
ACL 2014

52nd Annual Meeting of the
Association for Computational Linguistics

TACL Papers

June 23-25, 2014
Baltimore, Maryland, USA

c©2014 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Table of Contents

Training Deterministic Parsers with Non-Deterministic Oracles
Yoav Goldberg and Joakim Nivre . 1

Joint Incremental Disfluency Detection and Dependency Parsin
Matthew Honnibal and Mark Johnson . 13

A Crossing-Sensitive Third-Order Factorization for Dependency Parsing
Emily Pitler . 25

Exploring the Role of Stress in Bayesian Word Segmentation using Adaptor Grammars
Benjamin Börschinger and Mark Johnson . 39

FLORS: Fast and Simple Domain Adaptation for Part-of-Speech Tagging
Tobias Schnabel and Hinrich Schütze . 51

A Tabular Method for Dynamic Oracles in Transition-Based Parsing
Yoav Goldberg, Francesco Sartorio and Giorgio Satta . 63

Temporal Annotation in the Clinical Domain
William Styler, Steven Bethard, Sean Finan, Martha Palmer, Sameer Pradhan, Piet C de Groen,

Brad Erickson, Timothy Miller, Chen Lin, Guergana Savova and James Pustejovsky.75

Entity Linking meets Word Sense Disambiguation: a Unified Approach
Andrea Moro, Alessandro Raganato and Roberto Navigli . 87

Data-Driven Metaphor Recognition and Explanation
Hongsong Li, Kenny Q. Zhu and Haixun Wang . 101

Grounded Compositional Semantics for Finding and Describing Images with Sentences
Richard Socher, Andrej Karpathy, Quoc V. Le, Christopher Manning and Andrew Ng 113

Parallel Algorithms for Unsupervised Tagging
Sujith Ravi, Sergei Vassilivitskii and Vibhor Rastogi . 125

Heterogeneous Networks and Their Applications: Scientometrics, Name Disambiguation, and Topic
Modeling

Ben King, Rahul Jha and Dragomir R. Radev . 139

Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut
Nathan Schneider, Emily Danchik, Chris Dyer and Noah A. Smith . 153

Segmentation for Efficient Supervised Language Annotation with an Explicit Cost-Utility Tradeoff
Matthias Sperber, Mirjam Simantzik, Graham Neubig, Satoshi Nakamura and Alex Waibel . . . 167

The Language Demographics of Amazon Mechanical Turk
Ellie Pavlick, Matt Post, Ann Irvine, Dmitry Kachaev and Chris Callison-Burch 179

Cross-lingual Projected Expectation Regularization for Weakly Supervised Learning
Mengqiu Wang and Christopher Manning . 193

Back to Basics for Monolingual Alignment: Exploiting Word Similarity and Contextual Evidence
Md Arafat Sultan, Steven Bethard and Tamara Sumner . 205

iii

From image descriptions to visual denotations: New similarity metrics for semantic inference over event
descriptions

Peter Young, Alice Lai, Micah Hodosh and Julia Hockenmaier . 217

Senti-LSSVM: Sentiment-Oriented Multi-Relation Extraction with Latent Structural SVM
Lizhen Qu, Yi Zhang, Rui Wang, Lili Jiang, Rainer Gemulla and Gerhard Weikum 229

iv

Conference Program

18:00–21:00 Welcome Reception

Monday, June 23, 2014

7:30–18:00 Registration

7:30–9:00 Breakfast

8:55–9:00 Opening session

9:00–9:40 President talk

9:40–10:10 Coffee break

Session 1A: Discourse, Dialogue, Coreference and Pragmatics

Session 1B: Semantics I

Session 1C: Machine Translation I

Session 1D: Syntax, Parsing, and Tagging I

10:10–10:35 Training Deterministic Parsers with Non-Deterministic Oracles
Yoav Goldberg and Joakim Nivre

10:35–11:00 Joint Incremental Disfluency Detection and Dependency Parsin
Matthew Honnibal and Mark Johnson

11:25–11:50 A Crossing-Sensitive Third-Order Factorization for Dependency Parsing
Emily Pitler

v

Monday, June 23, 2014 (continued)

Session 1E: NLP for the Web and Social Media I

11:50–13:20 Lunch break; Student Lunch

Session 2A: Syntax, Parsing and Tagging II

Session 2B: Semantics II

Session 2C: Word Segmentation and POS Tagging

13:30–13:45 Exploring the Role of Stress in Bayesian Word Segmentation using Adaptor Grammars
Benjamin Börschinger and Mark Johnson

14:10–14:35 FLORS: Fast and Simple Domain Adaptation for Part-of-Speech Tagging
Tobias Schnabel and Hinrich Schütze

Session 2D: SRW

Session 2E: Sentiment Analysis I

15:00–15:30 Coffee break

Session 3A: Topic Modeling

Session 3B: Information Extraction I

vi

Monday, June 23, 2014 (continued)

Session 3C: Generation

Session 3D: Syntax, Parsing and Tagging III

15:30–15:55 A Tabular Method for Dynamic Oracles in Transition-Based Parsing
Yoav Goldberg, Francesco Sartorio and Giorgio Satta

Session 3E: Language Resources and Evaluation I

16:20–16:45 Temporal Annotation in the Clinical Domain
William Styler, Steven Bethard, Sean Finan, Martha Palmer, Sameer Pradhan, Piet C de
Groen, Brad Erickson, Timothy Miller, Chen Lin, Guergana Savova and James Puste-
jovsky

16:45–17:00 Break

17:00–18:00 Invited talk I: Corinna Cortes

Oral Sessions for Student Research Workshop Posters

18:50–21:30 Poster and Dinner Session I: TACL Papers, Long Papers, Short Papers, Student Research
Workshop; Demonstrations

Entity Linking meets Word Sense Disambiguation: a Unified Approach
Andrea Moro, Alessandro Raganato and Roberto Navigli

Data-Driven Metaphor Recognition and Explanation
Hongsong Li, Kenny Q. Zhu and Haixun Wang

Grounded Compositional Semantics for Finding and Describing Images with Sentences
Richard Socher, Andrej Karpathy, Quoc V. Le, Christopher Manning and Andrew Ng

Parallel Algorithms for Unsupervised Tagging
Sujith Ravi, Sergei Vassilivitskii and Vibhor Rastogi

Heterogeneous Networks and Their Applications: Scientometrics, Name Disambiguation,
and Topic Modeling
Ben King, Rahul Jha and Dragomir R. Radev

Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut
Nathan Schneider, Emily Danchik, Chris Dyer and Noah A. Smith

vii

Tuesday, June 24, 2014

7:30–18:00 Registration

7:30–9:00 Breakfast

9:00–10:00 Invited talk II: Zoran Popovic

10:00–10:30 Coffee break

Session 4A: Machine Learning for NLP

Session 4B: Information Extraction II

Session 4C: Machine Translation II

Session 4D: Summarization

Session 4E: Language Resources and Evaluation II

10:30–10:55 Segmentation for Efficient Supervised Language Annotation with an Explicit Cost-Utility
Tradeoff
Matthias Sperber, Mirjam Simantzik, Graham Neubig, Satoshi Nakamura and Alex Waibel

11:45–12:10 The Language Demographics of Amazon Mechanical Turk
Ellie Pavlick, Matt Post, Ann Irvine, Dmitry Kachaev and Chris Callison-Burch

12:10–13:30 Lunch break

viii

Tuesday, June 24, 2014 (continued)

Session 5A: Question Answering

Session 5B: Information Extraction III

Session 5C: Lexical Sematics and Ontology I

Session 5D: Syntax, Parsing and Tagging IV

14:20–14:45 Cross-lingual Projected Expectation Regularization for Weakly Supervised Learning
Mengqiu Wang and Christopher Manning

Session 5E: Cognitive Modeling and Psycholinguistics

14:45–15:15 Coffee break

Session 6A: Machine Translation III

Session 6B: Lexical Semantics and Ontology II

Session 6C: Generation/Summarization/Dialogue

Session 6D: NLP Applications and NLP Enabled Technology I

Session 6E: Language Resources and Evaluation III

16:50–19:20 Poster and Dinner Session II: Long Papers, Short Papers and Demonstrations in Grand
BallroomI/II/III/IV/V/VI/VII/VIII

19:30–22:00 Social at the National Aquarium in Baltimore

ix

Wednesday, June 25, 2014

7:30–18:00 Registration

7:30–9:00 Breakfast

Best paper session

10:15–10:45 Coffee break

Session 7A: Multimodal NLP/ Lexical Semantics

10:45–11:10 Back to Basics for Monolingual Alignment: Exploiting Word Similarity and Contextual
Evidence
Md Arafat Sultan, Steven Bethard and Tamara Sumner

12:00–12:25 From image descriptions to visual denotations: New similarity metrics for semantic infer-
ence over event descriptions
Peter Young, Alice Lai, Micah Hodosh and Julia Hockenmaier

Session 7B: Semantics III

Session 7C: Machine Translation IV

Session 7D: NLP Applications and NLP Enabled Technology II

Session 7E: Sentiment Analysis II

10:45–11:10 Senti-LSSVM: Sentiment-Oriented Multi-Relation Extraction with Latent Structural SVM
Lizhen Qu, Yi Zhang, Rui Wang, Lili Jiang, Rainer Gemulla and Gerhard Weikum

12:25–13:30 Lunch break

13:30–15:00 ACL Business Meeting

x

Wednesday, June 25, 2014 (continued)

Session 8A: NLP for the Web and Social Media II

Session 8B: Semantics/Information Extraction

Session 8C: Machine Translation V

Session 8D: Syntax, Parsing, and Tagging V

Session 8E: Multilinguality and Multimodal NLP

16:30–17:00 Coffee break

17:00–18:30 Lifetime Achievement Award

18:30–19:00 Closing session

xi

Training Deterministic Parsers with Non-Deterministic Oracles

Yoav Goldberg
Bar-Ilan University

Department of Computer Science
Ramat-Gan, Israel

yoav.goldberg@gmail.com

Joakim Nivre
Uppsala University

Department of Linguistics and Philology
Uppsala, Sweden

joakim.nivre@lingfil.uu.se

Abstract

Greedy transition-based parsers are very fast
but tend to suffer from error propagation. This
problem is aggravated by the fact that they are
normally trained using oracles that are deter-
ministic and incomplete in the sense that they
assume a unique canonical path through the
transition system and are only valid as long as
the parser does not stray from this path. In
this paper, we give a general characterization
of oracles that are nondeterministic and com-
plete, present a method for deriving such ora-
cles for transition systems that satisfy a prop-
erty we call arc decomposition, and instanti-
ate this method for three well-known transi-
tion systems from the literature. We say that
these oracles are dynamic, because they allow
us to dynamically explore alternative and non-
optimal paths during training – in contrast to
oracles that statically assume a unique optimal
path. Experimental evaluation on a wide range
of data sets clearly shows that using dynamic
oracles to train greedy parsers gives substan-
tial improvements in accuracy. Moreover, this
improvement comes at no cost in terms of
efficiency, unlike other techniques like beam
search.

1 Introduction

Greedy transition-based parsers are easy to imple-
ment and are very efficient, but they are generally
not as accurate as parsers that are based on global
search (McDonald et al., 2005; Koo and Collins,
2010) or as transition-based parsers that use beam
search (Zhang and Clark, 2008) or dynamic pro-
gramming (Huang and Sagae, 2010; Kuhlmann et

al., 2011). This work is part of a line of research
trying to push the boundaries of greedy parsing and
narrow the accuracy gap of 2–3% between search-
based and greedy parsers, while maintaining the ef-
ficiency and incremental nature of greedy parsers.

One reason for the lower accuracy of greedy
parsers is error propagation: once the parser makes
an error in decoding, more errors are likely to fol-
low. This behavior is closely related to the way in
which greedy parsers are normally trained. Given
a treebank oracle, a gold sequence of transitions is
derived, and a predictor is trained to predict transi-
tions along this gold sequence, without considering
any parser state outside this sequence. Thus, once
the parser strays from the golden path at test time,
it ventures into unknown territory and is forced to
react to situations it has never been trained for.

In recent work (Goldberg and Nivre, 2012), we
introduced the concept of a dynamic oracle, which
is non-deterministic and not restricted to a single
golden path, but instead provides optimal predic-
tions for any possible state the parser might be in.
Dynamic oracles are non-deterministic in the sense
that they return a set of valid transitions for a given
parser state and gold tree. Moreover, they are well-
defined and optimal also for states from which the
gold tree cannot be derived, in the sense that they
return the set of transitions leading to the best tree
derivable from each state. We showed experimen-
tally that, using a dynamic oracle for the arc-eager
transition system (Nivre, 2003), a greedy parser can
be trained to perform well also after incurring a mis-
take, thus alleviating the effect of error propagation
and resulting in consistently better parsing accuracy.

403

Transactions of the Association for Computational Linguistics, 1 (2013) 403–414. Action Editor: Jason Eisner.
Submitted 6/2013; Published 10/2013. c©2013 Association for Computational Linguistics.

In this paper, we extend the work of Goldberg
and Nivre (2012) by giving a general characteri-
zation of dynamic oracles as oracles that are non-
deterministic, in that they return sets of transitions,
and complete, in that they are defined for all possible
states. We then define a formal property of transition
systems which we call arc decomposition, and in-
troduce a framework for deriving dynamic oracles
for arc-decomposable systems. Using this frame-
work, we derive novel dynamic oracles for the hy-
brid (Kuhlmann et al., 2011) and easy-first (Gold-
berg and Elhadad, 2010) transition systems, which
are arc-decomposable (as is the arc-eager system).
We also show that the popular arc-standard system
(Nivre, 2004) is not arc-decomposable, and so deriv-
ing a dynamic oracle for it remains an open research
question. Finally, we perform a set of experiments
on the CoNLL 2007 data sets, validating that the use
of dynamic oracles for exploring states that result
from parsing mistakes during training is beneficial
across transition systems.

2 Transition-Based Dependency Parsing

We begin with a quick review of transition-based
dependency parsing, presenting the arc-eager, arc-
standard, hybrid and easy-first transitions systems
in a common notation. The transition-based pars-
ing framework (Nivre, 2008) assumes a transition
system, an abstract machine that processes sentences
and produces parse trees. The transition system has
a set of configurations and a set of transitions which
are applied to configurations. When parsing a sen-
tence, the system is initialized to an initial configu-
ration based on the input sentence, and transitions
are repeatedly applied to this configuration. After
a finite number of transitions, the system arrives at
a terminal configuration, and a parse tree is read off
the terminal configuration. In a greedy parser, a clas-
sifier is used to choose the transition to take in each
configuration, based on features extracted from the
configuration itself. Transition systems differ by the
way they define configurations, and by the particular
set of transitions available.

2.1 Dependency Trees

We define a dependency tree for a sentence W =
w1, . . . , wn to be a labeled directed tree T = (V,A),

where V = {w1, . . . , wn} is a set of nodes given by
the tokens of the input sentence, andA ⊆ V ×L×V
(for some dependency label set L) is a set of labeled
directed arcs of the form (h, lb, d), where h ∈ V is
said to be the head, d ∈ V the dependent, and lb ∈ L
the dependency label.

When dealing with unlabeled parsing, or when the
label identity is irrelevant, we take A ⊆ V × V to
be a set of ordinary directed arcs of the form (h, d).
Note that, since the nodes of the tree are given by the
input sentence, a dependency tree T = (V,A) for
a sentence W is uniquely defined by the arc set A.
For convenience, we will therefore equate the tree
with the arc set and and use the symbol T for the
latter, reserving the symbol A for arc sets that are
not necessarily trees. In the context of this work it is
assumed that all the dependency trees are projective.

Although the general definition of a dependency
tree does not make any assumptions about which
node is the root of the tree, it is common practice
in dependency parsing to add a dummy node ROOT,
which is prefixed or suffixed to the sentence and
which always acts as the root of the tree. We will
follow this practice in our description of different
transition systems below.

2.2 Transition Systems
Arc-Eager In the arc-eager system (Nivre, 2003),
a configuration c = (σ, β,A) consists of a stack
σ, a buffer β, and a set A of dependency arcs.1

Given a sentence W = w1, . . . , wn, the system
is initialized with an empty stack, an empty arc
set, and β = w1, . . . , wn, ROOT, where ROOT is
the special root node. Any configuration c with an
empty stack and a buffer containing only ROOT is
terminal, and the parse tree is given by the arc set
Ac of c.2 The system has 4 transitions: RIGHTlb,
LEFTlb, SHIFT, REDUCE, defined as follows:

SHIFT[(σ, b|β, A)] = (σ|b, β, A)
RIGHTlb[(σ|s, b|β, A)] = (σ|s|b, β, A ∪ {(s, lb, b)})
LEFTlb[(σ|s, b|β, A)] = (σ, b|β, A ∪ {(b, lb, s)})
REDUCE[(σ|s, β, A)] = (σ, β, A)

1We use σ|x to denote a stack with top element x and re-
mainder σ, and x|β to denote a buffer with a head x followed
by the elements in β.

2This definition of a terminal configuration differs from that
in Nivre (2003) but guarantees that the set Ac is a dependency
tree rooted in ROOT.

404

There is a precondition on the RIGHT and SHIFT

transitions to be legal only when b 6= ROOT, and for
LEFT, RIGHT and REDUCE to be legal only when
the stack is non-empty. Moreover, LEFT is only le-
gal when s does not have a parent inA, and REDUCE

when s does have a parent in A. In general, we use
LEGAL(c) to refer to the set of transitions that are le-
gal in a configuration c. The arc-eager system builds
trees eagerly in the sense that arcs are added at the
earliest time possible. In addition, each word will
collect all of its left dependents before collecting its
right dependents.

Arc-Standard The arc-standard system (Nivre,
2004) has configurations of the same form c =
(σ, β,A) as the arc-eager system. The initial con-
figuration for a sentence W = w1, . . . , wn has an
empty stack and arc set and β = ROOT, w1, . . . , wn.
A configuration c is terminal if it has an empty buffer
and a stack containing the single node ROOT; the
parse tree is given by Ac. The system has 3 transi-
tions: RIGHTlb, LEFTlb, SHIFT, defined as follows:

SHIFT[(σ, b|β, A)] = (σ|b, β, A)
RIGHTlb[(σ|s1|s0, β, A)] = (σ|s1, β, A ∪ {(s1, lb, s0)})
LEFTlb[(σ|s1|s0, β, A)] = (σ|s0, β, A ∪ {(s0, lb, s1)})

There is a precondition on the LEFT transition to
be legal only when s1 6= ROOT, and for LEFT and
RIGHT to be legal only when the stack has at least
two elements. The arc-standard system builds trees
in a bottom-up fashion: each word must collect all
its dependents before being attached to its head. The
system does not pose any restriction with regard to
the order of collecting left and right dependents.

Hybrid The hybrid system (Kuhlmann et al.,
2011) has the same configurations and the same
initialization and termination conditions as the arc-
standard system. The system has 3 transitions:
RIGHTlb, LEFTlb, SHIFT, defined as follows:

SHIFT[(σ, b|β, A)] = (σ|b, β, A)
RIGHTlb[(σ|s1|s0, β, A)] = (σ|s1, β, A ∪ {(s1, lb, s0)})
LEFTlb[(σ|s, b|β, A)] = (σ, b|β, A ∪ {(b, lb, s)})

There is a precondition on RIGHT to be legal only
when the stack has at least two elements, and on
LEFT to be legal only when the stack is non-empty
and s 6= ROOT. The hybrid system can be seen
as a combination of the arc-standard and arc-eager

Algorithm 1 Greedy transition-based parsing
1: Input: sentence W , parameter-vector w
2: c← INITIAL(W)
3: while not TERMINAL(c) do
4: tp ← argmaxt∈LEGAL(c)w · φ(c, t)
5: c← tp(c)

6: return Ac

systems, using the LEFT action of arc-eager and the
RIGHT action of arc-standard. Like arc-standard, it
builds trees in a bottom-up fashion. But like arc-
eager, it requires a word to collect all its left depen-
dents before collecting any right dependent.

Easy-First In the easy-first system (Goldberg and
Elhadad, 2010), a configuration c = (λ,A) consists
of a list λ and a set A of dependency arcs. We use
li to denote the ith member of λ and write |λ| for
the length of λ. Given a sentence W = w1, . . . , wn,
the system is initialized with an empty arc set and
λ = ROOT, w1, . . . , wn. A configuration c is ter-
minal with parse tree Ac if λ = ROOT. The set of
transitions for a given configuration c = (λ,A) is:

{LEFTi
lb|1 < i ≤ |λ|} ∪ {RIGHTi

lb|1 ≤ i < |λ|}, where:
LEFTi

lb[(λ,A)] = (λ \ {li−1}, A ∪ {(li, lb, li−1)})
RIGHTi

lb[(λ,A)] = (λ \ {li+1}, A ∪ {(li, lb, li+1)})

There is a precondition on LEFTi transitions to only
trigger if li−1 6= ROOT. Unlike the arc-eager, arc-
standard and hybrid transition systems that work
in a left-to-right order and access the sentence in-
crementally, the easy-first system is non-directional
and has access to the entire sentence at each step.
Like the arc-standard and hybrid systems, it builds
trees bottom-up.

2.3 Greedy Transition-Based Parsing

Assuming that we have a feature-extraction function
φ(c, t) over configurations c and transitions t and a
weight-vector w assigning weights to each feature,
greedy transition-based parsing is very simple and
efficient using Algorithm 1. Starting in the initial
configuration for a given sentence, we repeatedly
choose the highest-scoring transition according to
our model and apply it, until we reach a terminal
configuration, at which point we stop and return the
parse tree accumulated in the configuration.

405

Algorithm 2 Online training of greedy transition-
based parsers (ith iteration)

1: for sentence W with gold tree T in corpus do
2: c← INITIAL(W)
3: while not TERMINAL(c) do
4: CORRECT(c)← {t | o(t; c, T) = true}
5: tp ← argmaxt∈LEGAL(c)w · φ(c, t)
6: to ← argmaxt∈CORRECT(c)w · φ(c, t)
7: if tp 6∈ CORRECT(c) then
8: UPDATE(w, φ(c, to), φ(c, tp))
9: c← NEXT(c, to)

10: else
11: c← tp(c)

3 Training Transition-Based Parsers

We now turn to the training of greedy transition-
based parsers, starting with a review of the standard
method using static oracles and moving on to the
idea of training with exploration proposed by Gold-
berg and Nivre (2012).

3.1 Training with Static Oracles
The standard approach to training greedy transition-
based parsers is illustrated in Algorithm 2.3 It as-
sumes the existence of an oracle o(t; c, T), which
returns true if transition t is correct for configura-
tion c and gold tree T . Given this oracle, training is
very similar to parsing, but after predicting the next
transition tp using the model in line 5 we check if
it is contained in the set CORRECT(c) of transitions
that are considered correct by the oracle (lines 4 and
7). If the predicted transition tp is not correct, we
update the model parameters w away from tp and
toward the oracle prediction to, which is the highest-
scoring correct transition under the current model,
and move on to the next configuration (lines 7–9). If
tp is correct, we simply apply it and move to tp(c)
without changing the model parameters (line 11).

The function NEXT(c, to) in line 9 is used to
abstract over a subtle difference in the standard
training procedure for the left-to-right systems (arc-
eager, arc-standard and hybrid), on the one hand,

3We present the standard approach as an online algorithm in
order to ease the transition to the novel approach. While some
transition-based parsers use batch learning instead, the essential
point is that they explore exactly the same configurations during
the training phase.

and the easy-first system, on the other. In the former
case, NEXT(c, to) evaluates to to(c), which means
that we apply the oracle transition to and move on
to the next configuration. For the easy-first system,
NEXT(c, to) instead evaluates to c, which means that
we remain in the same configuration for as many up-
dates as necessary to get a correct model prediction.

Traditionally, the oracles for the left-to-right sys-
tems are static: they return a single correct transition
and are only correct for configurations that result
from transitions predicted by the oracle itself. The
oracle for the easy-first system is non-deterministic
and returns a set of correct transitions. However, like
the static oracle, it is correct only for configurations
from which the gold tree is reachable. Thus, in both
cases, we need to make sure that a transition is ap-
plied during training only if it is considered correct
by the oracle; else we cannot guarantee that later or-
acle predictions will be correct. Therefore, on line
9, we either remain in the same configuration (easy-
first) or follow the oracle prediction and go to to(c)
(left-to-right systems); on line 11, we in fact also go
to to(c), because in this case we have tp(c) = to(c).

A notable shortcoming of this training procedure
is that, at parsing time, the parsing model may pre-
dict incorrect transitions and reach configurations
that are not on the oracle path. Since the model has
never seen such configurations during training, it is
likely to perform badly in them, making further mis-
takes more likely. We would therefore like the parser
to encounter configurations resulting from incorrect
transitions during training and learn what constitutes
optimal transitions in such configurations. Unfortu-
nately, this is not possible using the static (or even
the non-deterministic) oracles.

3.2 Training with Exploration

Assuming we had access to an oracle that could tell
us which transitions are optimal in any configura-
tion, including ones from which the gold tree is not
reachable, we could trivially change the training al-
gorithm to incorporate learning on configurations
that result from incorrect transitions, and thereby
mitigate the effects of error propagation at pars-
ing time. Conceptually, all that we need to change
is line 9. Instead of following the prediction tp
only when it is correct (line 11), we could some-
times choose to follow tp also when it is not correct.

406

Algorithm 3 Online training with exploration for
greedy transition-based parsers (ith iteration)

1: for sentence W with gold tree T in corpus do
2: c← INITIAL(W)
3: while not TERMINAL(c) do
4: CORRECT(c)← {t|o(t; c, T) = true}
5: tp ← argmaxt∈LEGAL(c)w · φ(c, t)
6: to ← argmaxt∈CORRECT(c)w · φ(c, t)
7: if tp 6∈ CORRECT(c) then
8: UPDATE(w, φ(c, to), φ(c, tp))
9: c← EXPLOREk,p(c, to, tp, i)

10: else
11: c← tp(c)

1: function EXPLOREk,p(c, to, tp, i)
2: if i > k and RAND() < p then
3: return tp(c)
4: else
5: return NEXT(c, to)

The rest of the training algorithm does not need to
change, as the set CORRECT(c) obtained in line 4
would now include the set of optimal transitions to
take from configurations reached by following the
incorrect transition, as provided by the new oracle.
Following Goldberg and Nivre (2012), we call this
approach learning with exploration. The modified
training procedure is specified in Algorithm 3.

There are three major questions that need to be
answered when implementing a concrete version of
this algorithm:

Exploration Policy When do we follow an incor-
rect transition, and which one do we follow?

Optimality What constitutes an optimal transition
in configurations from which the gold tree is
not reachable?

Oracle Given a definition of optimality, how do
we calculate the set of optimal transitions in a
given configuration?

The first two questions are independent of the spe-
cific transition system. In our experiments, we use
a simple exploration policy, parameterized by an it-
eration number k and a probability p. This policy
always chooses an oracle transition during the first k
iterations but later chooses the oracle transition with

probability 1− p and the (possibly incorrect) model
prediction otherwise. This is defined in the function
EXPLOREk,p(c, to, tp, i) (called in line 9 of Algo-
rithm 3), which takes two additional arguments com-
pared to Algorithm 2: the model prediction tp and
the current training iteration i. If i exceeds the iter-
ation threshold k and if a randomly generated prob-
ability does not exceed the probability threshold p,
then the function returns tp(c), which means that we
follow the (incorrect) model prediction. Otherwise,
it reverts to the old NEXT(c, to) function, returning
c for easy-first and to(c) for the other systems. We
show in Section 5 that the training procedure is rel-
atively insensitive to the choice of k and p values as
long as predicted transitions are chosen often.

Our optimality criterion is directly related to the
attachment score metrics commonly used to evaluate
dependency parsers.4 We say that a transition t is
optimal in a configuration c if and only if the best
achievable attachment score from t(c) is equal to the
best achievable attachment score from c.

The implementation of oracles is specific to
each transition system. In the next section, we
first provide a characterization of complete non-
deterministic oracles, also called dynamic oracles,
which is what we require for the training procedure
in Algorithm 3. We then define a property of tran-
sition systems which we call arc decomposition and
present a general method for deriving complete non-
deterministic oracles for arc-decomposable systems.
Finally, we use this method to derive concrete ora-
cles for the arc-eager, hybrid and easy-first systems,
which are all arc-decomposable. In Section 5, we
then show experimentally that we indeed achieve
better parsing accuracy when using exploration dur-
ing training.

