIUC team (Rozovskaya, Sammons, Gioja, & Roth, 2011)
Focus on determiner and preposition errors only

Annotated corpus:
- Cambridge FCE (First Certificate in English) exam scripts (part of the Cambridge Learner Corpus)
- Training data (publicly available):
 - # scripts = 1,244
 - # words = 374,680
- Test data (not available after the shared task):
 - # scripts = 100
 - # words = 18,013

14 participating teams

Top performance: NUS team (D. Dahlmeier, H. T. Ng, & E. J. F. Ng, 2012)
CoNLL–2013 Shared Task

- **Input:** English test essays
 - Pre–processed form provided (sentence segmentation, tokenization, POS tagging, constituency parsing, dependency parsing)
- **Output:** Corrected test essays, in sentence–segmented and tokenized form
Training Data

- NUCLE corpus (NUS Corpus of Learner English) (Dahlmeier & Ng, 2011; Dahlmeier, Ng, & Wu, 2013)
- Publicly available for research purpose
- Essays written by university students at NUS who are non-native speakers of English
- A wide range of topics (surveillance technology, health care, etc.)
- Hand-corrected by professional English instructors at NUS
- 27 error types
NUCLE Error Types

<table>
<thead>
<tr>
<th>Error Tag</th>
<th>Error Type</th>
<th>Error Tag</th>
<th>Error Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vt</td>
<td>Verb tense</td>
<td>Srun</td>
<td>Runons, comma splice</td>
</tr>
<tr>
<td>Vm</td>
<td>Verb modal</td>
<td>Smod</td>
<td>Dangling modifier</td>
</tr>
<tr>
<td>V0</td>
<td>Missing verb</td>
<td>Spar</td>
<td>Parallelism</td>
</tr>
<tr>
<td>Vform</td>
<td>Verb form</td>
<td>Sfrag</td>
<td>Fragment</td>
</tr>
<tr>
<td>SVA</td>
<td>Subject–verb agreement</td>
<td>Ssub</td>
<td>Subordinate clause</td>
</tr>
<tr>
<td>ArtOrDet</td>
<td>Article or determiner</td>
<td>WOinc</td>
<td>Incorrect sentence form</td>
</tr>
<tr>
<td>Nn</td>
<td>Noun number</td>
<td>WOadv</td>
<td>Adverb/adjective position</td>
</tr>
<tr>
<td>Npos</td>
<td>Noun possessive</td>
<td>Trans</td>
<td>Link words/phrases</td>
</tr>
<tr>
<td>Pform</td>
<td>Pronoun form</td>
<td>Mec</td>
<td>Punctuation, capitalization, spelling, typos</td>
</tr>
<tr>
<td>Pref</td>
<td>Pronoun reference</td>
<td>Rloc</td>
<td>Local redundancy</td>
</tr>
<tr>
<td>Wcip</td>
<td>Wrong collocation/idiom/preposition</td>
<td>Cit</td>
<td>Citation</td>
</tr>
<tr>
<td>Wa</td>
<td>Acronym</td>
<td>Others</td>
<td>Other errors</td>
</tr>
<tr>
<td>Wform</td>
<td>Word form</td>
<td>Um</td>
<td>Unclear meaning</td>
</tr>
<tr>
<td>Wtone</td>
<td>Tone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WAMP

- Writing, Annotation, and Marking Platform (WAMP)
- Online annotation tool developed at the NUS NLP group
- Used to create the NUCLE corpus
Southeast Asia has the oldest and most consistent rainforests on the earth because it is in the equator zone. These forests are very necessary for national economies and for the living of local population in the Southeast Asia. And they are also globally essential requirements in terms of biodiversity and carbon storage. However, they are threatened early as a result of global demand and expanding economies. These direct causes of deforestation and forest degrading are mostly human causes.

One of the serious causes of rainforest destruction in South East Asia is commercial logging. Timber producing countries such as Myanmar and Indonesia log the trees for their countries’ income. For example, in Myanmar, instead of cutting the trees in sustainability level, it is determined based on the foreign currency earning goals. So, this is just the short-term aim of the government rather than long term development to obtain foreign currency. Another thing is that the deforestation also becomes
A Sample Error Annotation

<MI\STEAK start_par="0" start_off="5" end_par="0" end_off="9"> <TYPE>ArtOrDet</TYPE> <CORRECTION>the past</CORRECTION> </MISTAKE>