4 Oracles for Transition-Based Parsing

Almost all greedy transition-based parsers described
in the literature are trained using what we call static
oracles. We now make this notion precise and con-
trast it with non-deterministic and complete oracles.
Following the terminology of Goldberg and Nivre

4The labeled attachment score (LAS) is the percentage of
words in a sentence that are assigned both the correct head and
the correct label. The unlabeled attachment score (UAS) is the
percentage of words that are assigned the correct head (regard-
less of label).

407

(2012), we reserve the term dynamic oracles for or-
acles that are both non-deterministic and complete.

4.1 Characterizing Oracles

During training, we assume that the oracle is a
boolean function o(t; c, T), which returns true if
and only if transition t is correct in configuration c
for gold tree T (cf. Algorithms 2–3). However, such
a function may be defined in terms of different un-
derlying functions that we also call oracles.

A static oracle is a function os(T) mapping a
tree T to a sequence of transitions t1, . . . , tn. A
static oracle is correct if starting in the initial con-
figuration and applying the transitions in os(T) in
order results in the transition system reaching a
terminating configuration with parse tree T . For-
mally, a static oracle is correct if and only if, for
every projective dependency tree T with yield W ,
os(T) = t1, . . . , tn, c = tn(. . . (t1(INITIAL(W)))),
TERMINAL(c) and Ac = T .5 When using a static
oracle for training in Algorithm 2, the function
o(t; c, T) returns true if os(T) = t1, . . . , tn, c =
ti−1(. . . (t1(INITIAL(W)))) (for some i, 1 ≤ i ≤ n)
and t = ti. If t 6= ti, o(t; c, T) = false; if c 6=
ti−1(. . . (t1(INITIAL(W)))) (for all i, 1 ≤ i ≤ n),
o(t; c, T) is undefined. A static oracle is therefore
essentially incomplete, because it is only defined for
configurations that are part of the oracle path.6 Static
oracles either allow a single transition at a given con-
figuration, or are undefined for that configuration.

By contrast, a non-deterministic oracle is a func-
tion on(c, T) mapping a configuration c and a tree
T to a set of transitions. A non-deterministic ora-
cle is correct if and only if, for every projective de-
pendency tree T , every configuration c from which
T is reachable, and every transition t ∈ on(c, T),
t(c) is a configuration from which T is still reach-
able. Note that this definition of correctness for
non-deterministic oracles is restricted to configura-
tions from which a goal tree is reachable. Non-

5Since all the transition systems considered in this paper are
restricted to projective dependency trees, we only define cor-
rectness with respect to this class. There are obvious general-
izations that apply to more expressive transition systems.

6Static oracles are usually described as rules over parser
configurations, i.e., “if the configuration is X take transition Y”,
giving the impressions they are functions from configurations
to transitions. However, as explained here, these rules are only
correct if the sequence of transitions is followed in its entirety.

deterministic oracles are more flexible than static
oracles in that they allow for spurious ambiguity:
they support the possibility of different sequences of
transitions leading to the gold tree. However, they
are still only guaranteed to be correct on a subset
of the possible configurations. Thus, when using a
non-deterministic oracle for training in Algorithm 2,
the function o(t; c, T) returns true if T is reachable
from c and t ∈ on(c, T). However, if T is not
reachable from c, o(t; c, T) is not necessarily well-
defined.

A complete non-deterministic oracle is a function
od(c, T) for which this restriction is removed, so that
correctness is defined over all configurations that are
reachable from the initial configuration. Follow-
ing Goldberg and Nivre (2012), we call complete
non-deterministic oracles dynamic. In order to de-
fine correctness for dynamic oracles, we must first
introduce a cost function C(A, T), which measures
the cost of outputting parse A when the gold tree is
T . In this paper, we define cost as Hamming loss
(for labeled or unlabeled dependency arcs), which
is directly related to the attachment score metrics
used to evaluate dependency parsers, but other cost
functions are conceivable. We say that a complete
non-deterministic oracle is correct if and only if,
for every projective dependency tree T with yield
W , every configuration c that is reachable from
INITIAL(W), and every transition t ∈ od(c, T),
minA:c;A C(A, T) = minA:t(c);A C(A, T), where
c ; A signifies that the parse A is reachable from
c, a notion that will be formally defined in the next
subsection. In other words, even if the gold tree T
is no longer reachable itself, the best tree reachable
from t(c) has the same cost as the best tree reachable
from c.

In addition to a cost function for arc sets and trees,
it is convenient to define a cost function for transi-
tions. We define C(t; c, T) to be the difference in
cost between the best tree reachable from t(c) and c,
respectively. That is:

C(t; c, T) = min
A:t(c);A

C(A, T)− min
A:c;A

C(A, T)

A dynamic oracle can then be defined as an oracle
that returns the set of transitions with zero cost:

od(c, T) = {t | C(t;C, T) = 0}

408

4.2 Arc Reachability and Arc Decomposition

We now define the notion of reachability for parses
(or arc sets), used already in the previous subsec-
tion, and relate it to reachability for individual de-
pendency arcs. This enables us to define a prop-
erty of transition systems called arc decomposition,
which is very useful when deriving dynamic oracles.

Arc Reachability We say that a dependency arc
(h, d)7 is reachable from a configuration c, writ-
ten c ; (h, d), if there is a (possibly empty) se-
quence of transitions t1, . . . , tk such that (h, d) ∈
A(tk(...t1(c))). In words, we require a sequence of
transitions starting from c and leading to a configu-
ration whose arc set contains (h, d).

Arc Set Reachability A set of dependency arcs
A = {(h1, d1), . . . , (hn, dn)} is reachable from a
configuration c, written c ; A, if there is a (pos-
sibly empty) sequence of transitions t1, . . . , tk such
that A ⊆ A(tk(...t1(c))). In words, there is a sequence
of transitions starting from c and leading to a config-
uration where all arcs in A have been derived.

Tree Consistency A set of arcsA is said to be tree
consistent if there exists a projective dependency
tree T such that A ⊆ T .

Arc Decomposition A transition system is said to
be arc decomposable if, for every tree consistent arc
set A and configuration c, c; A is entailed by c;
(h, d) for every arc (h, d) ∈ A. In words, if every
arc in a tree consistent arc set is reachable from a
configuration, then the entire arc set is also reachable
from that configuration.

Arc decomposition is a powerful property, allowing
us to reduce reasoning about the reachability of arc
sets or trees to reasoning about the reachability of
individual arcs, and will later use this property to
derive dynamic oracles for the arc-eager, hybrid and
easy-first systems.

7We consider unlabeled arcs here in order to keep notation
simple. Everything is trivially extendable to the labeled case.

4.3 Proving Arc Decomposition

Let us now sketch how arc decomposition can be
proven for the transition systems in consideration.

Arc-Eager For the arc-eager system, consider an
arbitrary configuration c = (σ, β,A) and a tree-
consistent arc set A′ such that all arcs are reachable
from c. We can partition A′ into four sets, each of
which is by necessity itself a tree-consistent arc-set:

(1) B = {(h, d) |h, d 6∈ β}
(2) B = {(h, d) |h, d ∈ β}
(3) Bh = {(h, d) |h ∈ β, d ∈ σ}
(4) Bd = {(h, d) | d ∈ β, h ∈ σ}

Arcs in B are already in A and cannot interfere with
other arcs. B is reachable by any sequence of transi-
tions that derives a tree consistent with B for a sen-
tence containing only the words in β. In deriving
this tree, every node x involved in some arc in Bh or
Bd must at least once be at the head of the buffer.
Let cx be the first such configuaration. From cx,
every arc (x, d) ∈ Bh can be derived without in-
terfering with arcs in A′ by a sequence of REDUCE

and LEFT-ARClb transitions. This sequence of tran-
sitions will trivially not interfere with other arcs in
Bh. Moreover, it will not interfere with arcs in Bd
becauseA′ is tree consistent and projectivity ensures
that an arc of the form (y, z) (y ∈ σ, z ∈ β) must
satisfy y < d < x ≤ z. Finally, it will not inter-
fere with arcs in B because the buffer remains un-
changed. After deriving every arc (x, d) ∈ Bh, we
remain with at most one (h, x) ∈ Bd (because of
the single-head constraint). By the same reasoning
as above, a sequence of REDUCE and LEFT-ARClb

transitions will take us to a configuration where h
is on top of the stack without interfering with arcs
in A′. We can then derive the arc (h, x) using
RIGHT-ARClb. This does not interfere with arcs re-
maining in Bh or Bd because all such arcs must have
their buffer node further down the buffer (due to pro-
jectivity). At this point, we have reached a configu-
ration cx+1 to which the same reasoning applies for
the next node x+ 1.

Hybrid The proof for the hybrid system is very
similar but with a slightly different partitioning be-
cause of the bottom-up order and the different way
of handling right-arcs.

409

Easy-First For the easy-first system, we only need
to partition arcs into L = {(h, d) | d 6∈ λ} and L =
{(h, d) |h, d ∈ λ}. The former must already be in
A, and for the latter there can be no conflict between
arcs as long as we respect the bottom-up ordering.

Arc-Standard Unfortunately, arc decomposition
does not hold for the arc-standard system. To see
why, consider a configuration with the stack σ =
a, b, c. The arc (c, b) is reachable via LEFT, the
arc (b, a) is reachable via RIGHT, LEFT, the arc set
A = {(c, b), (b, a)} forms a projective tree and is
thus tree consistent, but it is easy to convince oneself
that A is not reachable from this configuration. The
reason that the above proof technique fails for the
arc-standard system is that the arc set correspond-
ing to B in the arc-eager system may involve arcs
where both nodes are still on the stack, and we can-
not guarantee that all projective trees consistent with
these arcs can be derived. In the very similar hybrid
system, such arcs exist as well but they are limited to
arcs of the form (h, d) where h < d and h and d are
adjacent on the stack, and this restriction is sufficient
to restore arc decomposition.

4.4 Deriving Oracles

We now present a procedure for deriving a dynamic
oracle for any arc-decomposable system. First of all,
we can define a non-deterministic oracle as follows:

on(c, T) = {t | t(c) ; T}

That is, we allow all transitions after which the goal
tree is still reachable. Note that if c ; T holds,
then the set returned by the oracle is guaranteed to
be non-empty. For a sound and complete transition
system, we know that INITIAL(W) ; T for any
projective dependency tree with yieldW , and the or-
acle is guaranteed to return a non-empty set as long
as we are not in the terminal configuration and have
followed transitions suggested by the oracle.

In order to extend the non-deterministic oracle to
a dynamic oracle, we make use of the transition cost
function introduced earlier:

od(c, T) = {t | C(t; c, T) = 0}

As already mentioned, we assume here that the cost
is the difference in Hamming loss between the best

tree reachable before and after the transition.8 As-
suming arc decomposition, this is equivalent to the
number of gold arcs that are reachable before but not
after the transition. For configurations from which
T is reachable, the dynamic oracle coincides with
the non-deterministic oracle. But for configurations
from which T cannot be derived, the dynamic ora-
cle returns transitions leading to the best parse A (in
terms of Hamming distance from T) which is reach-
able from c. This is the behavior expected from a
dynamic oracle, as defined in Section 4.1.

Thus, in order to derive a dynamic oracle for an
arc-decomposable transition system, it is sufficient
to show that the transition cost function C(t; c, T)
can be computed efficiently for that system.9 Next
we show how to do this for the arc-eager, hybrid and
easy-first systems.

4.5 Concrete Oracles

In a given transition system, the set of individually
reachable arcs is relatively straightforward to com-
pute. In an arc-decomposable system, we know that
any intersection of the set of individually reachable
arcs with a projective tree is tree consistent, and
therefore also reachable. In particular, this holds for
the goal tree. For such systems, we can therefore
compute the transition cost by intersecting the set of
arcs that are individually reachable from a config-
uration with the goal arc set, and see how a given
transition affects this set of reachable arcs.

Arc-Eager In the arc-eager system, an arc (h, d)
is reachable from a configuration c if one of the
following conditions hold:

(1) (h, d) is already derived ((h, d) ∈ Ac);
(2) h and d are in the buffer;
(3) h is on the stack and d is in the buffer;
(4) d is on the stack and is not assigned a head

and h is in the buffer.

8The framework is easily adapted to a different cost function
such as weighted Hamming cost, where different gold arcs are
weighted differently.

9In fact, in order to use the dynamic oracle with our current
learning algorithm, we do not need the full power of the cost
function: it is sufficient to distinguish between transitions with
zero cost and transitions with non-zero cost.

410

The cost function for a configuration of the form c =
(σ|s, b|β,A)10 can be calculated as follows:11

• C(LEFT; c, T): Adding the arc (b, s) and pop-
ping s from the stack means that s will not be
able to acquire any head or dependents in β.
The cost is therefore the number of arcs in T
of the form (k, s) or (s, k) such that k ∈ β.
Note that the cost is 0 for the trivial case where
(b, s) ∈ T , but also for the case where b is not
the gold head of s but the real head is not in
β (due to an erroneous previous transition) and
there are no gold dependents of s in β.

• C(RIGHT; c, T): Adding the arc (s, b) and
pushing b onto the stack means that b will not
be able to acquire any head in σ or β, nor any
dependents in σ. The cost is therefore the num-
ber of arcs in T of the form (k, b), such that
k ∈ σ ∪ β, or of the form (b, k) such that
k ∈ σ and there is no arc (x, k) in Ac. Note
again that the cost is 0 for the trivial case where
(s, b) ∈ T , but also for the case where s is not
the gold head of b but the real head is not in σ
or β (due to an erroneous previous transition)
and there are no gold dependents of b in σ.

• C(REDUCE; c, T): Popping s from the stack
means that s will not be able to acquire any de-
pendents in B = b|β. The cost is therefore the
number of arcs in T of the form (s, k) such that
k ∈ B. While it may seem that a gold arc of
the form (k, s) should be accounted for as well,
note that a gold arc of that form, if it exists, is
already accounted for by a previous (erroneous)
RIGHT transition when s acquired its head.

• C(SHIFT; c, T): Pushing b onto the stack means
that b will not be able to acquire any head or
dependents in S = s|σ. The cost is therefore
the number of arcs in T of the form (k, b) or
(b, k) such that k ∈ S and (for the second case)
there is no arc (x, k) in Ac.

10This is a slight abuse of notation, since for the SHIFT tran-
sition s may not exist, and for the REDUCE transition b may not
exist.

11While very similar to the presentation in Goldberg and
Nivre (2012), this version includes a small correction to the
RIGHT and SHIFT transitions.

Hybrid In the hybrid system, an arc (h, d) is
reachable from a configuration c if one of the fol-
lowing conditions holds:

(1) (h, d) is already derived ((h, d) ∈ Ac);
(2) h and d are in the buffer;
(3) h is on the stack and d is in the buffer;
(4) d is on the stack and h is in the buffer;
(5) d is in stack location i, h is in stack loca-

tion i − 1 (that is, the stack has the form
σ = . . . , h, d, . . .).

The cost function for a configuration of the form
c = (σ|s1|s0, b|β,A)12 can be calculated as follows:

• C(LEFT; c, T): Adding the arc (b, s0) and pop-
ping s0 from the stack means that s0 will not
be able to acquire heads from H = {s1} ∪ β
and will not be able to acquire dependents from
D = {b} ∪ β. The cost is therefore the number
of arcs in T of the form (s0, d) and (h, s0) for
h ∈ H and d ∈ D.

• C(RIGHT; c, T): Adding the arc (s1, s0) and
popping s0 from the stack means that s0 will
not be able to acquire heads or dependents from
B = {b} ∪ β. The cost is therefore the number
of arcs in T of the form (s0, d) and (h, s0) for
h, d ∈ B.

• C(SHIFT; c, T): Pushing b onto the stack means
that b will not be able to acquire heads from
H = {s1} ∪ σ, and will not be able to acquire
dependents from D = {s0, s1} ∪ σ. The cost
is therefore the number of arcs in T of the form
(b, d) and (h, b) for h ∈ H and d ∈ D.

Easy-First In the easy-first system, an arc (h, d)
is reachable from a configuration c if one of the fol-
lowing conditions holds:

(1) (h, d) is already derived ((h, d) ∈ Ac);
(2) h and d are in the list λ.

When adding an arc (h, d), d is removed from the
list λ and cannot participate in any future arcs. Thus,
a transition has a cost > 0 with respect to a tree T if
one of the following holds:

12Note again that s0 may be missing in the case of SHIFT

case and s1 in the case of SHIFT and LEFT.

411

0 .3 .6 .9

0
1
2
3
4
5

arabic

81.62 83.88

0 .3 .6 .9

0
1
2
3
4
5

basque

75.19 76.18

0 .3 .6 .9

0
1
2
3
4
5

catalan

91.24 92.10

0 .3 .6 .9

0
1
2
3
4
5

chinese

84.84 85.89

0 .3 .6 .9

0
1
2
3
4
5

czech

79.03 80.37

0 .3 .6 .9

0
1
2
3
4
5

english

86.29 88.69

0 .3 .6 .9

0
1
2
3
4
5

greek

79.36 81.19

0 .3 .6 .9

0
1
2
3
4
5

hungarian

76.35 77.58

0 .3 .6 .9

0
1
2
3
4
5

italian

84.01 84.51

0 .3 .6 .9

0
1
2
3
4
5

turkish

77.02 77.67

Figure 1: Effect of k (y axis) and p (x axis) values on parsing accuracies for the arc-eager system on the various
CoNLL-2007 shared-task languages. Each point is an average UAS of 5 runs with different seeds. The general trend
is that smaller k and higher p are better.

(1) it adds an arc (h, d) such that (h′, d) ∈ T
for some h′ ∈ λ, h′ 6= h;

(2) it adds an arc (h, d) such that (d, d′) ∈ T
for some d′ ∈ λ.

The exact cost can be calculated by counting the
number of such arcs.

5 Experiments and Results

Setup, data and parameters The goal of our ex-
periments is to evaluate the utility of the dynamic
oracles for training, by comparing a training sce-
nario which only sees configurations that can lead
to the gold tree (following a static oracle for the
left-to-right systems and a non-deterministic but in-
complete oracle for the easy-first system), against a
training scenario that involves exploration of incor-
rect states, using the dynamic oracles.

As our training algorithm involves a random com-
ponent (we shuffle the sentences prior to each itera-
tion, and randomly select whether to follow a cor-
rect or incorrect action), we evaluate each setup five
times using different random seeds, and report the
averaged results.

We perform all of the experiments on the multi-
lingual CoNLL-2007 data sets. We use 15 training
iterations for the left-to-right parsers, and 20 training
iterations for the easy-first parser. We use the stan-
dard perceptron update as our update rule in training,
and use the averaged weight vector for prediction in
test time. The feature sets differ by transition sys-
tem but are kept the same across data sets. The ex-

act feature-set definitions for the different systems
are available in the accompanying software, which
is available on line at the first author’s homepage.

Effect of exploration parameters In an initial set
of experiments, we investigate the effect of the ex-
ploration parameters k and p on the arc-eager sys-
tem. The results are presented in Figure 1. While the
optimal parameters vary by data set, there is a clear
trend toward lower values of k and higher values of
p. This is consistent with the report of Goldberg and
Nivre (2012) who used a fixed small value of k and
large value of p throughout their experiments.

Training with exploration for the various systems
For the second experiment, in which we compared
training with a static oracle to training with explo-
ration, we fixed the exploration parameters to k = 1
and p = 0.9 for all data sets and transition-system
combinations. The results in terms of labeled accu-
racies (for the left-to-right systems) and unlabeled
accuracies (for all systems) are presented in Table 1.
Training with exploration using the dynamic oracles
yields improved accuracy for the vast majority of the
setups. The notable exceptions are the arc-eager and
easy-first systems for unlabeled Italian and the arc-
hybrid system in Catalan, where we observe a small
drop in accuracy. However, we can safely conclude
that training with exploration is beneficial and note
that we may get even further gains in the future using
better methods for tuning the exploration parameters
or better training methods.

412

system / language hungarian chinese greek czech basque catalan english turkish arabic italian
UAS

eager:static 76.42 85.01 79.53 78.70 75.14 91.30 86.10 77.38 81.59 84.40
eager:dynamic 77.48 85.89 80.98 80.25 75.97 92.02 88.69 77.39 83.62 84.30
hybrid:static 76.39 84.96 79.40 79.71 73.18 91.30 86.43 75.91 83.43 83.43
hybrid:dynamic 77.54 85.10 80.49 80.07 73.70 91.06 87.62 76.90 84.04 83.83
easyfirst:static 81.27 87.01 81.28 82.00 75.01 92.50 88.57 78.92 82.73 85.31
easyfirst:dynamic 81.52 87.48 82.25 82.39 75.87 92.85 89.41 79.29 83.70 85.11

LAS
eager:static 66.72 81.24 72.44 71.08 65.34 86.02 84.93 66.59 72.10 80.17
eager:dynamic 68.41 82.23 73.81 72.99 66.63 86.93 87.69 67.05 73.92 80.43
hybrid:static 66.54 80.17 70.99 71.88 62.84 85.57 84.96 64.80 73.16 78.78
hybrid:dynamic 68.05 80.59 72.07 72.15 63.52 85.47 86.28 66.12 74.10 79.25

Table 1: Results on the CoNLL 2007 data set. UAS, including punctuation. Each number is an average over 5 runs
with different randomization seeds. All experiments used the same exploration parameters of k=1, p=0.9.

6 Related Work
The error propagation problem for greedy transition-
based parsing was diagnosed by McDonald and
Nivre (2007) and has been tackled with a variety of
techniques including parser stacking (Nivre and Mc-
Donald, 2008; Martins et al., 2008) and beam search
and structured prediction (Zhang and Clark, 2008;
Zhang and Nivre, 2011). The technique called boot-
strapping in Choi and Palmer (2011) is similar in
spirit to training with exploration but is applied iter-
atively in batch mode and is only approximate due
to the use of static oracles. Dynamic oracles were
first explored by Goldberg and Nivre (2012).

In machine learning more generally, our approach
can be seen as a problem-specific instance of imita-
tion learning (Abbeel and Ng, 2004; Vlachos, 2012;
He et al., 2012; Daumé III et al., 2009; Ross et
al., 2011), where the dynamic oracle is used to im-
plement the optimal expert needed in the imitation
learning setup. Indeed, our training procedure is
closely related to DAgger (Ross et al., 2011), which
also trains a classifier to match an expert on a dis-
tribution of possibly suboptimal states obtained by
running the system itself. Our training procedure
can be viewed as an online version of DAgger (He
et al., 2012) with two extensions: First, our learn-
ing algorithm involves a stochastic policy parame-
terized by k, p for choosing between the oracle or
the model prediction, whereas DAgger always fol-
lows the system’s own prediction (essentially run-
ning with k = 0, p = 1). The heatmaps in Figure

1 show that this parameterization is beneficial. Sec-
ond, while DAgger assumes an expert providing a
single label at each state, our oracle is nondetermin-
istic and allows multiple correct labels (transitions)
which our training procedure tie-breaks according to
the model’s current prediction, a technique that has
recently been proposed in an extension to DAgger
by He et al. (2012). Other related approaches in the
machine learning literature include stacked sequen-
tial learning (Cohen and Carvalho, 2005), LaSO
(Daumé III and Marcu, 2005), Searn (Daumé III et
al., 2009) and SMILe (Ross and Bagnell, 2010).

7 Conclusion

In this paper, we have extended the work on dynamic
oracles presented in Goldberg and Nivre (2012) in
several directions by giving formal characterizations
of non-deterministic and complete oracles, defining
the arc-decomposition property for transition sys-
tems, and using this property to derive novel com-
plete non-deterministic oracles for the hybrid and
easy-first systems (as well as a corrected oracle for
the arc-eager system). We have then used the com-
pleteness of these new oracles to improve the train-
ing procedure of greedy parsers to include explo-
rations of configurations which result from incor-
rect transitions. For all three transition systems, we
get substantial accuracy improvements on many lan-
guages. As the changes all take place at training
time, the very fast running time of the greedy algo-
rithm at test time is maintained.

413

References
Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship

learning via inverse reinforcement learning. In Pro-
ceedings of the 21st International Conference on Ma-
chine Learning (ICML), page 1.

Jinho D. Choi and Martha Palmer. 2011. Getting the
most out of transition-based dependency parsing. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 687–692.

William W. Cohen and Vitor R. Carvalho. 2005. Stacked
sequential learning. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence,
pages 671–676.

Hal Daumé III and Daniel Marcu. 2005. Learning as
search optimization: Approximate large margin meth-
ods for structured prediction. In Proceedings of the
22nd International Conference on Machine Learning,
pages 169–176.

Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine Learn-
ing, 75:297–325.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL HLT), pages 742–750.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In Proceed-
ings of the 24th International Conference on Compu-
tational Linguistics (COLING), pages 959–976.

He He, Hal Daumé III, and Jason Eisner. 2012. Imitation
learning by coaching. In Advances in Neural Informa-
tion Processing Systems 25.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1077–1086.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1–11.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 673–682.

André Filipe Martins, Dipanjan Das, Noah A. Smith, and
Eric P. Xing. 2008. Stacking dependency parsers.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
157–166.

Ryan McDonald and Joakim Nivre. 2007. Charac-
terizing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 122–131.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 91–98.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
950–958.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL), pages 50–57.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguis-
tics, 34:513–553.

Stéphane Ross and J. Andrew Bagnell. 2010. Efficient
reductions for imitation learning. In Proceedings of
the 13th International Conference on Artificial Intelli-
gence and Statistics, pages 661–668.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bag-
nell. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning. In
Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics, pages 627–635.

Andreas Vlachos. 2012. An investigation of imitation
learning algorithms for structured prediction. In Pro-
ceedings of the European Workshop on Reinforcement
Learning (EWRL), pages 143–154.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based and
transition-based dependency parsing. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 562–571.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193.

414

Joint Incremental Disfluency Detection and Dependency Parsing

Matthew Honnibal
Department of Computing

Macquarie University
Sydney, Australia

matthew.honnibal@mq.edu.edu.au

Mark Johnson
Department of Computing

Macquarie University
Sydney, Australia

mark.johnson@mq.edu.edu.au

Abstract
We present an incremental dependency
parsing model that jointly performs disflu-
ency detection. The model handles speech
repairs using a novel non-monotonic tran-
sition system, and includes several novel
classes of features. For comparison,
we evaluated two pipeline systems, us-
ing state-of-the-art disfluency detectors.
The joint model performed better on both
tasks, with a parse accuracy of 90.5% and
84.0% accuracy at disfluency detection.
The model runs in expected linear time,
and processes over 550 tokens a second.

1 Introduction

Most unscripted speech contains filled pauses
(ums and uhs), and errors that are usually edited
on-the-fly by the speaker. Disfluency detection is
the task of detecting these infelicities in spoken
language transcripts. The task has some imme-
diate value, as disfluencies have been shown to
make speech recognition output much more dif-
ficult to read (Jones et al., 2003), but has also
been motivated as a module in a natural language
understanding pipeline, because disfluencies have
proven problematic for PCFG parsing models.

Instead of a pipeline approach, we build on re-
cent work in transition-based dependency parsing,
to perform the two tasks jointly. There have been
two small studies of dependency parsing on un-
scripted speech, both using entirely greedy pars-
ing strategies, without a direct comparison against
a pipeline architecture (Jorgensen, 2007; Rasooli
and Tetreault, 2013). We go substantially beyond
these pilot studies, and present a system that com-
pares favourably to a pipeline consisting of state-
of-the-art components. Our parser largely follows

the design of Zhang and Clark (2011). We use a
structured averaged perceptron model with beam-
search decoding (Collins, 2002). Our feature set
is based on Zhang and Clark (2011), and our
transition-system is based on the arc-eager system
of Nivre (2003).

We extend the transition system with a novel
non-monotonic transition, Edit. It allows sen-
tences like ‘Pass the pepper uh salt’ to be parsed
incrementally, without the need to guess early
that pepper is disfluent. This is achieved by re-
processing the leftward children of the word Edit
marks as disfluent. For instance, if the parser at-
taches the to pepper, but subsequently marks pep-
per as disfluent, the will be returned to the stack.
We also exploit the ease with which the model can
incorporate arbitrary features, and design a set of
features that capture the ‘rough copy’ structure of
some speech repairs, which motivated the Johnson
and Charniak (2004) noisy channel model.