- **Sentence:**
 - From *past* to the present, ...
 - *past* → *the past*

- **Character offsets**

- **Stand-off annotations, in SGML format**

- **Error annotations automatically mapped to token offsets after pre-processing**
Statistics of NUCLE (version 2.3)

- # essays = 1,397
- # sentences = 57,151
- # word tokens = 1,161,567
- # errors (in all 27 error types) = 45,106
Statistics of Errors in NUCLE

![Error categories graph]

- Number of annotations
CoNLL–2013 Task Definition

- Focus on 5 error types
 - Article or determiner (ArtOrDet)
 - Preposition (Prep)
 - Noun number (Nn)
 - Verb form (Vform)
 - Subject–verb agreement (SVA)

- Test essays still contain all errors, but corrections are made only on these 5 error types
Statistics of Errors in NUCLE

Total number of errors of the 5 types = 15,821
Statistics of Errors in NUCLE

Percentage of Errors Per Type

- ArtOrDet: 42%
- Prep: 24%
- Nn: 15%
- Vform: 9%
- SVA: 10%
Test Data

- 50 new essays written by 25 NUS students (2 essays per student)
- Two prompts: one essay written for each prompt (one new prompt, one used in NUCLE)
- # sentences = 1,381
- # word tokens = 29,207
Two Prompts for the Test Essays

- Surveillance technology such as RFID (radio-frequency identification) should not be used to track people (e.g., human implants and RFID tags on people or products). Do you agree? Support your argument with concrete examples.

- Population aging is a global phenomenon. Studies have shown that the current average life span is over 65. Projections of the United Nations indicate that the population aged 60 or over in developed and developing countries is increasing at 2% to 3% annually. Explain why rising life expectancies can be considered both a challenge and an achievement.
Test Data

- Annotation on test essays carried out by a native speaker of English (a lecturer at the NUS Centre for English Language Communication)
- Time spent on annotation: 25 hours
- Test essays and annotations freely available at the shared task home page:

 http://www.comp.nus.edu.sg/~nlp/conll13st.html
Total number of errors of the 5 types = 1,644
Statistics of Errors in Test Data

Errors of these 5 types account for 47% of all errors in test essays.
Usage of Training Data and Tools

- Shared task participants are free to use other (or additional) corpora or tools, provided that they are publicly available.
Evaluation

- Edits: corrections
- How well the proposed system edits \((e_i)\) match the gold-standard edits \((g_i)\)
- Recall (R), Precision (P), F1 measure

\[
R = \frac{\sum_{i=1}^{n} |g_i \cap e_i|}{\sum_{i=1}^{n} |g_i|}
\]

\[
P = \frac{\sum_{i=1}^{n} |g_i \cap e_i|}{\sum_{i=1}^{n} |e_i|}
\]

\[
F_1 = \frac{2 \times R \times P}{R + P}
\]
Example:

- Original sentence:
 - There is no a doubt, tracking system has brought many benefits.

- Gold-standard edits $g = \{ a \text{ doubt} \rightarrow \text{ doubt}, \text{ system} \rightarrow \text{ systems}, \text{ has} \rightarrow \text{ have} \} $

- Corrected sentence:
 - There is no doubt, tracking system has brought many benefits.

- System edits $e = \{ a \text{ doubt} \rightarrow \text{ doubt} \}$

- $R = 1/3$, $P = 1/1$, $F1 = 1/2$
Anomaly of HOO Scorer

- Original sentence:
 - There is no a doubt, tracking system has brought many benefits.

- Gold-standard edits $g = \{ \text{a doubt} \rightarrow \text{doubt, system} \rightarrow \text{systems, has} \rightarrow \text{have} \}$

- Multiple, equivalent gold-standard edits
 - $\{ \text{a} \rightarrow \epsilon, \text{system} \rightarrow \text{systems, has} \rightarrow \text{have} \}$
 - $\{ \text{a} \rightarrow \epsilon, \text{system has} \rightarrow \text{systems have} \}$

- Corrected sentence:
 - There is no doubt, tracking system has brought many benefits.