Our main comparison is against two pipeline
systems, which use the two current state-of-the-
art disfluency detection systems as pre-processors
to our parser, minus the custom disfluency fea-
tures and transition. The joint model compared
favourably to the pipeline parsers at both tasks,
with an unlabelled attachment score of 90.5%, and
84.0% accuracy at detecting speech repairs. An ef-
ficient implementation is available under an open-
source license.1 The future prospects of the sys-
tem are also quite promising. Because the parser
is incremental, it should be well suited to un-
segmented text such as the output of a speech-
recognition system. We consider our main con-
tributions to be:
• a novel non-monotonic transition system, for

speech repairs and restarts,
1http://github.com/syllog1sm/redshift

131

Transactions of the Association for Computational Linguistics, 2 (2014) 131–142. Action Editor: Joakim Nivre.
Submitted 11/2013; Revised 2/2014; Published 4/2014. c©2014 Association for Computational Linguistics.

A flight to um︸︷︷︸
FP

Boston︸ ︷︷ ︸
RM

I mean︸ ︷︷ ︸
IM

Denver︸ ︷︷ ︸
RP

Tuesday

Figure 1: A sentence with disfluencies annotated in
the style of Shriberg (1994) and the Switchboard cor-
pus. FP=Filled Pause, RM=Reparandum, IM=Interregnum,
RP=Repair. We follow previous work in evaluating the sys-
tem on the accuracy with which it identifies speech-repairs,
marked reparandum above.

• several novel feature classes,

• direct comparison against the two best disflu-
ency pre-processors, and

• state-of-the-art accuracy for both speech
parsing and disfluency detection.

2 Switchboard Disfluency Annotations

The Switchboard portion of the Penn Treebank
(Marcus et al., 1993) consists of telephone conver-
sations between strangers about an assigned topic.
Two annotation layers are provided: one for syn-
tactic bracketing (MRG files), and one for disflu-
encies (DPS files). The disfluency layer marks el-
ements with little or no syntactic function, such as
filled pauses and discourse markers, and annotates
speech repairs using the Shriberg (1994) system
of reparandum/interregnum/repair. An example is
shown in Figure 1.

In the syntactic annotation, edited words are
covered by a special node labelled EDITED. The
idea is to mark text which, if excised, would re-
sult in a grammatical sentence. The MRG files do
not mark other types of disfluencies. We follow
the evaluation defined by Charniak and Johnson
(2001), which evaluates the accuracy of identify-
ing speech repairs and restarts. This definition of
the task is the standard in recent work. The reason
for this is that filled pauses can be detected using
a simple rule-based approach, and parentheticals
have less impact on readability and down-stream
processing accuracy.

The MRG and DPS layers have high but im-
perfect agreement over what tokens they mark as
speech repairs: of the text annotated with both lay-
ers, 33,720 tokens are marked as disfluent in at
least one layer, 32,310 are only marked as disflu-
ent by the DPS files, and 32,742 are only marked
as disfluent by the MRG layer.

The Switchboard annotation project was not
fully completed. Because disfluency annotation is
cheaper to produce, many of the DPS training files
do not have matching MRG files. Only 619,236
of the 1,482,845 tokens in the DPS disfluency-

detection training data have gold-standard syntac-
tic parses. Our system requires the more expen-
sive syntactic annotation, but we find that it out-
performs the previous state-of-the-art (Qian and
Liu, 2013), despite training on less than half the
data.

2.1 Dependency Conversion

As is standard in statistical dependency parsing
of English, we acquire our gold-standard depen-
dencies from phrase-structure trees. We used the
2013-04-05 version of the Stanford dependency
converter (de Marneffe et al., 2006). As is standard
for English dependency parsing, we use the Ba-
sic Dependencies scheme, which produces strictly
projective representations.

At first we feared that the filled pauses, disfluen-
cies and meta-data tokens in the Switchboard cor-
pus might disrupt the conversion process, by mak-
ing it more difficult for the converter to recognise
the underlying production rules.

To test this, we performed a small experiment.
We prepared two versions of the corpus: one
where EDITED nodes, filled pauses and meta-data
were removed before the trees were transformed
by the Stanford converter, and one where the dis-
fluency removal was performed after the depen-
dency conversion. The resulting corpora were
largely identical: 99.54% of unlabelled and 98.7%
of labelled dependencies were the same. The fact
that the Stanford converter is quite robust to dis-
fluencies was useful for our baseline joint model,
which is trained on dependency trees that also in-
cluded governors for disfluent words.

We follow previous work on disfluency detec-
tion by lower-casing the text and removing punc-
tuation and partial words (words tagged XX and
words ending in ‘-’). We also remove one-token
sentences, as their syntactic analyses are trivial.
We found that two additional simple pre-processes
improved our results: discarding all ‘um’ and ‘uh’
tokens; and merging ‘you know’ and ‘i mean’ into
single tokens.

These pre-processes can be completed on the in-
put string without losing information: none of the
‘um’ or ‘uh’ tokens are semantically significant,
and the bigrams you know and i mean have a de-
pendency between the two tokens over 99.9% of
the times they occur in the treebank, with you and
I never having any children. This makes it easy
to unmerge the tokens deterministically after pars-

132

ing: all incoming and outgoing arcs will point to
know or mean. The same pre-processing was per-
formed for all our parsing systems.

3 Transition-based Dependency Parsing

A transition-based parser predicts the syntactic
structure of a sentence incrementally, by making
a sequence of classification decisions. We follow
the architecture of Zhang and Clark (2011), who
use beam-search for decoding, and a structured av-
eraged perceptron for training. Despite its simplic-
ity, this type of parser has produced highly com-
petitive results on the Wall Street Journal: with the
extended feature set described by Zhang and Nivre
(2011), it achieves 93.5% unlabelled accuracy on
Stanford basic dependencies (de Marneffe et al.,
2006). Converting the constituency trees produced
by the Charniak and Johnson (2005) reranking
parser results in similar accuracy.

Briefly, the transition-based parser consists of a
configuration (or ‘state’) which is sequentially ma-
nipulated by a set of possible transitions. For us, a
state is a 4-tuple c = (σ, β,A,D), where σ and β
are disjoint sets of word indices termed the stack
and buffer respectively, A is the set of dependency
arcs, and D is the set of word indices marked dis-
fluent. There are no arcs to or from members ofD,
so the dependencies and disfluencies can be imple-
mented as a single vector (in our parser, a token is
marked as disfluent by setting it as its own head).

We use the arc-eager transition system (Nivre,
2003, 2008), which consists of four parsing ac-
tions: Shift, Left-Arc, Right-Arc and Reduce. We
denote the stack with its topmost element to the
right, and the buffer with its first element to the
left. A vertical bar is used to indicate concate-
nation to the stack or buffer, e.g. σ|i indicates a
stack with the topmost element i and remaining
elements σ. A dependency from a governor i to
a child j is denoted i → j. The four arc-eager
transitions are shown in Figure 2.

The Shift action moves the first item of the
buffer onto the stack. The Right-Arc does the
same, but also adds an arc, so that the top two
items on the stack are connected. The Reduce
move and the Left-Arc both pop the stack, but the
Left-Arc first adds an arc from the first word of
the buffer to the word on top of the stack. Con-
straints on the Reduce and Left-Arc moves ensure
that every word is assigned exactly one head in
the final configuration. We follow the suggestion

(σ, i|β,A,D) ` (σ|i, β, A,D) S
(σ|i, j|β,A,D) ` (σ, j|β,A ∪ {j → i}, D) L

Only if i does not have an incoming arc.
(σ|i, j|β,A,D) ` (σ|i|j, β,A ∪ {i→ j}, D) R
(σ|i, β, A,D) ` (σ, β,A,D) D

Only if i has an incoming arc.
(σ|i, j|β,A,D) ` (σ|[x1, xn], j|β,A′, D′) E
Where
A′ = A \ {x→ y or y → x : ∀x ∈ [i, j), ∀y ∈ N}
D′ = D ∪ [i, j)
x1...xn are the former left children of i

Figure 2: Our parser’s transition system. The first four
transitions are the standard arc-eager system; the fifth is our
novel Edit transition.

of Ballesteros and Nivre (2013) and add a dummy
token that governs root dependencies to the end of
the sentence. Parsing terminates when this token
is at the start of the buffer, and the stack is empty.
Disfluencies are added toD via the Edit transition,
E, which we now define.

4 A Non-Monotonic Edit Transition

One of the reasons disfluent sentences are hard to
parse is that there often appear to be syntactic re-
lationships between words in the reparandum and
the fluent sentence. When these relations are con-
sidered in addition to the dependencies between
fluent words, the resulting structure is not neces-
sarily a projective tree.

Figure 3 shows a simple example, where the re-
pair square replaces the reparandum rectangle. An
incremental parser could easily become ‘garden-
pathed’ and attach the repair square to the preced-
ing words, constructing the dependencies shown
dotted in Figure 3. Rather than attempting to de-
vise an incremental model that avoids construct-
ing such dependencies, we allow the parser to con-
struct these dependencies and later delete them if
the governor or child are marked disfluent.

Psycholinguistic models of human sentence
processing have long posited repair mechanisms
(Frazier and Rayner, 1982). Recently, Honnibal
et al. (2013) showed that a limited amount of ‘non-
monotonic’ behaviour can improve an incremen-
tal parser’s accuracy. We here introduce a non-
monotonic transition, Edit, for speech repairs.

The Edit transition marks the word i on top
of the stack σ|i as disfluent, along with its right-
ward descendents — i.e., all words in the sequence
i...j − 1, where j is the word at the start of the
buffer. It then restores the words both preceding
and formerly governed by i to the stack.

In other words, the word on top of the stack and

133

Pass me the red rectangle uh I mean square

Figure 3: Example where apparent dependencies between
the reparandum and the fluent sentence complicate parsing.
The dotted edges are difficult for an incremental parser to
avoid, but cannot be part of the final parse if it is to be a
projective tree. Our solution is to make the transition system
non-monotonic: the parser is able to delete edges.

its rightward descendents are all marked as dis-
fluent, and the stack is popped. We then restore
its leftward children to the stack, and all depen-
dencies to and from words marked disfluent are
deleted. The transition is non-monotonic in the
sense that it can delete dependencies created by
a previous transition, and replace tokens onto the
stack that had been popped.

Why revisit the leftward children, but not the
right? We are concerned about dependencies
which might be mirrored between the reparandum
and the repair. The rightward subtree of the disflu-
ency might well be incorrect, but if it is, it would
still be incorrect if the word on top of the stack
were actually fluent. We therefore regard these
as parsing errors that we will train our model to
avoid. In contrast, avoiding the Left-Arc transi-
tions would require the parser to predict that the
head is disfluent when it has not necessarily seen
any evidence indicating that.

4.1 Worked Example

Figure 4 shows a gold-standard derivation for
a disfluent sentence from the development data.
Line 1 shows the state resulting from the initial
Shift action. In the next three states, His is Left-
Arced to company, which is then Shifted onto the
stack, and Left-Arced to went in Line 4.

The dependency between went and company is
not part of the gold-standard, because went is dis-
fluent. The correct governor of company is the sec-
ond went in the sentence. The Left-Arc move in
Line 4 can still be considered correct, however, be-
cause the gold-standard analysis is still derivable
from the resulting configuration, via the Edit tran-
sition. Another non-gold dependency is created in
Line 6, between broke and went, before broke is
Reduced from the stack in Line 7.

Lines 9 and 10 show the states before and after
the Edit transition. The word on top of the stack in
Line 9, went, has one leftward child, and one right-

1. S His company went broke i mean went bankrupt

2. L His company went broke i mean went bankrupt

3. S His company went broke i mean went bankrupt

4. L His company went broke i mean went bankrupt

5. S His company went broke i mean went bankrupt

6. R His company went broke i mean went bankrupt

7. D His company went broke i mean went bankrupt

8. S His company went broke i mean went bankrupt

9. L His company went broke i mean went bankrupt

10. E His company ��went ���broke i mean went bankrupt

11. L His company ��went ���broke i mean went bankrupt

12. S His company ��went ���broke i mean went bankrupt

12. R His company ��went ���broke i mean went bankrupt

13. D His company ��went ���broke i mean went bankrupt

Figure 4: A gold-standard transition sequence using our
EDIT transition. Each line specifies an action and shows the
state resulting from it. Words on the stack are circled, and
the arrow indicates the start of the buffer. Disfluent words are
struck-through.

ward child. After the Edit transition is applied,
went and its rightward child broke are both marked
disfluent, and company is returned to the stack. All
of the previous dependencies to and from went and
broke are deleted.

Parsing then proceeds as normal, with the cor-
rect governor of company being assigned by the
Left-Arc in Line 11, and bankrupt being Right-
Arced to went in Line 12. To conserve space, we
have omitted the dummy ROOT token, which is
placed at the end of the sentence, following the
suggestion of Ballesteros and Nivre (2013). The
final action will be a Left-Arc from the ROOT to-
ken to went.

4.2 Dynamic Oracle Training Algorithm

Our non-monotonic transition system introduces
substantial spurious ambiguity: the gold-standard
parse can be derived via many different transition

134

sequences. Recent work has shown that this can
be advantageous (Sartorio et al., 2013; Honnibal
et al., 2013; Goldberg and Nivre, 2012), because
difficult decisions can sometimes be delayed until
more information is available.

Line 5 of Figure 4 shows a state that introduces
spurious ambiguity. From this configuration, there
are multiple actions that could be considered ‘cor-
rect’, in the sense that the gold-standard analysis
can be derived from them. The Edit transition is
correct because went is disfluent, but the Left-Arc
and even the Right-Arc are also correct, in that
there are continuations from them that lead to the
gold-standard analysis.

We regard all transition sequences that can re-
sult in the correct analysis as equally valid, and
want to avoid stipulating one of them during train-
ing. We achieve this by following Goldberg and
Nivre (2012) in using a dynamic oracle to create
partially labelled training data.2 A dynamic oracle
is a function that determines the cost of applying
an action to a state, in terms of gold-standard arcs
that are newly unreachable.

We follow Collins (2002) in training an aver-
aged perceptron model to predict transition se-
quences, rather than individual transitions. This
type of model is often referred to as a struc-
tured perceptron, or sometimes a global percep-
tron. During training, if the model does not pre-
dict the correct sequence, an update is performed,
based on the gold-standard sequence and part of
the sequence predicted by the current weights.
Only part of the sequence is used to calculate the
weight update, in order to account for search er-
rors. We use the maximum violation strategy de-
scribed by Huang et al. (2012) to select the subse-
quence to update from.

To train our model using the dynamic oracle,
we use the latent-variable structured perceptron al-
gorithm described by Sun et al. (2009). Beam-
search is performed to find the highest-scoring
gold-standard sequence, as well as the highest-
scoring prediction. We use the same beam-width
for both search procedures.

4.3 Path Length Normalisation

One problem introduced by the Edit transition is
that the number of actions applied to a sentence is

2 The training data is partially labelled in the sense that in-
stances can have multiple true labels. Equivalently, one might
say that the transitions are latent variables, which generate the
dependencies.

no longer constant — it is no longer guaranteed to
be 2n − 1, for a sentence of length n. When the
Edit transition is applied to a word with leftward
children, those children are returned to the stack,
and processed again. This has little to no impact
on the algorithm’s empirical efficiency, although
worst-case complexity is no longer linear, but it
does pose a problem for decoding.

The perceptron model tends to assign large pos-
itive scores to its top prediction. We thus ob-
served a problem when comparing paths of differ-
ent lengths, at the end of the sentence. Paths that
included Edit transitions were longer, so the sum
of their scores tended to be higher.

The same problem has been observed during
incremental PCFG parsing, by Zhu et al. (2013).
They introduce an additional transition, IDLE, to
ensure that paths are the same length. So long as
one candidate in the beam is still being processed,
all other candidates apply the IDLE transition.

We adopt a simpler solution. We normalise the
figure-of-merit for a candidate state, which is used
to rank it in the beam, by the length of its transition
history. The new figure-of-merit is the arithmetic
mean of the candidate’s transition scores, where
previously the figure-of-merit was the sum of the
candidate’s transition scores.

Interestingly, Zhu et al. (2013) report that they
tried exactly this, and that it was less effective than
their solution. We found that the features associ-
ated with the IDLE transition were uninformative
(the state is at termination, so the stack and buffer
are empty), and had nothing to do with how many
edit transitions were earlier applied.

5 Features for the Joint Parser

Our baseline parser uses the feature set described
by Zhang and Nivre (2011). The feature set con-
tains 73 templates that mostly refer to the prop-
erties of 12 context tokens: the top of the stack
(S0), its two leftmost and rightmost children (S0L,
S0L2, S0R, S0R2), its parent and grand-parent
(S0h, S0h2), the first word of the buffer and its two
leftmost children (N0, N0L, N0LL), and the next
two words of the buffer (N1, N2).

Atomic features consist of the word, part-of-
speech tag, or dependency label for these tokens;
and multiple feature atoms are often combined for
feature templates. There are also features for the
string-distance between S0 and N0, and the left
and right valencies (total number of children) of

135

S0 and N0, as well as the set of their children’s de-
pendency labels. We restrict these to the first and
last 2 children for implementation efficiency, as
we found this had no effect on accuracy. Numeric
features (for distance and valency) are binned with
the function λx : min(x, 5). There is only one bi-
lexical feature template, which pairs the words of
S0 and N0. There are also ten tri-tag templates.

Our feature set includes additional dependency
label features not used by Zhang and Nivre (2011),
as we found that disfluency detection errors often
resulted in ungrammatical dependency label com-
binations. The additional templates combine the
POS tag of S0 with two or three dependency la-
bels from its left and right subtrees. Details can be
found in the supplementary material.

5.1 Brown Cluster Features

The Brown clustering algorithm (Brown et al.,
1992) is a well known source of semi-supervised
features. The clustering algorithm is run over
a large sample of unlabelled data, to generate a
type-to-cluster map. This mapping is then used to
generate features that sometimes generalise better
than lexical features, and are helpful for out-of-
vocabulary words (Turian et al., 2010).

Koo and Collins (2010) found that Brown clus-
ter features greatly improved the performance of a
graph-based dependency parser. On our transition-
based parser, Brown cluster features bring a small
but statistically significant improvement on the
WSJ task (0.1-0.3% UAS). Other developers of
transition-based parsers seem to have found sim-
ilar results (personal communication). Since a
Brown cluster mapping computed by Liang (2005)
is easily available,3 the features are simple to im-
plement and cheap to compute.

Our templates follow Koo and Collins (2010)
in including features that refer to cluster prefix
strings, as well as the full clusters. We adapt their
templates to transition-based parsing by replacing
‘head’ with ‘item on top of the stack’ and ‘child’
with ‘first word of the buffer’. The exact templates
can be found in the supplementary material.

The Brown cluster features are used in our
‘baseline’ parser, and in the parsers we use as part
of our pipeline systems. They improved develop-
ment set accuracy by 0.4%. We experimented with
the other feature sets in these parsers, but found
that they did not improve accuracy on fluent text.

3
http://www.metaoptimize.com/projects/wordreps

5.2 Rough Copy Features
Johnson and Charniak (2004) point out that in
speech repairs, the repair is often a ‘rough copy’
of the reparandum. The simplest case of this is
where the repair is a single word repetition. It is
common for the repair to differ from the reparan-
dum by insertion, deletion or substitution of one
or more words.

To capture this regularity, we first extend the
feature-set with three new context tokens:4

1. S0re: The rightmost edge of S0 descendants;

2. S0le: The leftmost edge of S0 descendants;

3. N0le: The leftmost edge of N0 descendants.

If a word has no leftward children, it will be
its own left-edge, and similarly it will be its own
rightward edge if it has no rightward children.
Note that the token S0re is necessarily immedi-
ately before N0le, unless some of the tokens be-
tween them are disfluent. We use the S0le and N0le
to compute the following rough-copy features:

1. How long is the prefix word match between
S0le...S0 and N0le...N0?

If the parser were analysing the red the blue
square, with red on the stack and square at
N0, its value would be 1.

2. How long is the prefix POS tag match be-
tween S0le...S0 and N0le...N0?

3. Do the words in S0le...S0 and N0le...N0
match exactly?

4. Do the POS tags in S0le...S0 and N0le...N0
match exactly?

If the parser were analysing the red square
the blue rectangle, with square on the stack
and rectangle at N0, its value would be true.

The prefix-length features are binned using the
function λx : min(x, 5).

5.3 Match Features
This class of features ask which pairs of the con-
text tokens match, in word or POS tag. The con-
text tokens in the Zhang and Nivre (2011) fea-
ture set are the top of the stack (S0), its head and

4As is common in this type of parser, our implementation
has a number of vectors for properties that are defined before
parsing, such as word forms, POS tags, Brown clusters, etc. A
context token is an index into these vectors, allowing features
considering these properties to be computed.

136

grandparent (S0h, S0h2), its two left- and right-
most children (S0L, S0L2, S0R, S0R2), the first
three words of the buffer (N0, N1, N2), and the
two leftmost children of N0 (N0L, N0LL). We ex-
tend this set with the S0le, S0re and N0le tokens
described above, and also the first left and right
child of S0 and N0 (S0L0, S0R0, N0L0).

All up, there are 18 context tokens, so(
18
2

)
= 153 token pairs. For each pair of these

tokens, we add two binary features, indicating
whether the two tokens match in word form or POS

tag. We also have two further classes of features:
if the words do match, a feature is added indicat-
ing the word form; if the tags match, a feature is
added indicating the tag. These finer grained ver-
sions help the model adjust for the fact that some
words can be duplicated in grammatical sentences
(e.g. ‘that that’), while most rare words cannot.

5.4 Edited Neighbour Features

Disfluencies are usually string contiguous, even if
they do not form a single constituent. In these situ-
ations, our model has to make multiple transitions
to mark a single disfluency. For instance, if an ut-
terance begins and the and a, the stack will contain
two entries, for and and the, and two Edit transi-
tions will be required.

To mitigate this disadvantage of our model, we
add four binary features. Two fire when the word
or pair of words immediately preceding N0 have
been marked disfluent; the other two fire when the
word or pair of words immediately following S0
have been marked disfluent. These features pro-
vide an additional string-based view that the parser
would otherwise be missing. Speakers tend be
disfluent in bursts: if the previous word is dis-
fluent, the next word is more likely to be disflu-
ent. These four features are therefore all associ-
ated with positive weights for the Edit transition.
Without these features, we would miss an aspect of
disfluency processing that sequence models natu-
rally capture.

6 Part-of-Speech Tagging

We adopt the standard strategy of using a POS

tagger as a pre-process before parsing. Most
transition-based parsers use a structured averaged
perceptron model with beam-search for tagging,
as this model achieves competitive accuracy and
matches the standard dependency parsing archi-
tecture. Our tagger also uses this architecture.

We performed some additional feature engi-
neering for the tagger, in order to improve its accu-
racy given the lack of case distinctions and punc-
tuation in the data. Our additional features use two
sources of unsupervised information. First, we
follow the suggestion of Manning (2011) by us-
ing Brown cluster features to improve the tagger’s
accuracy on unknown words. Second, we com-
pensate for the lack of case distinctions by includ-
ing features that ask what percentage of the time
a word form was seen title-cased, upper-cased and
lower-cased in the Google Web1T corpus.

Where most previous work uses cross-fold
training for the tagger, to ensure that the parser
is trained on tags that reflect run-time accuracies,
we do online training of the tagger alongside the
parser, using the current tagger model to produce
tags during parser training. This had no impact on
parse accuracy, and made it slightly easier to de-
velop our tagger alongside the parser.

The tagger achieved 96.5% accuracy on the de-
velopment data, but when we ran our final test
experiments, we found its accuracy dropped to
96.0%, indicating some over-fitting during our
feature engineering. On the development data, our
parser accuracy improves by about 1% when gold-
standard tags are used.

7 Experiments

We use the Switchboard portion of the Penn Tree-
bank (Marcus et al., 1993), as described in Sec-
tion 2, to train our joint models and evaluate them
on dependency parsing and disfluency detection.
The pre-processing and dependency conversion
are described in Section 2.1. We use the stan-
dard train/dev/test split from Charniak and John-
son (2001): Sections 2 and 3 for training, and Sec-
tion 4 divided into three held-out sections, the first
of which is used for final evaluation.

Our parser evaluation uses the SPARSEVAL

(Roark et al., 2006) metric. However, we wanted
to use the Stanford dependency converter, for the
reasons described in Section 2.1, so we used our
own implementation. Because we do not need to
deal with recognition errors, we do not need to
report our parsing results using P /R/F -measures.
Instead, we report an unlabelled accuracy score,
which refers to the percentage of fluent words
whose governors were assigned correctly. Note
that words marked as disfluent cannot have any in-
coming or out-going dependencies, so if a word is

137

incorrectly marked as disfluent, all of its depen-
dencies will be incorrect.

We follow Johnson and Charniak (2004) and
others in restricting our disfluency evaluation to
speech repairs, which we identify as words that
have a node labelled EDITED as an ancestor. Un-
like most other disfluency detection research, we
train only on the MRG files, giving us 619,236
words of training data instead of the 1,482,845
used by the pipeline systems. It may be possible
to improve our system’s disfluency detection by
leveraging the additional data that does not have
syntactic annotation in some way.

All parsing models were trained for 15 itera-
tions. We found that optimising the number of
iterations on a development set led to small im-
provements that did not transfer to a second devel-
opment set (part of Section 4, which Charniak and
Johnson (2001) reserved for ‘future use’).

We test for statistical significance in our results
by training 20 models for each experimental con-
figuration, using different random seeds. The ran-
dom seeds control how the sentences are shuf-
fled during training, which the perceptron model
is quite sensitive to. We use the Wilcoxon rank-
sums non-parametric test. The standard deviation
in UAS for a sample was typically around 0.05%,
and 0.5% for disfluency F -measure.

All of our models use beam-search decoding,
with a beam width of 32. We found that a beam
width of 64 brought a very small accuracy im-
provement (about 0.1%), at the cost of 50% slower
run-time. Wider beams than this brought no ac-
curacy improvement. Accuracy seems to plateau
with slightly narrower beams than on newswire
text. This is probably due to the shorter sentences
in Switchboard.

The baseline and pipeline systems are config-
ured in the same way, except that the baseline
parser is modified slightly to allow it to predict
disfluencies, using a special dependency label,
ERASED. All descendants of a word attached to its
head by this label are marked as disfluent. Both the
baseline and pipeline/oracle parsers use the same
feature set: the Zhang and Nivre (2011) features,
plus our Brown cluster features.

The baseline system is a standard arc-eager
transition-based parser with a structured averaged
perceptron model and beam-search decoding. The
model is trained in the standard way, with a ‘static’
oracle and maximum-violation update, following

(Huang et al., 2012).

7.1 Comparison with Pipeline Approaches

The accuracy of incremental dependency parsers
is well established on the Wall Street Journal, but
there are no dependency parsing results in the lit-
erature that make it easy to put our joint model’s
parsing accuracy into context. We therefore com-
pare our joint model to two pipeline systems,
which consist of a disfluency detector, followed by
our dependency parser. We also evaluate parse ac-
curacies after oracle pre-processing, to gauge the
net effect of disfluencies on our parser’s accuracy.

The dependency parser for the pipeline systems
was trained on text with all disfluencies removed,
following Charniak and Johnson (2001). The two
disfluency detection systems we used were the
Qian and Liu (2013) sequence-tagging model, and
a version of the Johnson and Charniak (2004)
noisy channel model, using the Charniak (2001)
syntactic language model and the reranking fea-
tures of Zwarts and Johnson (2011). They are the
two best published disfluency detection systems.

8 Results

Table 1 shows the development set accuracies for
our joint parser. Both the disfluency features and
the Edit transition make statistically significant
improvements, in both disfluency F -measure, un-
labelled attachment score (UAS), and labelled at-
tachment score (LAS).

The Oracle pipeline system, which uses the
gold-standard to clean disfluencies prior to pars-
ing, shows the total impact of speech-errors on the
parser. The baseline parser, which uses the Zhang
and Nivre (2011) feature set plus the Brown clus-
ter features, scores 1.8% UAS lower than the ora-
cle.

When we add the features described in Sec-
tions 5.2, 5.3 and 5.4, the gap is reduced to 1.2%
(+Features). Finally, the improved transition sys-
tem reduces the gap further still, to 0.8% UAS

(+Edit transition). We also tested these features
in the Oracle parser, but found they were ineffec-
tive on fluent text.

The w/s column shows the tokens analysed per
second for each system, including disfluencies,
with a single thread on a 2.4GHz Intel Xeon. The
additional features reduce efficiency, but the non-
monotonic Edit transition does not. The system is
easily efficient enough for real-time use.