- GNU wdiff gives system edits $e = \{ \text{a} \rightarrow \epsilon \}$

- HOO scorer gives erroneous scores: $R = P = F1 = 0$
MaxMatch (M2) scorer (Dahlmeier & Ng, 2012)
Automatically determine the system edits that maximally match the gold-standard edits
Efficiently search for such system edits using an edit lattice
Scorer can be freely downloaded from the shared task home page:
http://www.comp.nus.edu.sg/~nlp/conll13st.html
Participating Teams (17)

<table>
<thead>
<tr>
<th>Team ID</th>
<th>Affiliation</th>
<th>Team ID</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMB</td>
<td>University of Cambridge</td>
<td>STAN</td>
<td>Stanford University</td>
</tr>
<tr>
<td>HIT</td>
<td>Harbin Institute of Technology</td>
<td>STEL</td>
<td>Stellenbosch University</td>
</tr>
<tr>
<td>IITB</td>
<td>Indian Institute of Technology, Bombay</td>
<td>SZEG</td>
<td>University of Szeged</td>
</tr>
<tr>
<td>KOR</td>
<td>Korea University</td>
<td>TILB</td>
<td>Tilburg University</td>
</tr>
<tr>
<td>NARA</td>
<td>Nara Institute of Science and Technology</td>
<td>TOR</td>
<td>University of Toronto</td>
</tr>
<tr>
<td>NTHU</td>
<td>National Tsing Hua University</td>
<td>UAB</td>
<td>Universitat Autònoma de Barcelona</td>
</tr>
<tr>
<td>SAAR</td>
<td>Saarland University</td>
<td>UIUC</td>
<td>University of Illinois at Urbana-Champaign</td>
</tr>
<tr>
<td>SJT1</td>
<td>Shanghai Jiao Tong University (Team #1)</td>
<td>UMC</td>
<td>University of Macau</td>
</tr>
<tr>
<td>SJT2</td>
<td>Shanghai Jiao Tong University (Team #2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asia: 8
Europe/Africa: 6
North America: 3
Alternative Annotations

- Nature of grammatical error correction:
 - Multiple, different corrections are often acceptable
- Allow participants to raise their disagreement with the original gold-standard annotations
- Prevent under-estimation of performance
- Similar to HOO 2011 & HOO 2012
- Extend M2 scorer to deal with multiple alternative gold-standard annotations
Five teams (NTHU, STEL, TOR, UIUC, UMC) submitted alternative answers.

The same annotator who provided the original gold-standard annotations judged the alternative answers proposed (time spent: 17 hours).

F1 scores of all teams improve when evaluated with alternative answers.
System Scores without Alternative Answers

![Bar chart showing scores for various teams with categories R, P, F1](chart.png)
System Scores with Alternative Answers

![Bar chart showing scores for different teams with indicators for precision (P), recall (R), and F1 score. Teams include UIUC, NTHU, UMC, NARA, HIT, STEL, CAMB, SJT1, TOR, IITB, STAN, KOR, TILB, SZEG, UAB, SAAR, SJT2.](chart.png)
Article/Determiner Errors

- UIUC
- HIT
- NTHU
- NARA
- UMC
- SJT1
- CAMB
- STEL
- TOR
- KOR
- STAN
- TILB
- IITB
- SAAR
- SIEG
- SJT2
- UAB

F1 Score

- without alternatives
Preposition Errors

![Bar chart showing F1 scores for different teams. The chart indicates that NARA has the highest score, followed by STEL, NTHU, UIUC, TILB, CAMB, HIT, UMC, TOR, SIT1, and STAN, with KOR and SJT2 having the lowest scores. The legend states that the bars represent 'without alternatives'.]
Noun Number Errors

Team

UIUC
NTHU
STEL
UMC
NARA
HIT
SJT1
IITB
CAMB
SZEG
KOR
TILB
STAN
TOR
SJT2
UAB

F1 Score

without alternatives
Verb Form/Subject–Verb Agreement Errors

![Bar chart showing F1 scores for different teams. The chart indicates the percentage of errors for each team, with UIUC having the highest error rate and SJT2 having the lowest. The chart is color-coded blue, with a legend indicating "without alternatives."
Expanded set of error types
- Noun number, verb form, subject–verb agreement
- Fix the scoring anomaly with HOO scorer
- Test data freely available for future comparative evaluation
Approaches

- A great variety of approaches
- Modeled as a classification task
 - One classifier per error type, e.g.,
 - Article: noun phrase → a/an, the, ε
 - Noun number: noun → singular, plural
 - Classifier can be:
 - Handcrafted rules
 - Learned from examples
 - Hybrid
- 11 teams adopted this approach
Approaches

- Modeled as machine translation
 - Translate from “bad English” to “good English”
 - Cambridge, Stellenbosch, Toronto

- Language modeling approach
 - National Tsing Hua University

- Combination of learned classifier, machine translation, and language modeling
 - Nara Institute of Science & Technology
Linguistic Features

- Lexical features (words, collocations, n-grams)
- Parts-of-speech
- Constituency parses
- Dependency parses
- Semantic features (semantic role labels)
External Resources

- Cambridge Learner Corpus
- CMU Pronouncing Dictionary
- Europarl
- Gigaword
- Google Web 1T
- Lang–8
- Longman Dictionary
- Penn Treebank
- Wikipedia
- Wiktionary
- WordNet
- ...