138

P R F UAS LAS w/s
Baseline joint 79.4 70.1 74.5 89.9 86.9 711
+Features 86.0 77.2 81.3 90.5 87.5 539
+Edit transition 92.2 80.2 85.8 90.9 87.9 555
Oracle pipeline 100 100 100 91.7 88.6 782

Table 1: Development results for the joint models. For the
baseline model, disfluencies reduce parse accuracy by 1.7%
Unlabelled Attachment Score (UAS). Our features and Edit
transition reduce the gap to 0.7%, and improve disfluency de-
tection by 11.3% F -measure.

Disfl. F UAS

Johnson et al pipeline 82.1 90.3
Qian and Liu pipeline 83.9 90.1
Baseline joint parser 73.9 89.4
Final joint parser 84.1 90.5

Table 2: Test-set parse and disfluency accuracies. The joint
parser is improved by the features and Edit transition, and is
better than pre-processing the text with state-of-the-art disflu-
ency detectors.

Table 2 shows the final evaluation. Our main
comparison is with the two pipeline systems, de-
scribed in Section 7.1. The Johnson and Char-
niak (2004) system was 1.8% less accurate at dis-
fluency detection than the other disfluency detec-
tor we evaluated, the state-of-the-art Qian and Liu
(2013) system. However, when we evaluated the
two systems as pre-processors before our parser,
we found that the Johnson et al pipeline achieved
0.2% better unlabelled attachment score than the
Qian and Liu pipeline. We attribute this to the
use of the Charniak and Johnson (2001) syntac-
tic language model in the Johnson et al pipeline,
which would help the system produce more syn-
tactically consistent output.

Our joint model achieved an unlabelled at-
tachment score of 90.5%, out-performing both
pipeline systems. The Baseline joint parser,
which did not include the Edit transition or disflu-
ency features, scores 1.1% below the Final joint
parser. All of the parse accuracy differences were
found to be statistically significant (p < 0.001).

The Edit transition and disfluency features to-
gether brought a 10.1% improvement in disfluency
F -measure, which was also found to be statisti-
cally significant. The final joint parser achieved
0.2% higher disfluency detection accuracy than
the previous state-of-the-art, the Qian and Liu
(2013) system,5 despite having approximately half
as much training data (we require syntactic anno-

5 Our scores refer to an updated version of the system that
corrects minor pre-processing problems. We thank Qian Xian
for making his code available.

tation, for which there is less data).
Our significance testing regime involved using

20 different random seeds when training each of
our models, which the perceptron algorithm is sen-
sitive to. This could not be applied to the other two
disfluency detectors, so we cannot test those dif-
ferences for significance. However, we note that
the 20 samples for our disfluency detector ranged
in accuracy from 83.3-84.6, so we doubt that 0.2%
mean improvement over the Qian and Liu (2013)
result is meaningful.

Although we did not systematically optimise
on the development set, our test scores are lower
than our development accuracies. Much of the
over-fitting seems to be in the POS tagger, which
dropped in accuracy by 0.5%.

9 Analysis of Edit Behaviour

In order to understand how the parser applies
the Edit transition, we collected some additional
statistics over the development data. The parser
predicted 2,558 Edit transitions, which together
marked 2,706 words disfluent (2,495 correctly).
The Edit transition can mark multiple words dis-
fluent when S0 has one or more rightward descen-
dants. It turns out this case is uncommon; the
parser largely assigns disfluency labels word-by-
word, only sometimes marking words with right-
ward descendents as disfluent.

Of the 2,558 Edit transitions, there were 682
cases were at least one leftward child was returned
to the stack, and the total number of leftward chil-
dren returned was 1,132. The most common type
of construction that caused the parser to return
words to the stack were disfluent predicates, which
often have subjects and discourse conjunctions as
leftward children. An example of a disfluent pred-
icate with a fluent subject is shown in Figure 4.

There were only 48 cases of the same word be-
ing returned to the stack twice. The possibility of
words being returned to the stack multiple times
is what gives our system worse than linear worst-
case complexity. In the worst case, the ith word
of a sentence of length n could be returned to the
stack n− (i+1) times. Empirically, the Edit tran-
sition made no difference to run-time.

Once a word has been returned to the stack by
the Edit transition, how does the parser end up
analysing it? If it turned out that almost all of
the former leftward children of disfluent words are
subsequently marked as disfluent, there would be

139

little point in returning them to the stack — we
could just mark them as disfluent in the original
Edit transition. On the other hand, if they are al-
most all marked as fluent, perhaps they can just be
attached as children to the first word of the buffer.

In fact the two cases are almost equally com-
mon. Of the 1,132 words returned to the stack,
547 were subsequently marked disfluent, and 584
were not. The parser was also quite accurate in
its decisions over these tokens. Of the 547 tokens
marked disfluent, 500 were correct — similar to
the overall development set precision, 92.2%.

Accuracy over the words returned to the stack
might be improved in future by features referring
to their former heads. For instance, in He went
broke uh became bankrupt, we do not currently
have features that record the deleted dependency
became he and went. We thank one of the anony-
mous reviewers for this suggestion.

10 Related Work

The most similar system to ours was published
very recently. Rasooli and Tetreault (2013) de-
scribe a joint model of dependency parsing and
disfluency detection. They introduce a second
classification step, where they first decide whether
to apply a disfluency transition, or a regular pars-
ing move. Disfluency transitions operate either
over a sequence of words before the start of the
buffer, or a sequence of words from the start of
the buffer forward. Instead of the dynamic oracle
training method that we employ, they use a two-
stage bootstrap-style process.

Direct comparison between our model and
theirs is difficult, as they use the Penn2MALT
scheme, and their parser uses greedy decoding,
where we use beam search. They also use gold-
standard part-of-speech tags, which would im-
prove our scores by around 1%. The use of
beam-search may explain much of our perfor-
mance advantage: they report an unlabelled at-
tachment score of 88.6, and a disfluency detec-
tion F -measure of 81.4%. Our training algorithm
would be applicable to a beam-search version of
their parser, as their transition-system also intro-
duces substantial spurious ambiguity, and some
non-monotonic behaviour.

A hybrid transition system would also be possi-
ble, as the two types of Edit transition seem to be
complementary. The Rasooli and Tetreault system
offers a token-based view of disfluencies, which

is useful for examples such as, and the and the,
which would require two applications of our tran-
sition. On the other hand, our Edit transition may
have the advantage for more syntactically compli-
cated examples, particularly for disfluent verbs.

The importance of syntactic features for disflu-
ency detection was demonstrated by Johnson and
Charniak (2004). Despite this, most subsequent
work has used sequence models, rather than syn-
tactic parsers. The other disfluency system that
we compare our model to, developed by Qian and
Liu (2013), uses a cascade of Maximum Margin
Markov Models to perform disfluency detection
with minimal syntactic information.

One motivation for sequential approaches is that
most applications of these models will be over un-
segmented text, as segmenting unpunctuated text
is a difficult task that benefits from syntactic fea-
tures (Zhang et al., 2013).

We consider the most promising aspect of our
system to be that it is naturally incremental, so it
should be straightforward to extend the system to
operate on unsegmented text in subsequent work.
Due to its use of syntactic features, from the joint
model, the system is substantially more accurate
than the previous state-of-the-art in incremental
disfluency detection, 77% (Zwarts et al., 2010).

11 Conclusion

We have presented an efficient and accurate joint
model of dependency parsing and disfluency de-
tection. The model out-performs pipeline ap-
proaches using state-of-the-art disfluency detec-
tors, and is highly efficient, processing over 550
tokens a second. Because the system is incremen-
tal, it should be straight-forward to apply it to un-
segmented text. The success of an incremental,
non-monotonic parser at disfluent speech parsing
may also be of some psycholinguistic interest.

Acknowledgments

The authors would like to thank the anony-
mous reviewers for their valuable comments.
This research was supported under the Aus-
tralian Research Council’s Discovery Projects
funding scheme (project numbers DP110102506
and DP110102593).

References

Miguel Ballesteros and Joakim Nivre. 2013. Go-
ing to the roots of dependency parsing. Compu-
tational Linguistics. 39:1.

140

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural
language. Computational Linguistics, 18:467–
479.

Eugene Charniak. 2001. Immediate-head parsing
for language models. In Proceedings of 39th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 124–131. Associa-
tion for Computational Linguistics, Toulouse,
France.

Eugene Charniak and Mark Johnson. 2001. Edit
detection and parsing for transcribed speech. In
Proceedings of the 2nd Meeting of the North
American Chapter of the Association for Com-
putational Linguistics, pages 118–126. The As-
sociation for Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005.
Coarse-to-fine n-best parsing and MaxEnt dis-
criminative reranking. In Proceedings of the
43rd Annual Meeting of the Association for
Computational Linguistics, pages 173–180. As-
sociation for Computational Linguistics, Ann
Arbor, Michigan.

Michael Collins. 2002. Discriminative training
methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In
Proceedings of the 2002 Conference on Empir-
ical Methods in Natural Language Processing,
pages 1–8. Association for Computational Lin-
guistics.

Marie-Catherine de Marneffe, Bill MacCartney,
and Christopher D. Manning. 2006. Generating
typed dependency parses from phrase structure
parses. In Proceedings of the 5th International
Conference on Language Resources and Evalu-
ation (LREC).

Lyn Frazier and Keith Rayner. 1982. Making and
correcting errors during sentence comprehen-
sion: Eye movements in the analysis of struc-
turally ambiguous sentences. Cognitive Psy-
chology, 14(2):178–210.

Yoav Goldberg and Joakim Nivre. 2012. A dy-
namic oracle for arc-eager dependency parsing.
In Proceedings of the 24th International Con-
ference on Computational Linguistics (Coling
2012). Association for Computational Linguis-
tics, Mumbai, India.

Matthew Honnibal, Yoav Goldberg, and Mark
Johnson. 2013. A non-monotonic arc-eager

transition system for dependency parsing. In
Proceedings of the Seventeenth Conference on
Computational Natural Language Learning,
pages 163–172. Association for Computational
Linguistics, Sofia, Bulgaria.

Liang Huang, Suphan Fayong, and Yang Guo.
2012. Structured perceptron with inexact
search. In Proceedings of the 2012 Con-
ference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, pages 142–
151. Association for Computational Linguis-
tics, Montréal, Canada.

Mark Johnson and Eugene Charniak. 2004. A
TAG-based noisy channel model of speech re-
pairs. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Lin-
guistics, pages 33–39.

Douglas A. Jones, Florian Wolf, Edward Gib-
son, Elliott Williams, Evelina Fedorenko, Dou-
glas A. Reynolds, and Marc A. Zissman. 2003.
Measuring the readability of automatic speech-
to-text transcripts. In INTERSPEECH. ISCA.

Fredrik Jorgensen. 2007. The effects of disflu-
ency detection in parsing spoken language. In
Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muis-
chnek, and Mare Koit, editors, Proceedings of
the 16th Nordic Conference of Computational
Linguistics NODALIDA-2007, pages 240–244.

Terry Koo and Michael Collins. 2010. Efficient
third-order dependency parsers. In Proceedings
of the 48th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 1–
11.

Percy Liang. 2005. Semi-supervised learning for
natural language. Ph.D. thesis, MIT.

Christopher D. Manning. 2011. Part-of-speech
tagging from 97linguistics? In Proceedings of
the 12th international conference on Computa-
tional linguistics and intelligent text processing
- Volume Part I, CICLing’11, pages 171–189.
Springer-Verlag, Berlin, Heidelberg.

Michell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313–330.

Joakim Nivre. 2003. An efficient algorithm for
projective dependency parsing. In Proceedings

141

of the 8th International Workshop on Parsing
Technologies (IWPT), pages 149–160.

Joakim Nivre. 2008. Algorithms for determinis-
tic incremental dependency parsing. Computa-
tional Linguistics, 34:513–553.

Xian Qian and Yang Liu. 2013. Disfluency detec-
tion using multi-step stacked learning. In Pro-
ceedings of the 2013 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies, pages 820–825. Association for Com-
putational Linguistics, Atlanta, Georgia.

Mohammad Sadegh Rasooli and Joel Tetreault.
2013. Joint parsing and disfluency detection in
linear time. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 124–129. Association
for Computational Linguistics, Seattle, Wash-
ington, USA.

Brian Roark, Mary Harper, Eugene Charniak,
Bonnie Dorr, Mark Johnson, Jeremy Kahn,
Yang Liu, Mary Ostendorf, John Hale, Anna
Krasnyanskaya, Matthew Lease, Izhak Shafran,
Matthew Snover, Robin Stewart, and LisaYung.
2006. Sparseval: Evaluation metrics for pars-
ing speech. In Proceedings of Language Re-
source and Evaluation Conference, pages 333–
338. European Language Resources Associa-
tion (ELRA), Genoa, Italy.

Francesco Sartorio, Giorgio Satta, and Joakim
Nivre. 2013. A transition-based dependency
parser using a dynamic parsing strategy. In Pro-
ceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, pages
135–144. Association for Computational Lin-
guistics, Sofia, Bulgaria.

Elizabeth Shriberg. 1994. Preliminaries to a The-
ory of Speech Disfluencies. Ph.D. thesis, Uni-
versity of California, Berkeley.

Xu Sun, Takuya Matsuzaki, Daisuke Okanohara,
and Jun’ichi Tsujii. 2009. Latent variable per-
ceptron algorithm for structured classification.
In IJCAI, pages 1236–1242.

Joseph Turian, Lev-Arie Ratinov, and Yoshua
Bengio. 2010. Word representations: A simple
and general method for semi-supervised learn-
ing. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguis-
tics, pages 384–394. Association for Computa-
tional Linguistics, Uppsala, Sweden.

Dongdong Zhang, Shuangzhi Wu, Nan Yang, and
Mu Li. 2013. Punctuation prediction with
transition-based parsing. In Proceedings of
the 51st Annual Meeting of the Association for
Computational Linguistics, pages 752–760. As-
sociation for Computational Linguistics, Sofia,
Bulgaria.

Yue Zhang and Stephen Clark. 2011. Syntac-
tic processing using the generalized perceptron
and beam search. Computational Linguistics,
37(1):105–151.

Yue Zhang and Joakim Nivre. 2011. Transition-
based dependency parsing with rich non-local
features. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies,
pages 188–193. Association for Computational
Linguistics, Portland, USA.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min
Zhang, and Jingbo Zhu. 2013. Fast and accu-
rate shift-reduce constituent parsing. In Pro-
ceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, pages
434–443. Association for Computational Lin-
guistics, Sofia, Bulgaria.

Simon Zwarts and Mark Johnson. 2011. The im-
pact of language models and loss functions on
repair disfluency detection. In Proceedings of
the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies, pages 703–711. Association for
Computational Linguistics, Portland, USA.

Simon Zwarts, Mark Johnson, and Robert Dale.
2010. Detecting speech repairs incrementally
using a noisy channel approach. In Proceedings
of the 23rd International Conference on Com-
putational Linguistics (Coling 2010), pages
1371–1378. Coling 2010 Organizing Commit-
tee, Beijing, China.

142

A Crossing-Sensitive Third-Order Factorization for Dependency Parsing

Emily Pitler∗
Google Research

76 9th Avenue
New York, NY 10011

epitler@google.com

Abstract

Parsers that parametrize over wider scopes are
generally more accurate than edge-factored
models. For graph-based non-projective
parsers, wider factorizations have so far im-
plied large increases in the computational
complexity of the parsing problem. This paper
introduces a “crossing-sensitive” generaliza-
tion of a third-order factorization that trades
off complexity in the model structure (i.e.,
scoring with features over multiple edges)
with complexity in the output structure (i.e.,
producing crossing edges). Under this model,
the optimal 1-Endpoint-Crossing tree can be
found in O(n4) time, matching the asymp-
totic run-time of both the third-order projec-
tive parser and the edge-factored 1-Endpoint-
Crossing parser. The crossing-sensitive third-
order parser is significantly more accurate
than the third-order projective parser under
many experimental settings and significantly
less accurate on none.

1 Introduction

Conditioning on wider syntactic contexts than sim-
ply individual head-modifier relationships improves
parsing accuracy in a wide variety of parsers and
frameworks (Charniak and Johnson, 2005; McDon-
ald and Pereira, 2006; Hall, 2007; Carreras, 2007;
Martins et al., 2009; Koo and Collins, 2010; Zhang
and Nivre, 2011; Bohnet and Kuhn, 2012; Martins
et al., 2013). This paper proposes a new graph-
based dependency parser that efficiently produces

∗The majority of this work was done while at the University
of Pennsylvania.

the globally optimal dependency tree according to a
third-order model (that includes features over grand-
parents and siblings in the tree) in the class of 1-
Endpoint-Crossing trees (that includes all projective
trees and the vast majority of non-projective struc-
tures seen in dependency treebanks).

Within graph-based projective parsing, the third-
order parser of Koo and Collins (2010) has a run-
time of O(n4), just one factor of n more expensive
than the edge-factored model of Eisner (2000). In-
corporating richer features and producing trees with
crossing edges has traditionally been a challenge,
however, for graph-based dependency parsers. If
parsing is posed as the problem of finding the op-
timal scoring directed spanning tree, then the prob-
lem becomes NP-hard when trees are scored with a
grandparent and/or sibling factorization (McDonald
and Pereira, 2006; McDonald and Satta, 2007). For
various definitions of mildly non-projective trees,
even edge-factored versions are expensive, with
edge-factored running times between O(n4) and
O(n7) (Gómez-Rodrı́guez et al., 2011; Pitler et al.,
2012; Pitler et al., 2013; Satta and Kuhlmann, 2013).

The third-order projective parser of Koo and
Collins (2010) and the edge-factored 1-Endpoint-
Crossing parser described in Pitler et al. (2013) have
some similarities: both use O(n4) time and O(n3)
space, using sub-problems over intervals with one
exterior vertex, which are constructed using one
free split point. The two parsers differ in how the
exterior vertex is used: Koo and Collins (2010)
use the exterior vertex to store a grandparent in-
dex, while Pitler et al. (2013) use the exterior ver-
tex to introduce crossed edges between the point and

41

Transactions of the Association for Computational Linguistics, 2 (2014) 41–54. Action Editor: Joakim Nivre.
Submitted 9/2013; Revised 11/2013; Published 2/2014. c©2014 Association for Computational Linguistics.

Projective 1-Endpoint-Crossing

Edge
O(n3) O(n4)
Eisner (2000) Pitler et al. (2013)

CS-GSib
O(n4) O(n4)
Koo and Collins (2010) This paper

Table 1: Parsing time for various output spaces and model
factorizations. CS-GSib refers to the (crossing-sensitive)
grand-sibling factorization described in this paper.

the interval. This paper proposes merging the two
parsers to achieve the best of both worlds – produc-
ing the best tree in the wider range of 1-Endpoint-
Crossing trees while incorporating the identity of
the grandparent and/or sibling of the child in the
score of an edge whenever the local neighborhood
of the edge does not contain crossing edges. The
crossing-sensitive grandparent-sibling 1-Endpoint-
Crossing parser proposed here takes O(n4) time,
matching the runtime of both the third-order pro-
jective parser and of the edge-factored 1-Endpoint-
Crossing parser (see Table 1).

The parsing algorithms of Koo and Collins (2010)
and Pitler et al. (2013) are reviewed in Section 2.
The proposed crossing-sensitive factorization is de-
fined in Section 3. The parsing algorithm that finds
the optimal 1-Endpoint-Crossing tree according to
this factorization is described in Section 4. The
implemented parser is significantly more accurate
than the third-order projective parser in a variety
of languages and treebank representations (Section
5). Section 6 discusses the proposed approach in the
context of prior work on non-projective parsing.

2 Preliminaries

In a projective dependency tree, each subtree forms
one consecutive interval in the sequence of input
words; equivalently (assuming an artificial root node
placed as either the first or last token), when all
edges are drawn in the half-plane above the sen-
tence, no two edges cross (Kübler et al., 2009). Two
vertex-disjoint edges cross if their endpoints inter-
leave. A 1-Endpoint-Crossing tree is a dependency
tree such that for each edge, all edges that cross it
share a common vertex (Pitler et al., 2013). Note
that the class of projective trees is properly included
within the class of 1-Endpoint-Crossing trees.

To avoid confusion between intervals and edges,

g h e

=

g h m

+

h m e

(a) m is the child of h that e is descended from

g h

=

g h

+

hm ss m

(b) The edge ~ehm is added to the tree; s is m’s
adjacent inner sibling

= +

hm h s r+1r msh

(c) r is s’s outermost descendant; r + 1 is m’s
innermost descendant

Figure 1: Algorithm for grand-sibling projective parsing;
the figures replicate Figure 6 in Koo and Collins (2010).

~eij denotes the directed edge from i to j (i.e., i is the
parent of j). Interval notation ((i, j), [i, j], (i, j], or
[i, j)) is used to denote sets of vertices between i and
j, with square brackets indicating closed intervals
and round brackets indicating open intervals.

2.1 Grand-Sibling Projective Parsing

A grand-sibling factorization allows features over
4-tuples of (g, h,m, s), where h is the parent of
m, g is m’s grandparent, and s is m’s adjacent in-
ner sibling. Features over these grand-sibling 4-
tuples are referred to as “third-order” because they
scope over three edges simultaneously (~egh, ~ehs, and
~ehm). The parser of Koo and Collins (2010) pro-
duces the highest-scoring projective tree according
to this grand-sibling model by adding an external
grandparent index to each of the sub-problems used
in the sibling factorization (McDonald and Pereira,
2006). Figure 6 in Koo and Collins (2010) provided
a pictorial view of the algorithm; for convenience, it
is replicated in Figure 1. An edge ~ehm is added to the
tree in the “trapezoid” step (Figure 1b); this allows
the edge to be scored conditioned on m’s grandpar-
ent (g) and its adjacent inner sibling (s), as all four
relevant indices are accessible.

2.2 Edge-factored 1-Endpoint-Crossing
Parsing

The edge-factored 1-Endpoint-Crossing parser of
Pitler et al. (2013) produces the highest scoring 1-

42

* Which cars do Americans
0 1 2 3 4

?daysfavor most these
98765

Figure 2: A 1-Endpoint-Crossing non-projective English
sentence from the WSJ Penn Treebank (Marcus et al.,
1993), converted to dependencies with PennConverter
(Johansson and Nugues, 2007).

do Americans favor

do ?daysfavor most these

* do

* Which cars do favor

Figure 3: Constructing a 1-Endpoint-Crossing tree with
intervals with one exterior vertex (Pitler et al., 2013).

Endpoint-Crossing tree with each edge ~ehm scored
according to Score(Edge(h,m)). The 1-Endpoint-
Crossing property allows the tree to be built up in
edge-disjoint pieces each consisting of intervals with
one exterior point that has edges into the interval.
For example, the tree in Figure 2 would be built up
with the sub-problems shown in Figure 3.

To ensure that crossings within a sub-problem are
consistent with the crossings that happen as a result
of combination steps, the algorithm uses four dif-
ferent “types” of sub-problems, indicating whether
the edges incident to the exterior point may be inter-
nally crossed by edges incident to the left boundary
point (L), the right (R), either (LR), or neither (N).
In Figure 3, the sub-problem over [*, do] ∪ {favor}
would be of type R, and [favor, ?]∪ {do} of type L.

2.2.1 Naı̈ve Approach to Including
Grandparent Features

The example in Figure 3 illustrates the difficulty of
incorporating grandparents into the scoring of all
edges in 1-Endpoint-Crossing parsing. The vertex
favor has a parent or child in all three of the sub-
problems. In order to use grandparent scoring for
the edges from favor to favor’s children in the other
two sub-problems, we would need to augment the
problems with the grandparent index do. We also

must add the parent index do to the middle sub-
problem to ensure consistency (i.e., that do is in fact
the parent assigned). Thus, a first attempt to score all
edges with grandparent features within 1-Endpoint-
Crossing trees raises the runtime from O(n4) to
O(n7) (all of the four indices need a “predicted par-
ent” index; at least one edge is always implied so
one of these additional indices can be dropped).

3 Crossing-Sensitive Factorization

Factorizations for projective dependency parsing
have often been designed to allow efficient pars-
ing. For example, the algorithms in Eisner (2000)
and McDonald and Pereira (2006) achieve their ef-
ficiency by assuming that children to the left of the
parent and to the right of the parent are independent
of each other. The algorithms of Carreras (2007)
and Model 2 in Koo and Collins (2010) include
grandparents for only the outermost grand-children
of each parent for efficiency reasons. In a similar
spirit, this paper introduces a variant of the Grand-
Sib factorization that scores crossed edges indepen-
dently (as a CrossedEdge part) and uncrossed edges
under either a grandparent-sibling, grandparent, sib-
ling, or edge-factored model depending on whether
relevant edges in its local neighborhood are crossed.

A few auxiliary definitions are required. For any
parent h and grandparent g, h’s children are parti-
tioned into interior children (those between g and h)
and exterior children (the complementary set of chil-
dren).1 Interior children are numbered from closest
to h through furthest from h; exterior children are
first numbered on the side closer to h from closest
to h through furthest, then the enumeration wraps
around to include the vertices on the side closer to g.
Figure 4 shows a parent h, its grandparent g, and a
possible sequence of three interior and four exterior
children. Note that for a projective tree, there would
not be any children on the far side of g.

Definition 1. Let h be m’s parent. Outer(m) is the
set of siblings of m that are in the same subset of h’s
children and are later in the enumeration than m is.

For example, in the tree in Figure 2,

1Because dependency trees are directed trees, each node ex-
cept for the artificial root has a unique parent. To ensure that
grandparent is defined for the root’s children, assume an artifi-
cial parent of the root for notational convenience.

43

e1 e2i1i2i3 hge3 e4

Figure 4: The exterior children are numbered first begin-
ning on the side closest to the parent, then the side closest
to the grandparent. There must be a path from the root to
g, so the edges from h to its exterior children on the far
side of g are guaranteed to be crossed.

Crossed(~ehs) ¬Crossed(~ehs)
¬GProj (~ehm) Edge(h,m) Sib(h,m, s)
GProj (~ehm) Grand(g, h,m) GrandSib(g, h,m, s)

Table 2: Part type for an uncrossed edge ~ehm for
the crossing-sensitive third-order factorization (g is m’s
grandparent; s is m’s inner sibling).

Outer(most) = {days, cars}.
Definition 2. An uncrossed edge ~ehm is GProj if
both of the following hold:

1. The edge ~egh from h’s parent to h is not crossed

2. None of the edges from h to Outer(m) (m’s
outer siblings) are crossed

Uncrossed GProj edges include the grandparent
in the part. The part includes the sibling if the edge
~ehs from the parent to the sibling is not crossed. Ta-
ble 2 gives the factorization for uncrossed edges.

The parser in this paper finds the optimal 1-
Endpoint-Crossing tree according to this factorized
form. A fully projective tree would decompose into
exclusively GrandSib parts (as all edges would be
uncrossed and GProj). As all projective trees are
within the 1-Endpoint-Crossing search space, the
optimization problem that the parser solves includes
all projective trees scored with grand-sibling fea-
tures everywhere. Projective parsing with grand-
sibling scores can be seen as a special case, as the
crossing-sensitive 1-Endpoint-Crossing parser can
simulate a grand-sibling projective parser by setting
all Crossed(h,m) scores to −∞.

In Figure 2, the edge from do to Americans is
not GProj because Condition (1) is violated, while
the edge from favor to most is not GProj because
Condition (2) is violated. Under this definition, the
vertices do and favor (which have children in mul-
tiple sub-problems) do not need external grandpar-
ent indices in any of their sub-problems. Table 3

CrossedEdge(*,do) Sib(cars, Which, -)
CrossedEdge(favor,cars) Sib(do, Americans, -)
Sib(do, favor, Americans) CrossedEdge(do,?)
Sib(favor, most, -) Sib(favor, days, most)
GSib(favor, days, these, -)

Table 3: Decomposing Figure 2 according to the
crossing-sensitive third-order factorization described in
Section 3. Null inner siblings are indicated with -.

lists the parts in the tree in Figure 2 according to this
crossing-sensitive third-order factorization.

4 Parsing Algorithm

The parser finds the maximum scoring 1-Endpoint-
Crossing tree according to the factorization in Sec-
tion 3 with a dynamic programming procedure rem-
iniscent of Koo and Collins (2010) (for scoring un-
crossed edges with grandparent and/or sibling fea-
tures) and of Pitler et al. (2013) (for including
crossed edges). The parser also uses novel sub-
problems for transitioning between portions of the
tree with and without crossed edges. This formula-
tion of the parsing problem presents two difficulties:

1. The parser must know whether an edge is
crossed when it is added.

2. For uncrossed edges, the parser must use
the appropriate part for scoring according to
whether other edges are crossed (Table 2).

Difficulty 1 is solved by adding crossed and un-
crossed edges to the tree in distinct sub-problems
(Section 4.1). Difficulty 2 is solved by producing
different versions of subtrees over the same sets of
vertices, both with and without a grandparent index,
which differ in their assumptions about the tree out-
side of that set (Section 4.2). The list of all sub-
problems with their invariants and the full dynamic
program are provided in the supplementary material.

4.1 Enforcing Crossing Edges

The parser adds crossed and uncrossed edges in
distinct portions of the dynamic program. Un-
crossed edges are added only through trapezoid sub-
problems (that may or may not have a grandpar-
ent index), while crossed edges are added in non-
trapezoid sub-problems. To add all uncrossed edges

44

in trapezoid sub-problems, the parser (a) enforces
that any edge added anywhere else must be crossed,
and (b) includes transitional sub-problems to build
trapezoids when the edge ~ehm is not crossed, but the
edge to its inner sibling ~ehs is (and so the construc-
tion step shown in Figure 1b cannot be used).

4.1.1 Crossing Conditions
Pitler et al. (2013) included crossing edges by using
“crossing region” sub-problems over intervals with
an external vertex that optionally contained edges
between the interval and the external vertex. An
uncrossed edge could then be included either by a
derivation that prohibited it from being crossed or
a derivation which allowed (but did not force) it to
be crossed. This ambiguity is removed by enforcing
that (1) each crossing region contains at least one
edge incident to the exterior vertex, and (2) all such
edges are crossed by edges in another sub-problem.
For example, by requiring at least one edge between
do and (favor, ?] and also between favor and (*, do),
the edges in the two sets are guaranteed to cross.

4.1.2 Trapezoids with Edge to Inner Sibling
Crossed

To add all uncrossed edges in trapezoid-style sub-
problems, we must be able to construct a trapezoid
over vertices [h,m] whenever the edge ~ehm is not
crossed. The construction used in Koo and Collins
(2010), repeated graphically in Figure 5a, cannot
be used if the edge ~ehs is crossed, as there would
then exist edges between (h, s) and (s,m), making
s an invalid split point. The parser therefore includes
some “transitional glue” to allow alternative ways to
construct the trapezoid over [h,m] when ~ehm is not
crossed but the edge ~ehs to m’s inner sibling is.

The two additional ways of building trapezoids
are shown graphically in Figures 5b and 5c. Con-
sider the “chain of crossing edges” that includes the
edge ~ehs. If none of these edges are in the subtree
rooted at m, then we can build the tree involving
m and its inner descendants separately (Figure 5b)
from the rest of the tree rooted at h. Within the in-
terval [h, e− 1] the furthest edge incident to h (~ehs)
must be crossed: these intervals are parsed choosing
s and the crossing point of ~ehs simultaneously (as in
Figure 4 in Pitler et al. (2013)).

Otherwise, the sub-tree rooted at m is involved in

g h

=

g h

+

hm ss m

(a) Edge from h to inner sibling s is not crossed (re-
peats Figure 1b)

g h

=

hm mh

+

ee−1

(b) ~ehs is crossed, but the chain of crossing edges
involving ~ehs does not include any descendants of m.
e is m’s descendant furthest from m within (h,m).
s ∈ (h, e− 1).

h m

+

d
=

mg h h d

(c) ~ehs is crossed, and the chain of crossing edges
involving ~ehs includes descendants of m. Of m’s de-
scendants that are incident to edges in the chain, d is
the one closest to m (d can be m itself). s ∈ (h, d).

Figure 5: Ways to build a trapezoid when the edge ~ehs to
m’s inner sibling may be crossed.

the chain of crossing edges (Figure 5c). The chain
of crossing edges between h and d (m’s descendant,
which may be m itself) is built up first then concate-
nated with the triangle rooted at m containing m’s
inner descendants not involved in the chain.

Chains of crossing edges are constructed by re-
peatedly applying two specialized types of L items
that alternate between adding an edge from the in-
terval to the exterior point (right-to-left) or from
the exterior point to the interval (left-to-right) (Fig-
ure 6). The boundary edges of the chain can
be crossed more times without violating the 1-
Endpoint-Crossing property, and so the beginning
and end of the chain can be unrestricted crossing
regions. These specialized chain sub-problems are
also used to construct boxes (Figure 1c) over [s,m]
with shared parent h when neither edge ~ehs nor ~ehm
is crossed, but the subtrees rooted at m and at s cross
each other (Figure 7).

Lemma 1. The GrandSib-Crossing parser adds all
uncrossed edges and only uncrossed edges in a tree
in a “trapezoid” sub-problem.

Proof. The only part is easy: when a trapezoid is
built over an interval [h,m], all edges are internal to
the interval, so no earlier edges could cross ~ehm. Af-

45

= +

h s k s k

+

s k dh d

di k

x i d di k

= +

k k

+

x i

x i d

= +

k k

+

x idx i

= +

i d x i d

Figure 6: Constructing a chain of crossing edges

h d m

+

h d m h me

=

h s m h s d

=

d e

+

Figure 7: Constructing a box when edges in m and s’s
subtrees cross each other.

ter the trapezoid is built, only the interval endpoints
h and m are accessible for the rest of the dynamic
program, and so an edge between a vertex in (h,m)
and a vertex /∈ [h,m] can never be added. The
Crossing Conditions ensure that every edge added
in a non-trapezoid sub-problem is crossed.

Lemma 2. The GrandSib-Crossing parser con-
siders all 1-Endpoint-Crossing trees and only 1-
Endpoint-Crossing trees.

Proof. All trees that could have been built in Pitler
et al. (2013) are still possible. It can be verified that
the additional sub-problems added all obey the 1-
Endpoint-Crossing property.

4.2 Reduced Context in Presence of Crossings

A crossed edge (added in a non-trapezoid sub-
problem) is scored as a CrossedEdge part. An
uncrossed edge added in a trapezoid sub-problem,
however, may need to be scored according to a
GrandSib, Grand, Sib, or Edge part, depending on
whether the relevant other edges are crossed. In this
section we show that sibling and grandparent fea-
tures are included in the GrandSib-Crossing parser
as specified by Table 2.

do favor most these days

(a) For good contexts

favor most these daysdo

(b) For bad contexts

Figure 8: For each of the interval sub-problems in Koo
and Collins (2010), the parser constructs versions with
and without the additional grandparent index. Figure 8b
is used if the edge from do to favor is crossed, or if there
are any crossed edges from favor to children to the left of
do or to the right of days. Otherwise, Figure 8a is used.

4.2.1 Sibling Features

Lemma 3. The GrandSib-Crossing parser scores an
uncrossed edge ~ehm with a Sib or GrandSib part if
and only if ~ehs is not crossed.

Proof. Whether the edge to an uncrossed edge’s in-
ner sibling is crossed is known bottom-up through
how the trapezoid is constructed, since the inner sib-
ling is internal to the sub-problem. When ~ehs is not
crossed, the trapezoid is constructed as in Figure 5a,
using the inner sibling as the split point. When the
edge ~ehs is crossed, the trapezoid is constructed as in
Figure 5b or 5c; note that both ways force the edge
to the inner sibling to be crossed.

4.2.2 Grandparent Features for GProj Edges
Koo and Collins (2010) include an external grand-
parent index for each of the sub-problems that the
edges within use for scoring. We want to avoid
adding such an external grandparent index to any
of the crossing region sub-problems (to stay within
the desired time and space constraints) or to inter-
val sub-problems when the external context would
make all internal edges ¬GProj .

For each interval sub-problem, the parser con-
structs versions both with and without a grandpar-
ent index (Figure 8). Which version is used de-
pends on the external context. In a bad context, all
edges to children within an interval are guaranteed
to be ¬GProj . This section shows that all boundary
points in crossing regions are placed in bad contexts,
and then that edges are scored with grandparent fea-
tures if and only if they are GProj .

Bad Contexts for Interval Boundary Points For
exterior vertex boundary points, all edges from it to
its children will be crossed (Section 4.1.1), so it does
not need a grandparent index.

46

Lemma 4. If a boundary point i’s parent (call it g)
is within a sub-problem over vertices [i, j] or [i, j]∪
{x}, then for all uncrossed edges ~eim with m in the
sub-problem, the tree outside of the sub-problem is
irrelevant to whether ~eim is GProj .

Proof. The sub-problem contains the edge ~egi, so
Condition (1) is checked internally. m cannot be
x, since ~eim is uncrossed. If g is x, then ~eim is
¬GProj regardless of the outer context. If both g
and m ∈ (i, j], then Outer(m) ⊆ (i, j]: If m is an
interior child of i (m ∈ (i, g)) then Outer(m) ⊆
(m, g) ⊆ (i, j]. Otherwise, if m is an exterior child
(m ∈ (g, j]), by the “wrapping around” definition of
Outer , Outer(m) ⊆ (g,m) ⊆ (i, j]. Thus Condi-
tion (2) is also checked internally.

We can therefore focus on interval boundary
points with their parent outside of the sub-problem.

Definition 3. The left boundary vertex of an inter-
val [i, j] is in a bad context (BadContextL(i, j)) if
i receives its parent (call it g) from outside of the
sub-problem and either of the following hold:

1. Grand-Edge Crossed: ~egi is crossed

2. Outer-Child-Edge Crossed: An edge from i to
a child of i outside of [i, j] and Outer to j will
be crossed (recall this includes children on the
far side of g if g is to the left of i)

BadContextR(i, j) is defined symmetrically regard-
ing j and j’s parent and children.

Corollary 1. If BadContextL(i, j), then for all ~eim
with m ∈ (i, j], ~eim is ¬GProj . Similarly, if
BadContextR(i, j), for all ~ejm with m ∈ [i, j), ~ejm
is ¬GProj .

No Grandparent Indices for Crossing Regions
We would exceed the desired O(n4) run-time if
any crossing region sub-problems needed any grand-
parent indices. In Pitler et al. (2013), LR sub-
problems with edges from the exterior point crossed
by both the left and the right boundary points were
constructed by concatenating an L and an R sub-
problem. Since the split point was not necessar-
ily incident to a crossed edge, the split point might
have GProj edges to children on the side other than
where it gets its parent; accommodating this would
add another factor of n to the running time and space

x k jx i j
= +

kix

Figure 9: For all split points k, the edge from k’s parent
to k is crossed, so all edges from k to children on either
side were ¬GProj . The case when the split point’s parent
is from the right is symmetric.

x i k j

(a) x is Outer to all
children of k in (k, j].

x i k j

(b) x is Outer to all
children of k in [i, k).

Figure 10: The edge ~ekx is guaranteed to be crossed, so
k is in a BadContext for whichever side it does not get
its parent from.

to store the split point’s parent. To avoid this in-
crease in running time, they are instead built up as
in Figure 9, which chooses the split point so that the
edge from the parent of the split point to it is crossed.

Lemma 5. For all crossing region sub-problems
[i, j] ∪ {x} with i’s parent /∈ [i, j] ∪ {x},
BadContextL(i, j). Similarly, when j’s parent /∈
[i, j] ∪ {x}, BadContextR(i, j).

Proof. Crossing region sub-problems either com-
bine to form intervals or larger crossing regions.
When they combine to form intervals as in Figure
3, it can be verified that all boundary points are in
a bad context. LR sub-problems were discussed
above. Split points for the L/R/N sub-problems by
construction are incident to a crossed edge to a fur-
ther vertex. If that edge is from the split point’s par-
ent to the split point, then the grand-edge is crossed
and so both sides are in a bad context. If the crossed
edge is from the split point to a child, then that child
is Outer to all other children on the side in which it
does not get its parent (see Figure 10).

Corollary 2. No grandparent indices are needed for
any crossing region sub-problem.

Triangles and Trapezoids with and without
Grandparent Indices The presentation that fol-
lows assumes left-headed versions. Uncrossed
edges are added in two distinct types of trapezoids:
(1) TrapG[h,m, g,L] with an external grandpar-
ent index g, scores the edge ~ehm with grandpar-

47

ent features, and (2) Trap[h,m,L] without a grand-
parent index, scores the edge ~ehm without grand-
parent features. Triangles also have versions with
(TriG[h, e, g,L] and without (Tri[h, e,L]) a grand-
parent index. What follows shows that all GProj
edges are added in TrapG sub-problems, and all
¬GProj uncrossed edges are added in Trap sub-
problems.

Lemma 6. For all k ∈ (i, j), if BadContextL(i, j),
then BadContextL(i, k). Similarly, if
BadContextR(i, j), then BadContextR(k, j).

Proof. BadContextL(i, j) implies either the edge
from i’s parent to i is crossed and/or an edge from i
to a child of i outer to j is crossed. If the edge from
i’s parent to i is crossed, then BadContextL(i, k). If
a child of i is outer to j, then since k ∈ (i, j), such a
child is also outer to k.

Lemma 7. All left-rooted triangle sub-problems
Tri[i, j,L] without a grandparent index are in a
BadContextL(i, j). Similarly for all Tri[i, j,R],
BadContextR(i, j).

Proof. All triangles without grandparent indices are
either placed immediately into a bad context (by
adding a crossed edge to the triangle’s root from its
parent, or a crossed edge from the root to an outer
child) or are combined with other sub-trees to form
larger crossing regions (and therefore the triangle is
in a bad context, using Lemmas 5 and 6).

Lemma 8. All triangle sub-problems with a grand-
parent index TriG[h, e, g,L] are placed in a
¬BadContextL(h, e). Similarly, TriG[e, h, g,R]
are only placed in ¬BadContextR(h, e).
Proof. Consider where a non-empty triangle (h 6=
e) with a grandparent index TriG[h, e, g,L] can be
placed in the full dynamic program and what each
step would imply about the rest of the tree.

If the triangle contains exterior children of h (e
and g are on opposite sides of h), then it can either
combine with a trapezoid to form another larger tri-
angle (as in Figure 1a) or it can combine with an-
other sub-problem to form a box with a grandpar-
ent index (Figure 1c or 7). Boxes with a grandpar-
ent index can only combine with another trapezoid
to form a larger trapezoid (Figure 1b). Both cases

force ~egh to not be crossed and prevent h from hav-
ing any outer crossed children, as h becomes an in-
ternal node within the larger sub-problem.

If the triangle contains interior children of h (e
lies between g and h), then it can either form a trape-
zoid from g to h by combining with a triangle (Fig-
ure 5b) or a chain of crossing edges (Figure 5c), or it
can be used to build a box with a grandparent index
(Figures 1c and 7), which then can only be used to
form a trapezoid from g to h. In either case, a trape-
zoid is constructed from g to h, enforcing that ~egh
cannot be crossed. These steps prevent h from hav-
ing any additional children between g and e (since h
does not appear in the adjacent sub-problems at all
whenever h 6= e), so again the children of h in (e, h)
have no outer siblings.

Lemma 9. In a TriG[h, e, g,L] sub-problem, if an
edge ~ehm is not crossed and no edges from i to sib-
lings of m in (m, e] are crossed, then ~ehm is GProj .

Proof. This follows from (1) the edge ~ehm is not
crossed, (2) the edge ~egh is not crossed by Lemma 8,
and (3) no outer siblings are crossed (outer siblings
in (m, e] are not crossed by assumption and siblings
outer to e are not crossed by Lemma 8).

Lemma 10. An edge ~ehm scored with a GrandSib
or Grand part (added through a TrapG[h,m, g, L]
or TrapG[m,h, g,R] sub-problem) is GProj .

Proof. A TrapG can either (1) combine with de-
scendants of m to form a triangle with a grandparent
index rooted at h (indicating that m is the outermost
inner child of h) or (2) combine with descendants
of m and of m’s adjacent outer sibling (call it o),
forming a trapezoid from h to o (indicating that ~eho
is not crossed). Such a trapezoid could again only
combine with further uncrossed outer siblings until
eventually the final triangle rooted at h with grand-
parent index g is built. As ~ehm was not crossed, no
edges from h to outer siblings within the triangle are
crossed, and ~ehm is within a TriG sub-problem, ~ehm
is GProj by Lemma 9.

Lemma 11. An uncrossed edge ~ehm scored with a
Sib or Edge part (added through a Trap[h,m,L] or
Trap[m,h,R] sub-problem) is ¬GProj .

48

Proof. A Trap can only (1) form a triangle without
a grandparent index, or (2) form a trapezoid to an
outer sibling of m, until eventually a final triangle
rooted at h without a grandparent index is built. This
triangle without a grandparent index is then placed
in a bad context (Lemma 7) and so ~ehm is ¬GProj
(Corollary 1).

4.3 Main Results

Lemma 12. The crossing-sensitive third-order
parser runs in O(n4) time and O(n3) space when
the input is an unpruned graph. When the input
to the parser is a pruned graph with at most k in-
coming edges per node, the crossing-sensitive third-
order parser runs in O(kn3) time and O(n3) space.

Proof. All sub-problems are either over intervals
(two indices), intervals with a grandparent index
(three indices), or crossing regions (three indices).
No crossing regions require any grandparent indices
(Corollary 2). The only sub-problems that require
a maximization over two internal split points are
over intervals and need no grandparent indices (as
the furthest edges from each root are guaranteed to
be crossed within the sub-problem). All steps ei-
ther contain an edge in their construction step or in
the invariant of the sub-problem, so with a pruned
graph as input, the running time is the number of
edges (O(kn)) times the number of possibilities for
the other two free indices (O(n2)). The space is not
reduced as there is not necessarily an edge relation-
ship between the three stored vertices.

Theorem 1. The GrandSib-Crossing parser cor-
rectly finds the maximum scoring 1-Endpoint-
Crossing tree according to the crossing-sensitive
third-order factorization (Section 3) in O(n4) time
and O(n3) space. When the input to the parser is
a pruned graph with at most k incoming edges per
node, the GrandSib-Crossing parser correctly finds
the maximum scoring 1-Endpoint-Crossing tree that
uses only unpruned edges in O(kn3) time and
O(n3) space.

Proof. The correctness of scoring follows from
Lemmas 3, 10, and 11. The search space of 1-
Endpoint-Crossing trees was in Lemma 2 and the
time and space complexity in Lemma 12.

The parser produces the optimal tree in a well-
defined output space. Pruning edges restricts the
output space the same way that constraints enforc-
ing projectivity or the 1-Endpoint-Crossing property
also restrict the output space. Note that if the optimal
unconstrained 1-Endpoint-Crossing tree does not in-
clude any pruned edges, then whether the parser uses
pruning or not is irrelevant; both the pruned and un-
pruned parsers will produce the exact same tree.

5 Experiments

The crossing-sensitive third-order parser was imple-
mented as an alternative parsing algorithm within
dpo3 (Koo and Collins, 2010).2 To ensure a fair
comparison, all code relating to input/output, fea-
tures, learning, etc. was re-used from the origi-
nal projective implementation, and so the only sub-
stantive differences between the projective and 1-
Endpoint-Crossing parsers are the dynamic pro-
gramming charts, the parsing algorithms, and the
routines that extract the maximum scoring tree from
the completed chart.

The treebanks used to prepare the CoNLL shared
task data (Buchholz and Marsi, 2006; Nivre et al.,
2007) vary widely in their conventions for repre-
senting conjunctions, modal verbs, determiners, and
other decisions (Zeman et al., 2012). The exper-
iments use the newly released HamleDT software
(Zeman et al., 2012) that normalizes these treebanks
into one standard format and also provides built-in
transformations to other conjunction styles. The un-
normalized treebanks input to HamleDT were from
the CoNLL 2006 Shared Task (Buchholz and Marsi,
2006) for Danish, Dutch, Portuguese, and Swedish
and from the CoNLL 2007 Shared Task (Nivre et al.,
2007) for Czech.

The experiments include the default Prague
style (Böhmová et al., 2001), Mel’čukian style
(Mel’čuk, 1988), and Stanford style (De Marneffe
and Manning, 2008) for conjunctions. Under the
grandparent-sibling factorization, the two words be-
ing conjoined would never appear in the same scope
for the Prague style (as they are siblings on differ-
ent sides of the conjunct head). In the Mel’čukian
style, the two conjuncts are in a grandparent rela-
tionship and in the Stanford style the two conjuncts

2http://groups.csail.mit.edu/nlp/dpo3/

49

are in a sibling relationship, and so we would expect
to see larger gains for including grandparents and
siblings under the latter two representations. The
experiments also include a nearly projective dataset,
the English Penn Treebank (Marcus et al., 1993),
converted to dependencies with PennConverter (Jo-
hansson and Nugues, 2007).

The experiments use marginal-based pruning
based on an edge-factored directed spanning tree
model (McDonald et al., 2005). Each word’s set of
potential parents is limited to those with a marginal
probability of at least .1 times the probability of the
most probable parent, and cut off this list at a max-
imum of 20 potential parents per word. To ensure
that there is always at least one projective and/or 1-
Endpoint-Crossing tree achievable, the artificial root
is always included as an option. The pruning param-
eters were chosen to keep 99.9% of the true edges
on the English development set.

Following Carreras (2007) and Koo and Collins
(2010), before training the training set trees are
transformed to be the best achievable within the
model class (i.e., the closest projective tree or 1-
Endpoint-Crossing tree). All models are trained
for five iterations of averaged structured perceptron
training. For English, the model after the iteration
that performs best on the development set is used;
for all other languages, the model after the fifth iter-
ation is used.

5.1 Results

Results for edge-factored and (crossing-sensitive)
grandparent-sibling factored models for both projec-
tive and 1-Endpoint-Crossing parsing are in Tables
4 and 5. In 14 out of the 16 experimental set-ups,
the third-order 1-Endpoint-Crossing parser is more
accurate than the third-order projective parser. It is
significantly better than the projective parser in 9 of
the set-ups and significantly worse in none.

Table 6 shows how often the 1-EC CS-GSib
parser used each of the GrandSib, Grand, Sib,
Edge, and CrossedEdge parts for the Mel’čukian
and Stanford style test sets. In both representations,

3Following prior work in graph-based dependency parsing
(for example, Rush and Petrov (2012)), English results use au-
tomatically produced part-of-speech tags and results exclude
punctuation, while the results for all other languages use gold
part-of-speech tags and include punctuation.

Model Du Cz Pt Da Sw
Prague

Proj GSib 80.45 85.12 88.85 88.17 85.50
Proj Edge 80.38 84.04 88.14 88.29 86.09
1-EC CS-GSib 82.78 85.90 89.74 88.64 85.70
1-EC Edge 83.33 84.97 89.21 88.19 86.46

Mel’čukian
Proj GSib 82.26 87.96 89.19 90.23 89.59
Proj Edge 82.09 86.18 88.73 89.29 89.00
1-EC CS-GSib 86.03 87.89 90.34 90.50 89.34
1-EC Edge 85.28 87.57 89.96 90.14 88.97

Stanford
Proj GSib 81.16 86.83 88.80 88.84 87.27
Proj Edge 80.56 86.18 88.61 88.69 87.92
1-EC CS-GSib 84.67 88.34 90.20 89.22 88.15
1-EC Edge 83.62 87.13 89.43 88.74 87.36

Table 4: Overall Unlabeled Attachment Scores (UAS) for
all words.3 CS-GSib is the proposed crossing-sensitive
grandparent-sibling factorization. For each data set, we
bold the most accurate model and those not significantly
different from the most accurate (sign test, p < .05). Lan-
guages are sorted in increasing order of projectivity.

Model UAS
Proj GSib 93.10
Proj Edge 92.63
1-EC CS-GSib 93.22
1-EC Edge 92.80

Table 5: English results

the parser is able to score with a sibling context
more often than it is able to score with a grandpar-
ent, perhaps explaining why the datasets using the
Stanford conjunction representation saw the largest
gains from including the higher order factors into the
1-Endpoint-Crossing parser.

Across languages, the third-order 1-Endpoint-
Crossing parser runs 2.1-2.7 times slower than the
third-order projective parser (71-104 words per sec-
ond, compared with 183-268 words per second).
Parsing speed is correlated with the amount of prun-
ing. The level of pruning mentioned earlier is rela-
tively permissive, retaining 39.0-60.7% of the edges
in the complete graph; a higher level of pruning
could likely achieve much faster parsing times with
the same underlying parsing algorithms.

50

Part Used Du Cz Pt Da Sw
Mel’čukian

CrossedEdge 8.5 4.5 3.2 1.4 1.2
GrandSib 81.2 89.1 90.7 95.7 96.2
Grand 1.1 0.5 0.8 0.3 0.2
Sib 9.0 5.8 5.2 2.6 2.3
Edge < 0.1 < 0.1 0 < 0.1 0

Stanford
CrossedEdge 8.4 5.1 3.3 2.0 1.8
GrandSib 81.4 87.8 90.5 94.2 95.2
Grand 1.1 0.5 0.7 0.3 0.3
Sib 8.9 6.5 5.2 3.5 2.6
Edge < 0.1 0.1 0 < 0.1 0

Table 6: The proportion of edges in the predicted output
trees from the CS-GSib 1-Endpoint-Crossing parser that
would have used each of the five part types for scoring.

6 Discussion

There have been many other notable approaches to
non-projective parsing with larger scopes than single
edges, including transition-based parsers, directed
spanning tree graph-based parsers, and mildly non-
projective graph-based parsers.

Transition-based parsers score actions that the
parser may take to transition between different
configurations. These parsers typically use either
greedy or beam search, and can condition on any
tree context that is in the history of the parser’s
actions so far. Zhang and Nivre (2011) signifi-
cantly improved the accuracy of an arc-eager tran-
sition system (Nivre, 2003) by adding several ad-
ditional classes of features, including some third-
order features. Basic arc-eager and arc-standard
(Nivre, 2004) models that parse left-to-right using
a stack produce projective trees, but transition-based
parsers can be modified to produce crossing edges.
Such modifications include pseudo-projective pars-
ing in which the dependency labels encode transfor-
mations to be applied to the tree (Nivre and Nilsson,
2005), adding actions that add edges to words in the
stack that are not the topmost item (Attardi, 2006),
adding actions that swap the positions of words
(Nivre, 2009), and adding a second stack (Gómez-
Rodrı́guez and Nivre, 2010).

Graph-based approaches to non-projective pars-
ing either consider all directed spanning trees or re-
stricted classes of mildly non-projective trees. Di-
rected spanning tree approaches with higher order
features either use approximate learning techniques,

such as loopy belief propagation (Smith and Eis-
ner, 2008), or use dual decomposition to solve relax-
ations of the problem (Koo et al., 2010; Martins et
al., 2013). While not guaranteed to produce optimal
trees within a fixed number of iterations, these dual
decomposition techniques do give certificates of op-
timality on the instances in which the relaxation is
tight and the algorithm converges quickly.

This paper described a mildly non-projective
graph-based parser. Other parsers in this class find
the optimal tree in the class of well-nested, block
degree two trees (Gómez-Rodrı́guez et al., 2011),
or in a class of trees further restricted based on
gap inheritance (Pitler et al., 2012) or the head-split
property (Satta and Kuhlmann, 2013), with edge-
factored running times of O(n5) − O(n7). The
factorization used in this paper is not immediately
compatible with these parsers: the complex cases in
these parsers are due to gaps, not crossings. How-
ever, there may be analogous “gap-sensitive” factor-
izations that could allow these parsers to be extended
without large increases in running times.

7 Conclusion

This paper proposed an exact, graph-based algo-
rithm for non-projective parsing with higher order
features. The resulting parser has the same asymp-
totic run time as a third-order projective parser, and
is significantly more accurate for many experimental
settings. An exploration of other factorizations that
facilitate non-projective parsing (for example, an
analogous “gap-sensitive” variant) may be an inter-
esting avenue for future work. Recent work has in-
vestigated faster variants for third-order graph-based
projective parsing (Rush and Petrov, 2012; Zhang
and McDonald, 2012) using structured prediction
cascades (Weiss and Taskar, 2010) and cube prun-
ing (Chiang, 2007). It would be interesting to extend
these lines of work to the crossing-sensitive third-
order parser as well.

Acknowledgments

I would like to thank Sampath Kannan, Mitch Mar-
cus, Chris Callison-Burch, Michael Collins, Mark
Liberman, Ben Taskar, Joakim Nivre, and the three
anonymous reviewers for valuable comments on ear-
lier versions of this material.