...
A Beam–Search Decoder for GEC

- Dahlmeier & Ng, EMNLP 2012

- Grammatical error correction: viewed as translation (decoding) from “bad English” to “good English”
- Hypothesis (h): a revised sentence with one additional correction (edit) made

- Beam–search decoder:

 While beam not empty & not max iterations do
 Propose new hypotheses // proposers
 Compute expert scores // experts
 Compute overall hypotheses scores // decoder model
 Prune hypotheses in beam
A Beam–Search Decoder for GEC

- **Proposers**
 - Generate new hypotheses by making an incremental change (one correction/edit)

- **Experts**
 - Score hypotheses on particular aspects of grammaticality

- **Decoder model**
 - Combine evidence from experts into an overall score for each hypothesis

- **A modular architecture that allows easy addition of new error types**
Proposers

- **Article**: Change the article (a/an, the, empty article ε) of each noun phrase (NP)
- **Preposition**: Change the preposition of each prepositional phrase (PP)
- **Noun number**: Change singular to plural noun or vice versa
Experts
- Language model expert: compute the normalized n-gram language model score of a hypothesis
- Article expert: compute the score of the article chosen for an NP in a hypothesis
- Preposition expert: compute the score of the preposition chosen for a PP in a hypothesis
- Noun number expert: compute the score of the noun form (singular/plural) chosen for a noun in a hypothesis

Article/Preposition/Noun number expert is a linear classifier based on features like n-grams, POS tags, chunks, web-scale N-gram counts, & dependency parse trees in the neighboring context of an article/preposition/noun
A Beam–Search Decoder for GEC

Decoder model

- Compute features of each hypothesis h:
 - Language model expert:
 - \(\text{score}_{lm} = \frac{1}{|h|} \log P(h) \)
 - Article/preposition/noun number expert:
 - Average score: \(\text{score}_{avg} = \frac{1}{n} \sum_{i=1}^{n} (u^T f(x_i^h, y_i^h)) \)
 - Delta score: \(\text{score}_{delta} = \max_{i,y} (u^T f(x_i^h, y) - u^T f(x_i^h, y_i^h)) \)
 - Correction count features (count)
 - Count how often each correction has been made in h
A Beam–Search Decoder for GEC

- Decoder model

 \[g(h) = \left(\begin{array}{c} \text{score}_{lm} \\ \text{score}_{avg} \\ \text{score}_{delta} \\ \text{count} \\ \vdots \end{array} \right) \]

 - Linear combination of features of h into an overall score \(s = w^T g(h) \)
 - Optimize weight vector \(w \) with PRO (pairwise ranking optimization) to maximize F1 score on development set
A Beam–Search Decoder for GEC

Evaluation on HOO 2011 test set (Dahlmeier & Ng, EMNLP 2012):

<table>
<thead>
<tr>
<th>System</th>
<th>F1 (M2 scorer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIUC (top team)</td>
<td>17.59</td>
</tr>
<tr>
<td>Pipeline</td>
<td>20.67</td>
</tr>
<tr>
<td>Beam–search decoder</td>
<td>23.48</td>
</tr>
</tbody>
</table>

Evaluation on CoNLL–2013 test set also shows that the beam–search decoder performs as well as the best participating system.
Open Research Issues

- Much work remains to be done!
 - State-of-the-art performance: 31% recall, 62% precision

- Statistical approaches have potential to significantly outperform a hand-crafted rule-based approach
 - “Big Data” movement: Exploit very large corpora
 - To learn a language well, we need to be exposed to the language
 - a la statistical machine translation (SMT outperforms hand-crafted rule-based MT)
Open Research Issues

- Expand the error types dealt with
- Efficiently search for the best corrections
- Upper bound of human agreement
 - Far from 100%
 - Not all errors are equal
- Trade-off between precision and recall
- ...

60
Conclusion

- Resurgence of a somewhat neglected field
- Performance of grammatical error correction may see significant improvements in the near future
- A difficult task that has far-reaching real-world impact