51

References
G. Attardi. 2006. Experiments with a multilanguage

non-projective dependency parser. In Proceedings of
CoNLL, pages 166–170.

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2001.
The Prague Dependency Treebank: Three-level anno-
tation scenario. In Anne Abeillé, editor, Treebanks:
Building and Using Syntactically Annotated Corpora,
pages 103–127. Kluwer Academic Publishers.

B. Bohnet and J. Kuhn. 2012. The best of both worlds
– a graph-based completion model for transition-based
parsers. In Proceedings of EACL, pages 77–87.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task
on multilingual dependency parsing. In Proceedings
of CoNLL, pages 149–164.

X. Carreras. 2007. Experiments with a higher-order
projective dependency parser. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL, pages
957–961.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-
best parsing and maxent discriminative reranking. In
Proceedings of ACL, pages 173–180.

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201–228.

M. De Marneffe and C. Manning. 2008. Stanford typed
dependencies manual.

J. Eisner. 2000. Bilexical grammars and their cubic-
time parsing algorithms. In Harry Bunt and Anton
Nijholt, editors, Advances in Probabilistic and Other
Parsing Technologies, pages 29–62. Kluwer Academic
Publishers.

C. Gómez-Rodrı́guez and J. Nivre. 2010. A transition-
based parser for 2-planar dependency structures. In
Proceedings of ACL, pages 1492–1501.

C. Gómez-Rodrı́guez, J. Carroll, and D. Weir. 2011. De-
pendency parsing schemata and mildly non-projective
dependency parsing. Computational Linguistics,
37(3):541–586.

K. Hall. 2007. K-best spanning tree parsing. In Proceed-
ings of ACL, pages 392–399.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proceedings of the 16th Nordic Conference on Com-
putational Linguistics (NODALIDA), pages 105–112.

T. Koo and M. Collins. 2010. Efficient third-order de-
pendency parsers. In Proceedings of ACL, pages 1–11.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Son-
tag. 2010. Dual decomposition for parsing with non-
projective head automata. In Proceedings of EMNLP,
pages 1288–1298.

T. Koo. 2010. Advances in discriminative dependency
parsing. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

S. Kübler, R. McDonald, and J. Nivre. 2009. Depen-
dency parsing. Synthesis Lectures on Human Lan-
guage Technologies, 2(1):1–127.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguistics,
19(2):313–330.

A. F. T. Martins, N. A. Smith, and E. P. Xing. 2009.
Concise integer linear programming formulations for
dependency parsing. In Proceedings of ACL, pages
342–350.

A. Martins, M. Almeida, and N. A. Smith. 2013. Turn-
ing on the turbo: Fast third-order non-projective turbo
parsers. In Proceedings of ACL (Short Papers), pages
617–622.

R. McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithms. In Pro-
ceedings of EACL, pages 81–88.

R. McDonald and G. Satta. 2007. On the complexity
of non-projective data-driven dependency parsing. In
Proceedings of the 10th International Conference on
Parsing Technologies, pages 121–132.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič.
2005. Non-projective dependency parsing using span-
ning tree algorithms. In Proceedings of HLT/EMNLP,
pages 523–530.

I. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. In Proceedings of ACL, pages 99–106.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson,
S. Riedel, and D. Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. In Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL,
pages 915–932.

J. Nivre. 2003. An efficient algorithm for projective de-
pendency parsing. In Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies, pages 149–
160.

J. Nivre. 2004. Incrementality in deterministic depen-
dency parsing. In Proceedings of the Workshop on In-
cremental Parsing: Bringing Engineering and Cogni-
tion Together, pages 50–57.

J. Nivre. 2009. Non-projective dependency parsing in
expected linear time. In Proceedings of ACL, pages
351–359.

E. Pitler, S. Kannan, and M. Marcus. 2012. Dynamic
programming for higher order parsing of gap-minding
trees. In Proceedings of EMNLP, pages 478–488.

E. Pitler, S. Kannan, and M. Marcus. 2013. Find-
ing optimal 1-Endpoint-Crossing trees. Transac-
tions of the Association for Computational Linguistics,
1(Mar):13–24.

52

A. Rush and S. Petrov. 2012. Vine pruning for effi-
cient multi-pass dependency parsing. In Proceedings
of NAACL, pages 498–507.

G. Satta and M. Kuhlmann. 2013. Efficient parsing for
head-split dependency trees. Transactions of the As-
sociation for Computational Linguistics, 1(July):267–
278.

D. A. Smith and J. Eisner. 2008. Dependency parsing by
belief propagation. In Proceedings of EMNLP, pages
145–156.

D. Weiss and B. Taskar. 2010. Structured Prediction
Cascades. In AISTATS, pages 916–923.

D. Zeman, D. Mareček, M. Popel, L. Ramasamy,
J. Štěpánek, Z. Žabokrtský, and J. Hajič. 2012. Ham-
leDT: To parse or not to parse? In Proceedings of
the Eight International Conference on Language Re-
sources and Evaluation (LREC’12), pages 2735–2741.

H. Zhang and R. McDonald. 2012. Generalized higher-
order dependency parsing with cube pruning. In Pro-
ceedings of EMNLP, pages 320–331.

Y. Zhang and J. Nivre. 2011. Transition-based depen-
dency parsing with rich non-local features. In Pro-
ceedings of ACL (Short Papers), pages 188–193.

53

54

Exploring the Role of Stress in Bayesian Word Segmentation using Adaptor
Grammars

Benjamin Börschinger1,2 Mark Johnson1,3

1Department of Computing, Macquarie University, Sydney, Australia
2Department of Computational Linguistics, Heidelberg University, Heidelberg, Germany

3Santa Fe Institute, Santa Fe, USA
{benjamin.borschinger|mark.johnson}@mq.edu.au

Abstract

Stress has long been established as a major cue
in word segmentation for English infants. We
show that enabling a current state-of-the-art
Bayesian word segmentation model to take ad-
vantage of stress cues noticeably improves its
performance. We find that the improvements
range from 10 to 4%, depending on both the
use of phonotactic cues and, to a lesser ex-
tent, the amount of evidence available to the
learner. We also find that in particular early
on, stress cues are much more useful for our
model than phonotactic cues by themselves,
consistent with the finding that children do
seem to use stress cues before they use phono-
tactic cues. Finally, we study how the model’s
knowledge about stress patterns evolves over
time. We not only find that our model cor-
rectly acquires the most frequent patterns rel-
atively quickly but also that the Unique Stress
Constraint that is at the heart of a previously
proposed model does not need to be built in
but can be acquired jointly with word segmen-
tation.

1 Introduction

Among the first tasks a child language learner has to
solve is picking out words from the fluent speech
that constitutes its linguistic input.1 For English,
stress has long been claimed to be a useful cue
in infant word segmentation (Jusczyk et al., 1993;
Jusczyk et al., 1999b), following the demonstra-

1The datasets and software to replicate our experiments
are available from http://web.science.mq.edu.au/

˜bborschi/

tion of its effectiveness in adult speech process-
ing (Cutler et al., 1986). Several studies have
investigated the role of stress in word segmenta-
tion using computational models, using both neu-
ral network and “algebraic” (as opposed to “statis-
tical”) approaches (Christiansen et al., 1998; Yang,
2004; Lignos and Yang, 2010; Lignos, 2011; Lig-
nos, 2012). Bayesian models of word segmenta-
tion (Brent, 1999; Goldwater, 2007), however, have
until recently completely ignored stress. The sole
exception in this respect is Doyle and Levy (2013)
who added stress cues to the Bigram model (Gold-
water et al., 2009), demonstrating that this leads to
an improvement in segmentation performance. In
this paper, we extend their work and show how to
integrate stress cues into the flexible Adaptor Gram-
mar framework (Johnson et al., 2007). This allows
us to both start from a stronger baseline model and
to investigate how the role of stress cues interacts
with other aspects of the model. In particular, we
find that phonotactic cues to word-boundaries inter-
act with stress cues, indicating synergistic effects for
small inputs and partial redundancy for larger in-
puts. Overall, we find that stress cues add roughly
6% token f-score to a model that does not account
for phonotactics and 4% to a model that already in-
corporates phonotactics. Relatedly and in line with
the finding that stress cues are used by infants be-
fore phonotactic cues (Jusczyk et al., 1999a), we ob-
serve that phonotactic cues require more input than
stress cues to be used efficiently. A closer look at
the knowledge acquired by our models shows that
the Unique Stress Constraint of Yang (2004) can be
acquired jointly with segmenting the input instead

93

Transactions of the Association for Computational Linguistics, 2 (2014) 93–104. Action Editor: Stefan Riezler.
Submitted 12/2013; Published 2/2014. c©2014 Association for Computational Linguistics.

of having to be pre-specified; and that our models
correctly identify the predominant stress pattern of
the input but underestimate the frequency of iambic
words, which have been found to be missegmented
by infant learners.

The outline of the paper is as follows. In Section 2
we review prior work. In Section 3 we introduce our
own models. In Section 4 we explain our experimen-
tal evaluation and its results. Section 5 discusses our
findings, and Section 6 concludes and provides some
suggestions for future research.

2 Background and related work

Lexical stress is the “accentuation of syllables
within words” (Cutler, 2005) and has long been ar-
gued to play an important role in adult word recog-
nition. Following Cutler and Carter (1987)’s obser-
vation that stressed syllables tend to occur at the be-
ginnings of words in English, Jusczyk et al. (1993)
investigated whether infants acquiring English take
advantage of this fact. Their study demonstrated
that this is indeed the case for 9 month olds, al-
though they found no indication of using stressed
syllables as cues for word boundaries in 6 month
olds. Their findings have been replicated and ex-
tended in subsequent work (Jusczyk et al., 1999b;
Thiessen and Saffran, 2003; Curtin et al., 2005;
Thiessen and Saffran, 2007). A brief summary
of the key findings is as follows: English infants
treat stressed syllables as cues for the beginnings of
words from roughly 7 months of age, suggesting that
the role played by stress needs to be acquired, and
that this requires antecedent segmentation by non-
stress-based means (Thiessen and Saffran, 2007).
They also exhibit a preference for low-pass filtered
stress-initial words from this age, suggesting that it
is indeed stress and not other phonetic or phono-
tactic properties that are treated as a cue for word-
beginnings (Jusczyk et al., 1993). In fact, phontactic
cues seem to be used later than stress cues (Jusczyk
et al., 1999a) and seem to be outweighed by stress
cues (Mattys and Jusczyk, 2000).

The earliest computational model for word seg-
mentation incorporating stress cues we are aware of
is the recurrent network model of Christiansen et al.
(1998) and Christiansen and Curtin (1999). They
only reported a word-token f-score of 44% (roughly,
segmentation accuracy: see Section 4), which is

considerably below the performance of subsequent
models, making a direct comparison complicated.
Yang (2004) introduced a simple incremental algo-
rithm that relies on stress by embodying a Unique
Stress Constraint (USC) that allows at most a sin-
gle stressed syllable per word. On pre-syllabified
child directed speech, he reported a word token f-
score of 85.6% for a non-statistical algorithm that
exploits the USC. While the USC has been argued
to be near-to-universal and follows from the “cul-
minative function of stress” (Fromkin, 2001; Cutler,
2005), the high score Yang reported crucially de-
pends on every word token carrying stress, including
function words. More recently, Lignos (2010, 2011,
2012) further explored Yang’s original algorithm,
taking into account that function words should not
be assumed to possess lexical stress cues. While
his scores are in line with those reported by Yang,
the importance of stress for this learner were more
modest, providing a gain of around 2.5% (Lignos,
2011). Also, the Yang/Lignos learner is unable to
acquire knowledge about the role stress plays in the
language, e.g. that stress tends to fall on particular
positions within words.

Doyle and Levy (2013) extend the Bigram
model of Goldwater et al. (2009) by adding stress-
templates to the lexical generator. A stress-template
indicates how many syllables the word has, and
which of these syllables (if any) are stressed. This
allows the model to acquire knowledge about the
stress patterns of its input by assigning different
probabilities to the different stress-templates. How-
ever, Doyle and Levy (2013) do not directly exam-
ine the probabilities assigned to the stress-templates;
they only report that their model does slightly prefer
stress-initial words over the baseline model by cal-
culating the fraction of stress-initial word types in
the output segmentations of their models. They also
demonstrate that stress cues do indeed aid segmen-
tation, although their reported gain of 1% in token
f-score is even smaller than that reported by Lig-
nos (2011). Our own approach differs from theirs
in assuming phonemic rather than pre-syllabified in-
put (although our model could, trivially, be run on
syllabified input as well) and makes use of Adap-
tor Grammars instead of the Goldwater et al. (2009)
Bigram model, providing us with a flexible frame-
work for exploring the usefulness of stress in differ-

94

ent models.
Adaptor Grammar (Johnson et al., 2007) is

a grammar-based formalism for specifying non-
parametric hierarchical models. Previous work ex-
plored the usefulness of, for example, syllable-
structure (Johnson, 2008b; Johnson and Goldwa-
ter, 2009) or morphology (Johnson, 2008b; Johnson,
2008a) in word segmentation. The closest work to
our own is Johnson and Demuth (2010) who investi-
gate the usefulness of tones for Mandarin phonemic
segmentation. Their way of adding tones to a model
of word segmentation is very similar to our way of
incorporating stress.

3 Models

We give an intuitive description of the mathemati-
cal background of Adaptor Grammars in 3.1, refer-
ring the reader to Johnson et al. (2007) for technical
details. The models we examine are derived from
the collocational model of Johnson and Goldwater
(2009) by varying three parameters, resulting in 6
models: two baselines that do not take advantage of
stress cues and either do or do not use phonotactics,
as described in Section 3.2; and four stress models
that differ with respect to the use of phonotactics,
and as to whether they embody the Unique Stress
Constraint introduced by Yang (2004). We describe
these models in section 3.3.

3.1 Adaptor Grammars

Briefly, an Adaptor Grammar (AG) can be seen as
a probabilistic context-free grammar (PCFG) with a
special set of adapted non-terminals. We use un-
derlining to distinguish adapted non-terminals (X)
from non-adapted non-terminals (Y). The distri-
bution for each adapted non-terminal X is drawn
from a Pitman-Yor Process which takes as its base-
distribution the tree-distribution over trees rooted
in X as defined by the PCFG. As an effect, each
adapted non-terminal can be seen as having associ-
ated with it a cache of previously-generated subtrees
that can be reused without having to be regenerated
using the individual PCFG rules. This allows AGs to
learn reusable sub-trees such as words, sequences of
words, or smaller units such as Onsets and Codas.
Thus, while ordinary PCFGs have a finite number
of parameters (one probability for each rule), Adap-
tor Grammars in addition have a parameter for every

possible complete tree rooted in any of its adapted
non-terminals, leading to a potentially infinite num-
ber of such parameters. The Pitman-Yor Process in-
duces a rich-get-richer dynamics, biasing the model
towards identifying a small set of units that can be
reused as often as possible. In the case of word seg-
mentation, the model will try to identify as compact
a lexicon as possible to segment the unsegmented
input.

3.2 Baseline models

Our starting point is the state-of-the-art AG model
for word segmentation, Johnson and Goldwater
(2009)’s colloc3-syll model, reproduced in Fig-
ure 1.2 The model assumes that words are grouped
into larger collocational units that themselves can be
grouped into even larger collocational units. This
accounts for the fact that in natural language, there
are strong word-to-word dependencies that need to
be accounted for if severe undersegmentations of
the form “is in the” are to be avoided (Goldwater,
2007; Johnson and Goldwater, 2009; Börschinger et
al., 2012). It also uses a language-independent form
of syllable structure to constrain the space of possi-
ble words. Finally, this model can learn word-initial
onsets and word-final codas. In a language like En-
glish, this ability provides additional cues to word-
boundaries as certain onsets are much more likely
to occur word-initially than medially (e.g. “bl” in
“black”), and analogously for certain codas (e.g.
“dth” in “width” or “ngth” in “strength”).

We define an additional baseline model by replac-
ing rules (5) and (6) by (17), and deleting rules (7) to
(12). This removes the model’s ability to use phono-
tactic cues to word-boundaries.

Word → Syll (Syll) (Syll) (Syll) (17)

We refer to the model in Figure 1 as the colloc3-
phon model, and the model that results from sub-
stituting and removing rules as described as the
colloc3-nophon model. Alternatively, one could
limit the models ability to capture word-to-word de-
pendencies by removing rules (1) to (3). This results

2We follow Johnson and Goldwater (2009) in limiting the
length of possible words to four syllables to speed up runtime.
In pilot experiments, this choice did not have a noticeable effect
on segmentation performance.

95

Collocations3 → Collocation3+ (1)

Collocation3 → Collocation2+ (2)

Collocation2 → Collocation+ (3)

Collocation → Word+ (4)
Word → SyllIF (5)
Word → SyllI (Syll) (Syll) SyllF (6)
SyllIF → (OnsetI)RhymeF (7)
SyllI → (OnsetI)Rhyme (8)
SyllF → (Onset)RhymeF (9)

CodaF → Consonant+ (10)
RhymeF → Vowel (CodaF) (11)

OnsetI → Consonant+ (12)
Syll → (Onset)Rhyme (13)

Rhyme → Vowel (Coda) (14)

Onset → Consonant+ (15)

Coda → Consonant+ (16)

Figure 1: The baseline model. We use regular-expression
notation to abbreviate multiple rules. X {n} stands for up
to n repetitions of X , brackets indicate optionality, and
X+ stands for one or more repetitions of X . X indicates
an adapted non-terminal. Rules that introduce terminals
for the pre-terminals Vowel , Consonant are omitted.
Refer to the main text for an explanation of the grammar.

in the colloc-model (Johnson, 2008b) that has previ-
ously been found to behave similarly to the Bigram
model used in Doyle and Levy (2013) (Johnson,
2008b; Börschinger et al., 2012). We performed ex-
periments with the colloc-model as well and found
similar results to Doyle and Levy (2013) which are,
while overall worse, similar in trend to the results
obtained for the colloc3-models. For the rest of the
paper, therefore, we will focus on variants of the
colloc3-model.

3.3 Stress-based models

In order for stress cues to be helpful, the model must
have some way of associating the position of stress
with word-boundaries. Intuitively, the reason stress
helps infants in segmenting English is that a stressed
syllable is a reliable indicator of the beginning of
a word (Jusczyk et al., 1993). More generally, if
there is a (reasonably) reliable relationship between
the position of stressed syllables and beginnings (or

Word → {SSyll | USyll }{1,4} (18)
SSyll → (Onset)RhymeS (19)
USyll → (Onset)RhymeU (20)

RhymeS → Vowel ∗ (Coda) (21)
RhymeU → Vowel (Coda) (22)

Onset → Consonant+ (23)

Coda → Consonant+ (24)

Figure 2: Description of the all-stress-patterns model. We
use X {m,n} for “at least m and at most n repetitions of
X ” and {X | Y } for “either X or Y ”. Stress is asso-
ciated with a vowel by suffixing it with the special termi-
nal symbol ∗ , leading to a distinction between stressed
(SSyll) and unstressed (USyll) syllables. A word can
consist of any possible sequence of up to four syllables,
as indicated by the regular-expression notation. By ad-
ditionally adding initial and final variants of SSyll and
USyll as in Figure 1, phonotactics can be combined with
stress cues.

endings) of words, a learner might exploit this rela-
tionship. In a Bayesian model, this intuition can be
captured by modifying the lexical generator, that is,
the distribution that generates Word s.

Here, changing the lexical generator corresponds
to modifying the rules expanding Word . A straight-
forward way to modify it accordingly is to enu-
merate all possible sequences of stressed and un-
stressed syllables.3 A lexical generator like this is
given in Figure 2. In the data, stress cues are rep-
resented using a special terminal “ ∗ ” that follows
a stressed vowel, as illustrated in Figure 3. In the
grammar, “ ∗ ” is constrained to only surface follow-
ing a Vowel , rendering a syllable in which it occurs
stressed (SSyll). Syllables that do not contain a “ ∗ ”
are considered unstressed (USyll). By performing
inference for the probabilities assigned to the dif-
ferent expansions of rule (18), our models can, for
example, learn that a bi-syllabic word that is stress-
initial (a trochee) is more probable than one that puts
stress on the second syllable (an iamb). This (partly)
captures the tendency of English for stress-initial
words and thus provide an additional cue for identi-
fying words; and it is exactly the kind of preference
infant learners of English seem to acquire (Jusczyk

3This is, in essence, also the strategy chosen by Doyle and
Levy (2013).

96

grammar phon stress USC
colloc3-nophon
colloc3-phon •

colloc3-nophon-stress •
colloc3-phon-stress • •

colloc3-nophon-stress-usc • •
colloc3-phon-stress-usc • • •

Table 1: The different models used in our experiments.
“phon” indicates whether phonotactics are used, “stress”
whether stress cues are used and “usc” whether the
Unique Stress Constraint is assumed.

orthographic the do-gie
no-stress dh ah d ao g iy

stress dh ah d ao * g iy

Figure 3: Illustration of the input-representation we
choose. We indicate primary stress according to the dic-
tionary with bold-face in the orthography. The phonemic
transcription uses ARPABET and is produced using an
extended version of CMUDict. Primary stress is indi-
cated by inserting the special symbol “*” after the vowel
of a stressed syllable.

et al., 1993).
We can combine this lexical generator with the

colloc3-nophon baseline, resulting in the colloc3-
nophon-stress model. We can also add phonotac-
tics to the lexical generator in Figure 2 by adding
initial and final variants of SSyll and USyll , anal-
ogous to rules (5) to (12) in Figure 1. This yields
the colloc3-phon-stress model. We can also add
the Unique Stress Constraint (USC) (Yang, 2004)
by excluding all variants of rule (18) that generate
two or more stressed syllables. For example, while
the lexical generator for the colloc3-nophon-stress
model will include the rule Word → SSyll SSyll ,
the lexical generator embodying the USC lacks this
rule. We refer to the models that include the USC as
colloc3-nophon-stress-usc and colloc3-phon-stress-
usc models. A compact overview of the six different
models is given in Table 1.

4 Experiments

We evaluate our models on several corpora of child
directed speech. We first describe the corpora we
used, then the experimental methodology employed
and finally the experimental results. As the trend is

comparable across all corpora, we only discuss in
detail results obtained on the Alex corpus. For com-
pleteness, however, Table 3 reports the “standard”
evaluation of performing inference over all of the
three corpora.

4.1 Corpora and corpus creation

Following Christiansen et al. (1998) and Doyle and
Levy (2013), we use the Korman corpus (Korman,
1984) as one of our corpora. It comprises child-
directed speech for very young infants, aged be-
tween 6 and 16 weeks and, like all other cor-
pora used in this paper, is available through the
CHILDES database (MacWhinney, 2000). We de-
rive a phonemicized version of the corpus using
an extended version of CMUDict (Carnegie Mellon
University, 2008)4, as we were unable to obtain the
stress-annotated version of this corpus used in previ-
ous experiments. The phonemicized version is pro-
duced by replacing each orthographic word in the
transcript with the first pronunciation given by the
dictionary. CMUDict also annotates lexical stress,
and we use this information to add stress cues to the
corpus. We only code primary lexical stresses in the
input, ignoring secondary stresses in line with ex-
perimental work that indicates that human listeners
are capable of reliably distinguishing primary and
secondary stress (Mattys, 2000). Due to the very
low frequency of words with 3 or more syllables in
these corpora, this choice has very little effect on the
number of stress cues available in the input. Our ver-
sion of the Korman corpus contains, in total, 11413
utterances. Unlike Christiansen et al. (1998), Yang
(2004), and Doyle and Levy (2013), we follow Lig-
nos and Yang (2010) in making the more realistic as-
sumption that the 94 mono-syllabic function words
listed by Selkirk (1984) never surface with lexical
stress. As function words account for roughly 50%
of the tokens but only roughly 5% of the types in our
corpora, this means that the type and token distribu-
tion of stress patterns differs dramatically in all our
corpora, as can be seen from Table 2.

We also added stress information to the Brent-
Bernstein-Ratner corpus (Bernstein-Ratner, 1987;
Brent, 1999), following the procedure just out-
lined. This corpus is a de-facto standard for evaluat-

4http://svn.code.sf.net/p/cmusphinx/
code/trunk/cmudict/cmudict.0.7a

97

Pattern
brent korman alex

Tok Typ Tok Typ Tok Typ
W+ .48 .07 .47 .08 .44 .05
SW∗ .49 .86 .49 .86 .52 .87

WSW∗ .03 .07 .03 .06 .04 .07
Other .00 .00 .00 .00 .00 .00

Table 2: Relative frequencies for stress patterns for the
corpora used in our study. X∗ stands for 0 or more, X+

for one or more repetitions of X , and S for a stressed and
W for an unstressed syllable. Note the stark asymmetry
between type and token frequencies for unstressed words.
Up to two-decimal places, patterns other than the ones
given have relative frequency 0.00 (frequencies might not
sum to 1 as an artefact of rounding to 2 decimal places).

ing models of Bayesian word segmentation (Brent,
1999; Goldwater, 2007; Goldwater et al., 2009;
Johnson and Goldwater, 2009), comprising in total
9790 utterances.

As our third corpus, we use the Alex portion
of the Providence corpus (Demuth et al., 2006;
Börschinger et al., 2012). A major benefit of the
Providence corpus is that the video-recordings from
which the transcripts were produced are available
through CHILDES alongside the transcripts. This
will allow future work to rely on even more realis-
tic stress cues that can be derived directly from the
acoustic signal. While beyond the scope of this pa-
per, we believe choosing a corpus that makes richer
information available will be important for future
work on stress (and other acoustic) cues. Another
major benefit of the Alex corpus is that it provides
longitudinal data for a single infant, rather than be-
ing a concatenation of transcripts collected from
multiple children, such as the Korman and the Brent-
Bernstein-Ratner corpus. In total, the Alex corpus
comprises 17948 utterances.

Note that despite the differences in age of the in-
fants and overall make-up of the corpora, the dis-
tribution of stress patterns across the corpora is
roughly the same, as shown by Table 2 for the first
10,000 utterances of each of the corpora. This sug-
gests that the distribution of stress patterns both at a
token and type level is a robust property of English
child-directed speech.

4.2 Evaluation procedure

The aim of our experiments is to understand the
contribution of stress cues to the Bayesian word
segmentation models described in Section 3. To
get an idea of how input size interacts with this,
we look at prefixes of the corpora with increasing
sizes (100, 200, 500, 1000, 2000, 5000, and 10,000
utterances). In addition, we are interested in under-
standing what kind of stress pattern preferences our
models acquire. For this, we also collect samples of
the probabilities assigned to the different expansions
of rule (18), allowing us to examine this directly.
The standard evaluation of segmentation models in-
volves having them segment their input in an un-
supervised manner and evaluating performance on
how well they segmented that input. We addition-
ally evaluate the models on a test set for each cor-
pus. Use of a separate test set has previously been
suggested as a means of testing how well the knowl-
edge a learner acquired generalizes to novel utter-
ances (Pearl et al., 2011), and is required for the kind
of comparison across different sizes of input we are
interested in to determine whether there the role of
stress cues interacts with the input size.

We create the test-sets by taking the final 1000 ut-
terances for each corpus. These 1000 utterances will
be segmented by the model after it has performed
inference on its input, without making any further
changes to the lexicon that the model has induced.
In other words, the model will have to segment each
of the test utterances using only the lexicon (and any
additional knowledge about co-occurrences, phono-
tactics, and stress) it has acquired from the training
portion of the corpus during inference.

We measure segmentation performance using the
standard metric of token f-score (Brent, 1999) which
is the harmonic mean of token precision and recall.
Token f-score provides an overall impression of how
accurate individual word tokens were identified. To
illustrate, if the gold segmentation is “the dog”, the
segmentation “th e dog” has a token precision of 1

3
(one out of three predicted words is correct); a token
recall of 1

2 (one of the two gold words was correctly
identified); and a token f-score of 0.4.

4.3 Inference

For inference, we closely follow Johnson and Gold-
water (2009): we put vague priors on all the hyper-

98

p s usc alex korman brent
train test train test train test
.81 .81 .85 .83 .82 .82

• .85 .84 .86 .84 .86 .86
• .86 .87 .87 .86 .86 .87

• • .88 .88 .88 .87 .87 .87
• • .87 .88 .87 .88 .86 .87

• • • .88 .88 .88 .87 .87 .88

Table 3: Token f-scores on both train and test portions
for all three corpora when inference is performed over
the full corpus. Note that the benefit of stress is clearer
when evaluating on the test set, and that overall, perfor-
mance of the different models is comparable across all
three corpora. Models are coded according to the key in
Table 1.

parameters of our models and run 4 chains for 1000
iterations, collecting 20 samples from each chain
with a lag of 10 iterations between each sample af-
ter a burn-in of 800 iterations, using both batch-
initialization and table-label resampling to ensure
good convergence of the sampler. We construct a
single segmentation from the posterior samples us-
ing their minimum Bayes risk decoding, providing a
single score for each condition.

4.4 Experimental conditions

Each of our six models is evaluated on inputs of in-
creasing size, starting at 100 and ending at 10,000
utterances, allowing us to investigate both how per-
formance and “knowledge” of the learner varies as
a function of input size. For completeness, we also
report the “standard” evaluation, i.e. performance of
our models on all corpora when trained on the entire
input in Table 3. We will focus our discussion on the
results obtained on the Alex corpus, which are de-
picted in Figure 4, where the input size is depicted
on the x-axis, and the segmentation f-score for the
test-set on the y-axis.

5 Discussion

We find a clear improvement for the stress-models
over both the colloc3-nophon and the colloc3-phon
models. As can be seen in Table 3, the overall
trend is the same for all three corpora, both when
evaluating on the input and the separate test-set.5

5We performed Wilcox rank sum tests on the individual
scores of the 4 independent chains for each model on the full
training data sets and found that the stress-models were always

Note how the relative gain for stress is roughly
1% higher when evaluating on the test-set; this
might have to do with Jusczyk (1997)’s observa-
tion that the advantage of stress “might be more
evident for relatively unexpected or unfamiliarized
strings” (Jusczyk, 1997). A closer look at Figure 4
indicates further interesting differences between the
colloc3-nophon and the colloc3-phon models that
only become evident when considering different in-
put sizes.

5.1 Stress cues without phonotactics

For the colloc3-nophon models, we observe a rel-
atively stable improvement by adding stress cues
of 6-7%, irrespective of input size and whether or
not the Unique Stress Constraint (USC) is assumed.
The sole exception to this occurs when the learner
only gets to see 100 utterances: in this case, the
colloc-nophon-stress model only shows a 3% im-
provement, whereas the colloc3-nophon-stress-usc
model obtains a boost of roughly 8%. Noticeable
consistent differences between the colloc3-nophon-
stress and colloc3-nophon-stress-usc model, how-
ever, all but disappear starting from around 500 ut-
terances. This is somewhat surprising, considering
that it is the USC that was argued by Yang (2004) to
be key for taking advantage of stress.6

We take this behaviour to indicate that even
with as little evidence as 200 to 500 utterances,
a Bayesian ideal learner can effectively infer that
something like the USC is true of English. This
also becomes clear when examining how the learn-
ers’ preferences for different stress patterns evolve
over time, as we do in Section 5.3 below.

5.2 Stress cues and phonotactics

Overall, the models including phonotactic cues per-
form better than those that do not rely on phono-
tactics. However, the overall gain contributed by
stress to the colloc3-phon baseline is smaller, al-

significantly more accurate (p < 0.05) than the baseline models
except when evaluating on the training data for the Korman and
Brent corpora.

6On data in which function words are marked for stress (as
in Yang (2004) and Doyle and Levy (2013)), the USC yields ex-
tremely high scores across all models, simply because roughly
every second word is a function word. Given that this assump-
tion is extremely unnatural, we do not take this as an argument
for the USC.

99

0.65

0.70

0.75

0.80

0.85

100 200 500 1000 2000 5000 10000
number of input utterances

se
gm

en
ta

tio
n

f−
sc

or
e

colloc3−nophon
colloc3−phon
colloc3−nophon−stress
colloc3−phon−stress
colloc3−nophon−stress−usc
colloc3−phon−stress−usc

Figure 4: Segmentation performance of the different models, across different input sizes and as evaluated on the
test-set for the Alex corpus. The no-stress baselines are given in red, the stress-models without the Unique Stress
Constraint (USC) in green and the ones including the USC in black. Solid lines indicate models that use, dashed lines
models that do not use phonotactics. Refer to the text for discussion.

though this seems to depend on the size of the input.
While phonotactics by itself appears to be a pow-
erful cue, yielding a noticeable 4-5% improvement
over the colloc3-nophon baseline, the learner seems
to require at least around 500 utterances before the
colloc3-phon model becomes clearly more accurate
than the colloc3-nophon model. In contrast, even
for only 100 utterances stress cues by themselves
provide a 3% improvement to the colloc3-nophon
model, indicating that they can be taken advantage
of earlier. While the number of utterances processed
by a Bayesian ideal learner is not directly related to
developmental stages, this observation is consistent
with the psycholinguists’ claim that phonotactics are
used by infants for word segmentation after they
have begun to use stress for segmentation (Jusczyk
et al., 1999a).

Turning to the interaction between stress and
phonotactics, we see that there is no consistent ad-
vantage of including the USC in the model. This
is, in fact, even clearer than for the colloc3-nophon
model where at least for small inputs of size 100,
the USC added almost 5% in performance. For the
colloc3-phon models, we only observe a 1-2% im-
provement by adding the USC up until 500 utter-

ances. This further strengthens the point that even in
the absence of such an innate constraint, a statisti-
cal learner can take advantage of stress cues and, as
we show below, actually acquire something like the
USC from the input.

The 4% difference between the colloc3-phon-
stress / colloc3-phon-stress-usc models to the
colloc3-phon baseline is smaller than the 7% dif-
ference between the colloc3-nophon and colloc3-
nophon-stress models. This shows that there is a
redundancy between phonotactic and stress cues in
large amounts of data, as their joint contribution to
the colloc3-nophon baseline is less than the sum of
their individual contributions at 10,000 utterances,
of 4% (for phonotactics) and 7% (for stress).

Unlike for the colloc3-nophon models, we also
see a clear impact of input size. In particular, at
100 utterances the addition of stress cues leads to
an 8 – 10% improvement, depending on whether or
not the USC is assumed, whereas for the colloc3-
nophon model we only observed a 3 – 8% improve-
ment. This is particularly striking when we con-
sider that by themselves, the phonotactic cues only
contribute a 1% improvement to the colloc3-nophon
baseline when trained on the 100 utterance corpus,

100

indicating a synergistic interaction (rather than re-
dundancy) between phonotactics and stress for small
inputs. This effect disappears starting from around
1000 utterances; for inputs of size 1000 and larger,
the net-gain of stress drops from roughly 10% to a
3–4% improvement. That is, while we did not notice
any relationship between input size and impact of
stress cues for the colloc3-nophon model, we do see
such an interaction for the combination of phonotac-
tics and stress cues which, taken together, lead to a
larger relative gain in performance on smaller inputs
than on large ones.

5.3 Acquisition of stress patterns

In addition to acquiring a lexicon, the Bayesian
learner acquires knowledge about the possible stress
patterns of English words. The fact that this knowl-
edge is explicitly represented through the PCFG
rules and their probabilities that define the lexi-
cal generator allows us to study the generalisations
about stress the model actually acquires. While
Doyle and Levy (2013) suggest carrying out such
an analysis, they restrict themselves to estimating
the fraction of stress patterns in the segmented out-
put. As shown in Table 2, however, the type and
token distributions of stress patterns can differ sub-
stantially. We therefore investigate the stress pref-
erences acquired by our learner by examining the
probabilities assigned to the different expansions of
rule (18), aggregating the probabilities of the indi-
vidual rules into patterns. For example, the rules
Word → SSyll (USyll){0,3} correspond to the
pattern “Stress on the first syllable”, whereas the
rules Word → USyll {1,4} correspond to the pat-
tern “Unstressed word”. By computing the respec-
tive probabilities, we get the overall probability as-
signed by a learner to the pattern.

Figure 5 provides this information for several dif-
ferent rule patterns. Additionally, these plots in-
clude the empirical type (red dotted) and token pro-
portions (red double-dashed) for the input corpus.
Note how for the two major patterns, all models suc-
cessfully track the type, rather than the token fre-
quency, correctly developing a preference for stress-
initial over unstressed words, despite the compa-
rable token frequency of these two patterns. This
is compatible with a recent proposal by Thiessen
and Saffran (2007), who argue that infants infer the

stress pattern over their lexicon. For a Bayesian
model such as ours or Goldwater et al. (2009)’s,
there is no need to pre-specify that the distribution
ought to be learned over types rather than tokens, as
the models automatically interpolate between type
and token statistics according to the properties of
their input (Goldwater et al., 2006). In addition,
a Bayesian framework provides a simple answer to
the question of how a learner might identify the role
of stress in its language without already having ac-
quired at least some words. By combining differ-
ent kinds of cues, e.g. distributional, phonotactic
and prosodic, in a principled manner a Bayesian
learner can jointly segment its input and learn the
appropriate role of each cue, without having to pre-
specify specific preferences that might differ across
languages.

The iambic rule pattern that puts stress on the sec-
ond syllable is much more infrequent on a token
level. All models track this low token frequency,
underestimating the type frequency of this pattern
by a fair amount. This suggests that learning this
pattern correctly requires considerably more input
than for the other patterns. Indeed, the iambic pat-
tern is known to pose problems for infants when they
start using stress as an effective cue. It is only from
roughly 10 months of age that infants successfully
segment iambic words (Jusczyk et al., 1999b). Not
surprisingly, the USC doesn’t aid in learning about
this pattern because it is completely silent on where
stress might fall (and does not noticeably improve
segmentation performance to begin with).

Finally, we can also investigate whether the
models that lack the USC nevertheless learn that
words contain at most one lexically stressed syl-
lable. The bottom-right graph in Figure 5 plots
the probability assigned by the models to patterns
that violate the USC. This includes, for example,
the rules Word → SyllS SyllS and Word →
SyllS SyllU SyllS . Note how the probabilities as-
signed to these rules approaches zero, indicating that
the learner becomes more certain that there are no
words that contain more than one syllable with lex-
ical stress. As we argued above, this suggests that a
Bayesian learner can acquire the USC from a mod-
est amount of data — it will properly infer that the
unnatural patterns are simply not supported by the
input. To summarize, by examining the internal

101

0.55

0.60

0.65

0.70

0.75

0.80

0.85

100 200 500 1000 2000 5000 10000

P
(S

tr
es

s
on

 fi
rs

t)

0.02

0.03

0.04

0.05

0.06

0.07

100 200 500 1000 2000 5000 10000
number of input utterances

P
(S

tr
es

s
on

 s
ec

on
d)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

100 200 500 1000 2000 5000 10000

P
(U

ns
tr

es
se

d
w

or
d)

0.05

0.10

100 200 500 1000 2000 5000 10000
number of input utterances

P
(V

io
la

te
s

U
S

C
)

colloc3−nophon−stress colloc3−phon−stress colloc3−nophon−stress−usc colloc3−phon−stress−usc

Figure 5: Evolution of the knowledge the learner acquires on the Alex corpus. The red dotted line indicates the
empirical type distribution of a specific pattern, and the double-dashed line the empirical token distribution. Top-Left:
Stress-initial pattern, Top-Right: Unstressed Words, Bottom-Left: Stress-second pattern, Bottom-Right: Patterns that
violate the USC.

state of the Bayesian learners we can characterise
how their knowledge about the stress preferences of
their languages develops, rather than merely measur-
ing how well they perform word segmentation. We
find that the iambic pattern that has been observed to
pose problems for infant learners also is harder for
the Bayesian learner to acquire, arguably due to its
extremely low token-frequency.

6 Conclusion and Future Work

We have presented Adaptor Grammar models of
word segmentation that are able to take advantage
of stress cues and are able to learn from phonemic
input. We find that phonotactics and stress interact
in interesting ways, and that stress cues makes a sta-
ble contribution to existing word segmentation mod-
els, improving their performance by 4-6% token f-
score. We also find that the USC introduced by Yang
(2004) need not be prebuilt into a model but can be
acquired by a Bayesian learner from the data. Sim-
ilarly, we directly investigate the stress preferences

acquired by our models and find that for stress-initial
and unstressed words, they track type rather than
token frequencies. The rare stress-second pattern
seems to require more input to be properly acquired,
which is compatible with infant development data.

An important goal for future research is to eval-
uate segmentation models on typologically different
languages and to study the relative usefulness of dif-
ferent cues cross-lingually. For example, languages
such as French lack lexical stress; it would be inter-
esting to know whether in such a case, phonotactic
(or other) cues are more important. Relatedly, recent
work such as Börschinger et al. (2013) has found
that artificially created data often masks the com-
plexity exhibited by real speech. This suggests that
future work should use data directly derived from
the acoustic signal to account for contextual effects,
rather than using dictionary look-up or other heuris-
tics. In using the Alex corpus, for which good qual-
ity audio is available, we have taken a first step in
this direction.

102

Acknowledgements

This research was supported by the Australian
Research Council’s Discovery Projects funding
scheme (project numbers DP110102506 and
DP110102593). We’d like to thank Professor
Dupoux and our other colleagues at the Laboratoire
de Sciences Cognitives et Psycholinguistique in
Paris for hosting us while this research was per-
formed, as well as the Mairie de Paris, the fondation
Pierre Gilles de Gennes, the Ecole des Hautes
Etudes en Sciences Sociales, the Ecole Normale
Supérieure, The Region Ile de France, the European
Research Council (ERC-2011-AdG-295810 BOOT-
PHON), the Agence Nationale pour la Recherche
(ANR-2010-BLAN-1901-1 BOOTLANG, ANR-
10-IDEX-0001-02 and ANR-10-LABX-0087) and
the Fondation de France. We’d also like to thank
three anonymous reviewers for helpful comments
and suggestions.

References

N. Bernstein-Ratner. 1987. The phonology of parent-
child speech. In K. Nelson and A. van Kleeck, editors,
Children’s Language, volume 6. Erlbaum, Hillsdale,
NJ.

Benjamin Börschinger, Katherine Demuth, and Mark
Johnson. 2012. Studying the effect of input size for
Bayesian word segmentation on the Providence cor-
pus. In Proceedings of the 24th International Con-
ference on Computational Linguistics (Coling 2012),
pages 325–340. Coling 2012 Organizing Committee.

Benjamin Börschinger, Mark Johnson, and Katherine De-
muth. 2013. A joint model of word segmentation
and phonological variation for English word-final /t/-
deletion. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1508–1516. Association
for Computational Linguistics.

M. Brent. 1999. An efficient, probabilistically sound
algorithm for segmentation and word discovery. Ma-
chine Learning, 34:71–105.

M. Christiansen and S. Curtin. 1999. The power of sta-
tistical learning: No need for algebraic rules. In Pro-
ceedings of the 21st Annual Conference of the Cogni-
tive Science Society.

Morten H Christiansen, Joseph Allen, and Mark S Sei-
denberg. 1998. Learning to segment speech using
multiple cues: A connectionist model. Language and
Cognitive Processes, 13(2-3):221–268.

Suzanne Curtin, Toben H Mintz, and Morten H Chris-
tiansen. 2005. Stress changes the representational
landscape: Evidence from word segmentation. Cog-
nition, 96(3):233–262.

Anne Cutler and David M Carter. 1987. The predomi-
nance of strong initial syllables in the English vocabu-
lary. Computer Speech and Language, 2(3):133–142.

Anne Cutler, Jacques Mehler, Dennis Norris, and Juan
Segui. 1986. The syllable’s differing role in the seg-
mentation of French and English. Journal of Memory
and Language, 25(4):385 – 400.

Anne Cutler. 2005. Lexical stress. In David B.
Pisoni and Robert E. Remez, editors, The Handbook
of Speech Perception, pages 264–289. Blackwell Pub-
lishing.

K. Demuth, J. Culbertson, and J. Alter. 2006. Word-
minimality, epenthesis, and coda licensing in the ac-
quisition of English. Language and Speech, 49:137–
174.

Gabriel Doyle and Roger Levy. 2013. Combining mul-
tiple information types in Bayesian word segmenta-
tion. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 117–126. Association for Computational
Linguistics.

Victoria Fromkin, editor. 2001. Linguistics: An Intro-
duction to Linguistic Theory. Blackwell, Oxford, UK.

Sharon Goldwater, Tom Griffiths, and Mark John-
son. 2006. Interpolating between types and tokens
by estimating power-law generators. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems 18, pages 459–466.
MIT Press.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2009. A Bayesian framework for word segmen-
tation: Exploring the effects of context. Cognition,
112(1):21–54.

Sharon Goldwater. 2007. Nonparametric Bayesian Mod-
els of Lexical Acquisition. Ph.D. thesis, Brown Uni-
versity.

Mark Johnson and Katherine Demuth. 2010. Unsu-
pervised phonemic Chinese word segmentation using
Adaptor Grammars. In Proceedings of the 23rd In-
ternational Conference on Computational Linguistics
(Coling 2010), pages 528–536. Coling 2010 Organiz-
ing Committee.

Mark Johnson and Sharon Goldwater. 2009. Improving
nonparameteric Bayesian inference: experiments on
unsupervised word segmentation with adaptor gram-
mars. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North Amer-
ican Chapter of the Association for Computational

103

Linguistics, pages 317–325. Association for Compu-
tational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwa-
ter. 2007. Adaptor Grammars: A framework for spec-
ifying compositional nonparametric Bayesian models.
In B. Schölkopf, J. Platt, and T. Hoffman, editors, Ad-
vances in Neural Information Processing Systems 19,
pages 641–648. MIT Press, Cambridge, MA.

Mark Johnson. 2008a. Unsupervised word segmentation
for Sesotho using Adaptor Grammars. In Proceedings
of the Tenth Meeting of ACL Special Interest Group
on Computational Morphology and Phonology, pages
20–27. Association for Computational Linguistics.

Mark Johnson. 2008b. Using Adaptor Grammars to
identify synergies in the unsupervised acquisition of
linguistic structure. In Proceedings of the 46th Annual
Meeting of the Association of Computational Linguis-
tics, pages 398–406. Association for Computational
Linguistics.

Peter W Jusczyk, Anne Cutler, and Nancy J Redanz.
1993. Infants’ preference for the predominant stress
patterns of English words. Child Development,
64(3):675–687.

Peter W. Jusczyk, E. A. Hohne, and A. Bauman. 1999a.
Infants’ sensitivity to allophonic cues for word seg-
mentation. Perception and Psychophysics, 61:1465–
1476.

Peter W. Jusczyk, Derek M. Houston, and Mary New-
some. 1999b. The beginnings of word segmentation in
English-learning infants. Cognitive Psychology, 39(3-
4):159–207.

Peter Jusczyk. 1997. The discovery of spoken language.
MIT Press, Cambridge, MA.

Myron Korman. 1984. Adaptive aspects of maternal vo-
calizations in differing contexts at ten weeks. First
Language, 5:44–45.

Constantine Lignos and Charles Yang. 2010. Reces-
sion segmentation: simpler online word segmentation
using limited resources. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 88–97. Association for Com-
putational Linguistics.

Constantine Lignos. 2011. Modeling infant word seg-
mentation. In Proceedings of the Fifteenth Conference
on Computational Natural Language Learning, pages
29–38. Association for Computational Linguistics.

Constantine Lignos. 2012. Infant word segmentation:
An incremental, integrated model. In Proceedings of
the West Coast Conference on Formal Linguistics 30.

Brian MacWhinney. 2000. The CHILDES project: Tools
for analyzing talk: Volume I: Transcription format and
programs, volume II: The database. Computational
Linguistics, 26(4):657–657.

Sven L Mattys and Peter W Jusczyk. 2000. Phonotac-
tic cues for segmentation of fluent speech by infants.
Cognition, 78(2):91–121.

Sven L Mattys. 2000. The perception of primary and
secondary stress in English. Perception and Psy-
chophysics, 62(2):253–265.

Lisa Pearl, Sharon Goldwater, and Mark Steyvers. 2011.
Online learning mechanisms for Bayesian models of
word segmentation. Research on Language and Com-
putation, 8(2):107–132.

Elisabeth O. Selkirk. 1984. Phonology and Syntax: The
Relation Between Sound and Structure. MIT Press.

Erik D Thiessen and Jenny R Saffran. 2003. When
cues collide: use of stress and statistical cues to word
boundaries by 7-to 9-month-old infants. Developmen-
tal Psychology, 39(4):706.

Erik D Thiessen and Jenny R Saffran. 2007. Learning to
learn: Infants acquisition of stress-based strategies for
word segmentation. Language Learning and Develop-
ment, 3(1):73–100.

Carnegie Mellon University. 2008. The CMU pronounc-
ing dictionary, v.0.7a.

Charles Yang. 2004. Universal grammar, statistics or
both? Trends in Cognitive Sciences, 8(10):451–456.

104

FLORS: Fast and Simple Domain Adaptation for Part-of-Speech Tagging

Tobias Schnabel
Department of Computer Science

Cornell University
tbs49@cornell.edu

Hinrich Schütze
Center for Information & Language Processing

University of Munich
inquiries@cislmu.org

Abstract

We present FLORS, a new part-of-speech tag-
ger for domain adaptation. FLORS uses ro-
bust representations that work especially well
for unknown words and for known words with
unseen tags. FLORS is simpler and faster than
previous domain adaptation methods, yet it
has significantly better accuracy than several
baselines.

1 Introduction

In this paper we describe FLORS, a part-of-speech
(POS) tagger that is Fast in training and tagging,
uses LOcal context only (as opposed to finding the
optimal tag sequence for the entire sentence), per-
forms Robustly on target domains (TDs) in unsu-
pervised domain adaptation (DA) and is Simple in
architecture and feature representation.

FLORS constructs a robust representation of the
local context of the word v that is to be tagged.
This representation consists of distributional fea-
tures, suffixes and word shapes of v and its local
neighbors. We show that it has two advantages.

First, since the main predictors used by FLORS
are distributional features (not the word’s identity),
FLORS predicts unseen tags of known words bet-
ter than prior work on DA for POS. Second, since
FLORS uses representations computed from unla-
beled text, representations of unknown words are
in principle of the same type as representations of
known words; this property of FLORS results in
better performance on unknown words compared to
prior work. These two advantages are especially
beneficial for TDs that contain high rates of unseen
tags of known words and high rates of unknown

words. We show that FLORS achieves excellent DA
tagging results on the five domains of the SANCL
2012 shared task (Petrov and McDonald, 2012) and
outperforms three state-of-the-art taggers on Blitzer
et al.’s (2006) biomedical data.

FLORS is also simpler and faster than other POS
DA methods. It is simple in that the input repre-
sentation consists of three simple types of features:
distributional count features and two types of binary
features, suffix and shape features. Many other word
representations that are used for improving general-
ization (e.g., (Brown et al., 1992; Collobert et al.,
2011)) are costly to train or have difficulty han-
dling unknown words. Our representations are fast
to build and can be created on-the-fly for unknown
words that occur during testing.

The learning architecture is simple and fast as
well. We train k binary one-vs-all classifiers that
use local context only and no sequence informa-
tion (where k is the number of tags). Thus, tag-
ging complexity is O(k). Many other learning se-
tups for DA are more complex; e.g., they learn rep-
resentations (as opposed to just counting), they learn
several classifiers for different subclasses of words
(e.g., known vs. unknown) or they combine left-to-
right and right-to-left taggings.

The next two sections describe experimental data,
setup and results. Results are discussed in Section 4.
We compare FLORS to alternative word representa-
tions in Section 5 and to related work in Section 6.
Section 7 presents our conclusions.

2 Experimental data and setup

Data. Our source domain is the Penn Treebank
(Marcus et al., 1993) of Wall Street Journal (WSJ)

15

Transactions of the Association for Computational Linguistics, 2 (2014) 15–26. Action Editor: Sharon Goldwater.
Submitted 9/2013; Revised 11/2013; Published 2/2014. c©2014 Association for Computational Linguistics.

text. Following Blitzer et al. (2006), we use sections
2-21 for training and 100,000 WSJ sentences from
1988 as unlabeled data in training.

We evaluate on six different TDs. The first
five TDs (newsgroups, weblogs, reviews, answers,
emails) are from the SANCL shared task (Petrov
and McDonald, 2012). Additionally, the SANCL
dataset contains sections 22 and 23 of the WSJ
for in-domain development and testing, respectively.
Each SANCL TD has an unlabeled training set of
100,000 sentences and development and test sets of
about 1000 labeled sentences each. The sixth TD is
BIO, the Penn BioTreebank data set distributed by
Blitzer. It consists of dev and test sets of 500 sen-
tences each and 100,000 unlabeled sentences.

Classification setup. Similar to SVMTool
(Giménez and Màrquez, 2004) and Choi and Palmer
(2012) (henceforth: C&P), we use local context only
for tagging instead of performing sequence classifi-
cation. For a word w occurring as token vi in a sen-
tence, we build a feature vector for a local window
of size 2l + 1 around vi. The representation of the
object to be classified is this feature vector and the
target class is the POS tag of vi.

We use the linear L2-regularized L2-loss SVM
implementation provided by LIBLINEAR (Fan et
al., 2008) to train k one-vs-all classifiers on the train-
ing set where k is the number of POS tags in the
training set (in our case k = 45). We train with un-
tuned default parameters; in particular, C = 1. In
the special case of linear SVMs, the value of C does
not need to be tuned exhaustively as the solution re-
mains constant after C has reached a certain thresh-
old value C∗ (Keerthi and Lin, 2003). Training can
easily be parallelized by giving each binary SVM its
own thread.

Windows. The local context for tagging token
vi is a window of size 2l + 1 centered around vi:
(vi−l, . . . , vi, . . . , vi+l). We pad sentences on either
side with 〈BOUNDARY〉 to ensure sufficient con-
text for all words. Given a mapping f from words
to feature vectors (see below), the representation F
of a token vi is the concatenation of the 2l+ 1 word
vectors in its window

F (vi) = f(vi−l)⊕ . . .⊕ f(vi+l)

where ⊕ is vector concatenation.

Word features. We represent each word w by
four components: (i) counts of left neighbors, (ii)
counts of right neighbors, (iii) binary suffix features
and (iv) binary shape features. These four compo-
nents are concatenated:

f(w) = f left(w)⊕f right(w)⊕f suffix(w)⊕f shape(w)

We consider these sources of information equally
important and normalize each of the four compo-
nent vectors to unit length. Normalization also has
a beneficial effect on SVM training time because it
alleviates numerical problems (Fan et al., 2008).

Distributional features. We follow a long tra-
dition of older (Finch and Chater, 1992; Schütze,
1993; Schütze, 1995) and newer (Huang and Yates,
2009) work on creating distributional features for
POS tagging based on local left and right neighbors.

Specifically, the ith entry xi of f left(w) is the
weighted number of times that the indicator word
ci occurs immediately to the left of w:

xi = tf (freq (bigram(ci, w)))

where ci is the word with frequency rank i in the cor-
pus, freq (bigram(ci, w)) is the number of times the
bigram “ci w” occurs in the corpus and we weight
the non-zero frequencies logarithmically: tf(x) =
1 + log(x). tf-weighting has been used by other re-
searchers (Huang and Yates, 2009) and showed good
performance in our own previous work.

f right(w) is defined analogously. We restrict the
set of indicator words to the n = 500 most fre-
quent words in the corpus. To avoid zero vectors, we
add an entry xn+1 to each vector that counts omitted
contexts:

xn+1 = tf

 ∑

j:j>n

freq (bigram(cj , w))

We compute distributional vectors on the joint
corpus DALL of all labeled and unlabeled text of
source domain and TD. The text is preprocessed by
lowercasing everything – which is often done when
computing word representations, e.g., by Turian
et al. (2010) – and by padding sentences with
〈BOUNDARY〉 tokens.

Suffix features. Suffixes are promising for DA
because basic morphology rules are the same in dif-
ferent domains. In contrast to other work on tagging

16

model classifier features
1 TnT HMM p−{0,1,2}, v0, suffixes (for OOVs)
2 Stanford bidir. MEMM p±{0,1,2}, v±{0,1}, affixes, orthography
3 SVMTool SVM p±{0,1,2,3}, v±{0,1,2,3}, affixes, orthography, word length
4 C&P SVM p±{0,1,2,3}, v±{0,1,2,3}, affixes, orthography
5 FLORS SVM distributions of v±{0,1,2}, suffixes, orthography

Table 1: Overview of baseline taggers and FLORS. vi: token, pi: POS tag. Positions included in the sets of token
indices are relative to the position i of the word v0 to be tagged; e.g., p±{0,1,2} is short for {p−0, p−1, p−2, p0, p1, p2}.
To represent tokens vi, models 1–4 use vocabulary indices and FLORS uses distributional representations. Models
2–4 use combinations of features (e.g., tag-word) as well.

(e.g., Ratnaparkhi (1996), Toutanova et al. (2003),
Miller et al. (2007)) we simply use all (lowercase)
suffixes to avoid the need for selecting a subset of
suffixes; and we treat all words equally as opposed
to using suffix features for only a subset of words.
For suffix s, we set the dimension corresponding to
s in f suffix(w) to 1 if lowercased w ends in s and to
0 otherwise. Note that w is a suffix of itself.1

Shape features. We use the Berkeley parser word
signatures (Petrov and Klein, 2007). Each word
is mapped to a bit string encompassing 16 binary
indicators that correspond to different orthographic
(e.g., does the word contain a digit, hyphen, upper-
case character) and morphological (e.g., does the
word end in -ed or -ing) features. There are 50
unique signatures in WSJ. We set the dimension of
f shape(w) that corresponds to the signature of w to 1
and all other dimensions to 0. We note that the shape
features we use were designed for English and prob-
ably would have to be adjusted for other languages.

Baselines. We address the problem of unsuper-
vised domain adaptation for POS tagging. For this
problem, we consider three types of baselines: (i)
high-performing publicly available systems, (ii) the
taggers used at SANCL and (iii) POS DA results
published for BIO.

Most of our experiments use taggers from cate-
gory (i) because we can ensure that experimental
conditions are directly comparable. The four base-
lines in category (i) are shown in Table 1. Three
have near state-of-the-art performance on WSJ:
SVMTool (Giménez and Màrquez, 2004), Stanford

1One could also compute these suffixes for _w (w prefixed
by underscore) instead of for w to include words as distinguish-
able special suffixes. We test this alternative in Table 2, line
15.

(Toutanova et al., 2003) (a birectional MEMM) and
C&P. TnT (Brants, 2000) is included as a represen-
tative of fast and simple HMM taggers. In addition,
C&P is a tagger that has been extensively tested in
DA scenarios with excellent results. Unless other-
wise stated, we train all models using their default
configuration files. We use the optimized parameter
configuration published by C&P for the C&P model.

Test set results will be compared with the SANCL
taggers (category (ii)) at the end of Section 3.

As far as category (iii) is concerned, most work
on POS DA has been evaluated on BIO. We discuss
our concerns about the BIO evaluation sets in Sec-
tion 4, but also show that FLORS beats previously
published results on BIO as well (see Table 6).

3 Experimental results

We train k binary SVM classifiers on the training
set. A token in the test set is classified by building
its feature vector, running the classifiers on it and
then assigning it to the POS class whose one-vs-all
LIBLINEAR classifier returns the largest score.

Results for ALL accuracy (accuracy for all to-
kens) and OOV accuracy (accuracy for tokens not
occurring in the labeled WSJ data) are reported in
Table 2. Results with an asterisk are significantly
worse than a column’s best result using McNemar’s
test (p < .001). We use the same test and p-value
throughout this paper.

The basic FLORS model (Table 2, line 5) uses
window size 5 (l = 2). Each word in the window
has 1002 distributional features (501 left and right),
91,161 suffix features and 50 shape features. The
final feature vector for a token has a dimensionality
of about 500,000, but is very sparse.

FLORS outperforms all baselines on the five TDs

17

newsgroups reviews weblogs answers emails wsj
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

1 TnT 88.66∗ 54.73∗ 90.40∗ 56.75∗ 93.33∗ 74.17∗ 88.55∗ 48.32∗ 88.14∗ 58.09∗ 95.75∗ 88.30
2 Stanford 89.11∗ 56.02∗ 91.43∗ 58.66∗ 94.15∗ 77.13∗ 88.92∗ 49.30∗ 88.68∗ 58.42∗ 96.83 90.25
3 SVMTool 89.14∗ 53.82∗ 91.30∗ 54.20∗ 94.21∗ 76.44∗ 88.96∗ 47.25∗ 88.64∗ 56.37∗ 96.63 87.96
4 C&P 89.51∗ 57.23∗ 91.58∗ 59.67∗ 94.41∗ 78.46∗ 89.08∗ 48.46∗ 88.74∗ 58.62∗ 96.78 88.65
5

FL
O

R
S

basic 90.86 66.42 92.95 75.29 94.71 83.64 90.30 62.15 89.44∗ 62.61 96.59 90.37
6 n = 250 90.93 67.03 92.93 75.45 94.69 83.69 90.29 62.20 89.63 63.43 96.56∗ 89.45
7

v
±
{0

,1
,2
} n = 0 89.14∗ 55.59∗ 91.80∗ 66.31∗ 93.40∗ 72.55∗ 89.47∗ 55.82∗ 88.21∗ 57.83∗ 96.29∗ 85.55∗

8 no suffixes 90.60 65.17 92.74 71.94∗ 94.77 84.92 89.77∗ 58.71∗ 89.30∗ 62.09 96.28∗ 88.88
9 no shapes 89.70∗ 63.10∗ 92.24∗ 68.70∗ 92.60∗ 74.72∗ 89.55∗ 59.08∗ 89.63 64.17 95.52∗ 83.94∗

10

v
±
{1

,2
} n = 0 90.61∗ 65.95 92.76∗ 75.56 94.62 84.62 90.23 61.87 89.40∗ 63.82 96.51∗ 90.02

11 no suffixes 90.66 64.78∗ 92.88 75.08 94.83 84.52 90.36 61.92 89.42 62.74 96.64 89.45
12 no shapes 90.74 67.03 93.02 75.88 94.57 83.83 90.23 61.73 89.41∗ 63.49 96.57 90.25
13 l = 1 90.44∗ 63.62∗ 92.69∗ 75.72 94.48∗ 84.03 90.02∗ 62.66 89.17∗ 62.71 96.44∗ 88.65
14 L-to-R 90.56∗ 66.08 92.97 75.40 94.57 83.79 90.43 62.80 89.43 63.13 96.53∗ 90.94
15 voc. indices 90.93 66.64 92.91 75.03 94.71 84.08 90.27 61.92 89.37∗ 62.26 96.63 90.60

Table 2: Tagging accuracy of four baselines and FLORS on the dev sets. The table is structured as follows: baselines
(lines 1–4), basic FLORS setup (lines 5–6), effect of omitting one of the three feature types if the word to be tagged
is changed compared to the basic FLORS setup (lines 7–9) and if the word to be tagged is not changed compared to
basic FLORS (lines 10–12), effect of three important configuration choices on tagging accuracy: window size (line
13), inclusion of prior tagging decision (line 14) and vocabulary index (line 15). n: number of indicator words. 2l+1:
size of the local context window. Lines 10–12: Only the neighbors of v0 are modified compared to basic (line 5).
Lines 7–9: All five token representations (including v0) are modified. A column’s best result is bold.

(line 5 vs. lines 1–4). Only in-domain on WSJ, three
baselines are slightly superior. The baselines are
slightly better on ALL accuracy because they were
designed for tagging in-domain data and use feature
sets that have been found to work well on the source
domain. Generally, C&P performs best for DA
among the baselines. On answers and WSJ, how-
ever, Stanford has better overall accuracies. These
results are in line with C&P.

On lines 6–15, we investigate how different mod-
ifications of the basic FLORS model affect perfor-
mance. First, we examine the effect of leaving out
components of the representation: distributional fea-
tures (f left(w), f right(w)), suffixes (f suffix(w)) and
shape features (f shape(w)).

Distributional features boost performance in all
domains: ALL and OOV accuracies are consistently
worse for n = 0 (line 7) than for n ∈ {250, 500}
(lines 6&5). FLORS with n = 250 has better OOV
accuracies in 5 of 6 domains. However, ALL accu-
racy for FLORS with n = 500 is better in the major-
ity of domains. The main result of this comparison
is that FLORS does not seem to be very sensitive to
the value of n if n is large enough.

Shape features also improve results in all do-

mains, with one exception: emails (lines 9 vs 5).
For emails, shape features decrease ALL accuracy
by .19 and OOV accuracy by 1.56. This may be due
to the fact that many OOVs are NNP/NN and that
tagging conventions for NNP/NN vary between do-
mains. See Section 4 for discussion.

Performance benefits from suffixes in all domains
but weblogs (lines 8 vs 5). Weblogs contain many
foreign names such as Abdul and Yasim. For these
words, shapes apparently provide better informa-
tion for classification than suffixes. ALL accura-
cies suffer little when leaving out suffixes, but the
feature space is much smaller: about 3000 dimen-
sions. Thus, for domains where we expect few
OOVs, omitting suffix features could be considered.

Lines 7–9 omit one of the components of f(vi)
for all five words in the local context: i ∈
{−2,−1, 0, 1, 2}. Lines 10–12 omit the same com-
ponents for the neighbor words only – i.e., i ∈
{−2,−1, 1, 2} – and leave f(v0) unchanged. 14 of
the 6 × 3 ALL accuracies on lines 10–12 are worse
than FLORS basic, 4 are better. The largest differ-
ences are .25 for newsgroups and .19 for reviews
(lines 5 vs 10), but differences for the other domains
are negligible. This shows that the most important

18

feature representation is that of v0 (not surprisingly)
and that the distributional features of the other words
can be omitted at the cost of some loss in accuracy if
a small average number of active features is desired.

Another FLORS parameter is the size of the local
context. Surprisingly, OOV accuracies benefit a bit
in four domains if we reduce l from 2 to 1 (lines 13
vs 5). However, ALL accuracy consistently drops in
all six domains. This argues for using l = 2, i.e., a
window size of 5.

Results for left-to-right (L-to-R) tagging are given
on line 14. Similar to SVMTool and C&P, each sen-
tence is tagged from left to right and previous tag-
ging decisions are used for the current classification.
In this setting, we use the previous tag pi−1 as one
additional feature in the feature vector of vi.

The effect of left-to-right is similar to the effect
of omitting suffixes: OOV accuracies go up in some
domains, but ALL accuracies decrease (except for
an increase of .02 for reviews). This is in line with
the experiments in (Schnabel and Schütze, 2013)
where sequential information in a CRF was not ro-
bust across domains. OOV tagging may benefit from
correct previous tags because the larger left context
that is indirectly made available by left-to-right tag-
ging compensates partially for the lack of informa-
tion about the OOV word.

In contrast to standard approaches to POS tag-
ging, the FLORS basic representation does not con-
tain vocabulary indices. Line 15 shows what hap-
pens if we add them; the dimensionality of the fea-
ture vector is increased by 5|V | – where V is the
training set vocabulary – and in training one binary
feature is set to one for each of the five local con-
text words. Performance is almost indistinguishable
from FLORS basic, suggesting that only using suf-
fixes – which can be viewed as “ambiguous” vocab-
ulary indices, e.g., “at” is on for “at”, “mat”, “hat”,
“laundromat” etc – is sufficient.

In summary, we find that distributional features,
word signatures and suffixes all contribute to suc-
cessful POS DA. Factors with only minor impact
on performance are the number of indicator words
used for the distributional representations, the win-
dow size l and the tagging scheme (L-to-R vs. non-
L-to-R). Unknown words and known words behave
differently with respect to certain feature choices.

The different behavior of unknown and known

words suggests that training and optimizing two sep-
arate models – an approach used by SVMTool –
would further increase tagging accuracy. Note that
there has been at least one publication (Schnabel and
Schütze, 2013) on optimizing a separate model for
unknown words that has in some cases better per-
formance on OOV accuracy than what we publish
here.2 However, this would complicate the architec-
ture of FLORS. We opted for a maximally simple
model in this paper, potentially at the cost of some
performance.

Test set results. Table 3 reports results on the test
sets. FLORS again performs significantly better on
all five TDs, both on ALL and OOV. Only in-domain
on WSJ, ALL performance is worse.

Finally, we compare our results to the POS
taggers for which performance was reported at
SANCL 2012 (Petrov and McDonald, 2012, Ta-
ble 4). Constituency-based parsers – which also
tag words as a by-product of deriving complete
parse trees – are excluded from the comparison be-
cause they are trained on a richer representation, the
syntactic structure of sentences.3 FLORS’ results
are better than the best non-parsing-based results
at SANCL 2012, which were accuracies of 92.32
on newsgroups (HIT), 90.65 on reviews (HIT) and
91.07 on answers (IMS-1).

4 Discussion

Advantages of FLORS representation. As we can
see in Table 1, the main representational difference
between FLORS and the other taggers is that the
FLORS representation does not include vocabulary
indices of the word to be tagged or its neighbors
– the FLORS vector only consists of distributional,
suffix and shape features.

This is an obvious advantage for OOVs. In other
representational schemes, OOVs have representa-
tions that are fundamentally different from known

2Schnabel and Schütze (2013) report OOV accuracies of
56.62 (newsgroups), 64.61 (reviews), 71.86 (weblogs), 54.28
(answers), 61.05 (emails) and 64.64 (BIO) for their basic model
and even higher OOV accuracies if parameters are optimized on
a per-domain basis.

3DCU-Paris13 is listed in the dependency parser tables, but
DCU-Paris13 results are derived from a constituency parser.
DCU also developed sophisticated preprocessing rules for the
different domains, which can be viewed as a kind of manual
domain adaptation.

19

newsgroups reviews weblogs answers emails wsj
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

1 TnT 90.85∗ 56.60∗ 89.67∗ 50.98∗ 91.37∗ 62.65∗ 89.36∗ 51.82∗ 87.38∗ 55.12∗ 96.57∗ 86.27
2 Stanford 91.25∗ 57.96∗ 90.30∗ 51.87∗ 92.32∗ 67.85∗ 89.74∗ 53.41∗ 87.77∗ 57.10∗ 97.43 88.71
3 SVMTool 91.21∗ 54.40∗ 90.01∗ 45.05∗ 92.05∗ 63.59∗ 89.90∗ 51.07∗ 87.74∗ 53.23∗ 97.26 86.47
4 C&P 91.68∗ 60.58∗ 90.42∗ 51.12∗ 92.22∗ 66.91∗ 89.90∗ 53.31∗ 87.91∗ 54.47∗ 97.44 88.20
5 FLORS basic 92.41 66.91 92.25 70.87 93.14 75.32 91.17 67.93 88.67 61.09 97.11∗ 87.79

Table 3: Tagging accuracy of four baselines and FLORS on the test sets.

newsgroups reviews weblogs answers emails wsj bio

pc
t

to
ke

ns unknown tag 0.31 0.06 0.00 0.25 0.80 0.00 0.98
OOV 10.34 6.84 8.45 8.53 10.56 2.72 19.86
unseen word+tag 2.44 2.22 1.46 2.91 3.47 0.61 2.50

ac
cu

ra
cy

on
un

se
en

w
or

d+
ta

g

TnT 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Stanford 3.66 5.74 9.40 5.46 2.77 15.23 4.64
SVMTool 0.00 0.16 0.00 0.00 0.10 0.00 0.00
C&P 14.47 14.75 20.51 13.37 10.29 38.07 8.98
FLORS basic 21.06 21.97 21.65 17.19 15.13 41.12 12.69

Table 4: Top: Percentage of unknown tags, OOVs and unseen word+tag combinations (i.e., known words tagged with
unseen tags) in the dev sets. Bottom: Tagging accuracy on unseen word+tag.

words – since their vocabulary index does not oc-
cur in the training set and cannot be used for predic-
tion. In contrast, given enough unlabeled TD data,
FLORS represents known and unknown words in es-
sentially the same way and prediction of the correct
tag is easier. This explanation is supported by the
experiments in Table 2: FLORS beats all other sys-
tems on OOVs – even in-domain on WSJ.

In our analysis we found that apart from better
handling of OOVs there is a second beneficial ef-
fect of distributional representations: they facilitate
the correct tagging of known words occurring with
tags unseen in the training set, which we call un-
seen word+tags. Table 4 gives statistics on this case
and shows that unseen word+tags occur at least two
times as often out-of-domain (e.g., 1.46% for we-
blogs) than in-domain (.61% for WSJ). The bottom
part of the table shows performance of the five tag-
gers on unseen word+tags. FLORS is the top per-
former on all seven domains, with large differences
of more than 5% in some domains.

The explanation is similar to the OOV case:
FLORS does not restrict the set of possible POS’s of
a word. The other taggers in Table 2 use the vocabu-
lary index of the word to be tagged and will therefore
give a strong preference to seen tags. Since FLORS

uses distributional features, it can more easily assign
an unseen tag as long as it is compatible with the
overall pattern of distribution, suffixes and shapes
typical of the tag. C&P also perform relatively well
on unseen word+tag due to the ambiguity classes in
their model, but FLORS representations are better
for every domain. We take these results to mean that
constraints on a word’s possible POS tags may well
be helpful for in-domain data, but for out-of-domain
data an overly strong bias for a word’s observed tags
is harmful.

It is important to stress that representations sim-
ilar to FLORS representations have been used for
a long time; we would expect many of them to
have similar advantages for unseen word+tags. E.g.,
Brown clusters (Brown et al., 1992) and word em-
beddings (Collobert et al., 2011) are similar to
FLORS in this respect. However, FLORS represen-
tations are extracted by simple counting whereas the
computation of Brown clusters or word embeddings
is much more expensive. The speed with which
FLORS representations can be computed is partic-
ularly beneficial when taggers need to be adapted
to new domains. FLORS can easily adapt its rep-
resentations on the fly – as each new occurrence of
a word is encountered, the counts that are the basis

20

for the xi can simply be incremented. We present
a direct comparison of FLORS representations with
other representations in Section 5.

“Local context” vs. sequence classification. The
most common approach to POS tagging is to tag a
sentence with its most likely sequence; in contrast,
independent tagging of local context is not guaran-
teed to find the best sequence. Recent work on En-
glish suggests that window-based tagging can per-
form as well as sequence-based methods (Liang et
al., 2008; Collobert et al., 2011). Toutanova et al.
(2003) report similar results. In our experiments,
we also did not find consistent improvements when
we incorporated sequence constraints (Table 2, line
14). However, there may be languages and appli-
cations involving long-distance relationships where
local-context classification is suboptimal.

Local-context classification has two advantages
compared to sequence classification. (i) It simplifies
the classification and tagging setup: we can use any
existing statistical classifier. Sequence classification
limits the range of methods that can be applied; e.g.,
it is difficult to find a good CRF implementation that
can handle real-valued features – which are of criti-
cal importance for our representation.

(ii) The time complexity of FLORS in tagging is
O(skf) where s is the length of the sentence, k is the
number of tags and f is the number of non-zero fea-
tures per local-context representation. In contrast,
sequence decoding complexity is O(sk2f). This
difference is not of practical importance for stan-
dard English POS sets, but it could be an argument
against sequence classification for tagging problems
with much larger tag sets.

In summary, replacing sequence classification
with local-context classification is attractive for
large-scale, practical tagging.

What DA can and cannot do. Despite the supe-
rior DA tagging results we report for FLORS in this
paper, there is still a gap of 2%–7% (depending on
the domain) between in-domain WSJ accuracy and
DA accuracy on SANCL. In our analysis of this gap,
we found some evidence that DA performance can
be further improved – especially as more unlabeled
TD data becomes available. But we also found two
reasons for low performance that unsupervised DA
cannot do anything about: differences in tag sets – or
unknown tags – and differences in annotation guide-

lines.
Table 4 shows that unknown tags occur in five of

the seven TDs at rates between 0% (weblogs) and
1% (BIO). Each token that is tagged with an un-
known tag is necessarily an error in unsupervised
DA. Furthermore, the unknown tag can also im-
pact tagging accuracy in the local context4 – so the
unknown tag rates in Table 4 are probably lower
bounds for the error that is due to unknown tags.
Based on these considerations, it is not surprising
that tagging accuracy (e.g., of FLORS basic) and
unknown tag rate are correlated as we can see in Ta-
bles 2, 4 and 6; e.g., we get the highest accuracies
in the two domains that do not have unknown tags
(weblogs and WSJ) and the lowest accuracy in the
domain with the highest rate (BIO).

Since unknown tags cannot be predicted correctly,
one could simply report accuracy on known tags.
However, given the negative effect of unknown tags
on tagging accuracy of the local context in which
they occur, excluding unknown tags does not fully
address the problem. For this reason, it is probably
best to keep the common practice of simply report-
ing accuracy on all tokens, including unknown tags.
But the percentages of unknown tags should also be
reported for each dataset as a basis for a more accu-
rate interpretation of results.

Another type of error that cannot be avoided in
unsupervised DA is due to differences in annota-
tion guidelines. There are a few such problems in
SANCL; e.g., file names like “Services.doc” are an-
notated as NN in the email domain. But their dis-
tributional and grammatical behavior is more simi-
lar to NNPs; as a consequence, most file names are
incorrectly tagged. In general, it is difficult to dis-
criminate NNs from NNPs. The Penn Treebank an-
notation guidelines (Santorini, 1990) are compatible
with either tag in many cases and it may simply be
impossible to write annotation guidelines that avoid
these problems (cf. Manning (2011)). NN-NNP in-
consistencies are especially problematic for OOV
tagging since most OOVs are NNs or NNPs.

4For example, there is a special tag ADD in the web do-
main for web addresses. The last two words of the sentence
“I would like to host my upcoming website to/IN Liquid-
web.com/ADD” are mistagged by Stanford tagger as “... to/TO
Liquidweb.com/VB”. So the missing tag in this case also affects
the tagging of surrounding words.

21

bio dev wsj train
OOV ALL ALL

NN 62.4 25.4 14.4
JJ 15.9 8.9 6.2
NNS 10.2 7.5 6.3
NNP 0.5 0.2 9.5
NNPS 0.0 0.0 0.3

Table 5: Frequency of some tags (percent of tokens) for
bio dev and wsj train.

While the amount of inconsistent annotation is
limited for SANCL, it is a serious problem for BIO.
Table 5 shows that the proportion of NNPs in BIO
is less than a tenth of that in WSJ (.2 in BIO vs.
9.5 in WSJ). This is due to the fact that many bio-
specific names, in particular genes, are annotated as
NN. In contrast, the distributionally and orthograph-
ically most similar names in WSJ are tagged as NNP.
For example, we find “One cell was teased out, and
its DNA/NNP extracted” in WSJ vs. “DNA/NN was
isolated” in BIO.

standard setup NNP→NN
ALL OOV ALL OOV

TnT 87.49∗ 59.08∗ 91.75∗ 78.33∗

Stanford 88.46∗ 62.55∗ 92.36∗ 79.19∗

SVMTool 88.33∗ 61.30∗ 92.47 79.46∗

C&P 87.82∗ 60.60∗ 92.06∗ 79.30∗

FL
O

R
S

basic 88.90 64.74 92.91 82.58
n = 250 88.90 64.51 92.93 82.47
n = 0 87.27∗ 57.75∗ 90.91∗ 73.57∗

no suffixes 88.09∗ 62.20∗ 91.98∗ 79.27∗

no shapes 87.78∗ 59.82∗ 91.81∗ 77.31∗

l = 1 89.12 65.52 92.99 82.90

Table 6: Tagging accuracy on bio dev. NNP→NN results
were obtained by replacing NNPs with NNs.

Given this large discrepancy in the frequency of
the tag NNP – which arguably is due to different
annotation guidelines, not due to underlying differ-
ences between the two genres – BIO should proba-
bly not be used for evaluating DA. This is why we
did not include it in our comparison in Table 2.

For sake of completeness, we provide tagging ac-
curacies for BIO in Table 6, “standard setup”. The
results are in line with SANCL results: FLORS
beats the baselines on ALL and OOV accuracies.

However, if we build the NN bias into our model
by simply replacing all NNP tags with NN tags, then
accuracy goes up by 4% on ALL and by almost 20%
on OOV. Even TnT, the most basic tagger, achieves
ALL/OOV accuracy of 91.75/78.33, better than any
method in the standard setup. These accuracies are
well above those in (Blitzer et al., 2006) and (Huang
and Yates, 2010).

Since simply replacing NNPs with NNs has such
a large effect, BIO cannot be used sensibly for eval-
uating DA methods. In practice, it is not possible
to separate “true” improvements due to generic bet-
ter DA from elements of the proposed method that
simply introduce a negative bias for NNP.

In summary, when comparing different DA meth-
ods caution should be exercised in the choice of do-
mains. In particular, the effect of unknown tags
should be made transparent and the gold standards
should be analyzed to determine whether the task
addressed in the TD differs significantly in some as-
pects from that addressed in the source domain.

5 Comparison of word representations

Our approach to DA is an instance of representation
learning: we aim to find representations that are ro-
bust across domains. In this section, we compare
FLORS with two other widely used representation
learning methods: (i) Brown clusters (Brown et al.,
1992) and (ii) C&W embeddings, the word embed-
dings of Collobert et al. (2011). We use fdist(w) =
f left(w)⊕f right(w) to refer to our own distributional
word representations (see Section 2).

The perhaps oldest and most frequently used low-
dimensional representation of words is based on
Brown clusters. Typically, prefixes of Brown clus-
ters (Brown et al., 1992) are added to increase the
robustness of POS taggers (e.g., Toutanova et al.
(2003)). Computational costs are high (quadratic in
the vocabulary size) although the computation can
be parallelized (Uszkoreit and Brants, 2008).

More recently, general word representations (Col-
lobert et al., 2011; Turian et al., 2010) have been
used for robust POS tagging. These word represen-
tations are typically trained on a large amount of un-
labeled text and fine-tuned for specific NLP tasks.
Similar to Brown clusters, they are low-dimensional
and can be used as features in many NLP tasks, ei-

22

ther alone or in combination with other features.
To compare fdist(w) (our distributional repre-

sentations) with Brown clusters, we induced 1000
Brown clusters on the joint corpus data DALL (see
Section 2) using the publicly available implemen-
tation of Liang (2005). We padded sentences with
〈BOUNDARY〉 tokens on each side and used path
prefixes of length 4, 6, 10 and 20 as features for
each word (cf. Ratinov and Roth (2009), Turian et
al. (2010)).

C&W embeddings are provided by Collobert et al.
(2011): 50-dimensional vectors for 130,000 words
from WSJ, trained on Wikipedia. Similar to our dis-
tributional representations fdist(w), the embeddings
also contain a 〈BOUNDARY〉 token (which they
call PADDING). Moreover, they have a special em-
bedding for unknown words (called UNKNOWN)
which we use whenever we encounter a word that
is not in their lookup table. We preprocess our raw
tokens the same way they do (lowercase and replace
sequences of digits by “0”) before we look up a rep-
resentation during training and testing.

We replaced the distributional features in our ba-
sic setup by either Brown cluster features or C&W
embeddings. Table 7 repeats lines 5 and 7 of Table 2
and gives results of the modified FLORS setup.

All three representations improve both ALL and
OOV accuracies in all domains. fdist outperforms
Brown in all cases except for OOV on emails.
Brown may suffer from noisy data; cleaning meth-
ods have been used in the literature (Liang, 2005;
Turian et al., 2010), but they are not unproblematic
since a large part of the data available is lost, which
results in more unknown words.

Brown and fdist can be directly compared since
they were trained on exactly the same data. fdist
and C&W are harder to compare directly because
there are many differences. (i) C&W is trained on
a much larger dataset. One consequence of this is
that OOV accuracy on WSJ may be higher because
some words that are unknown for other methods are
actually known to C&W. (ii) C&W vectors are not
trained on the SANCL TD data sets – this gives fdist
an advantage. (iii) C&W vectors are not trained on
the WSJ. Again, this could give fdist an advantage.
(iv) C&W and fdist are fundamentally different in the
way they handle unknown words. C&W has a lim-
ited vocabulary and must replace all words not in

this vocabulary by the token UNKNOWN. In con-
trast, fdist can create a meaningful individual repre-
sentation for any OOV word it encounters.

Our FLORS tagger provides best ALL accuracies
in all domains but WSJ, where C&W has best re-
sults. The good performance of C&W is rather un-
surprising since the embeddings were created for the
130,000 most frequent words of the WSJ and thus
cover the WSJ domain much better. Also, WSJ
was used to tune parameters during development.
As with our previous experiments, OOV results on
emails seem slightly more sensitive to parameter
choices than on other domains (recall the discussion
of this issue in Section 4).

In summary, we have shown that fdist represen-
tations work better for POS DA than Brown clus-
ters. Furthermore, the evidence we have presented
suggests that fdist are comparable in performance to
C&W embeddings if not better for POS DA.

The most important difference between fdist and
Brown / C&W is that fdist are much simpler and
much faster to compute. They are simpler because
they are just slightly transformed counts in contrast
to the other two approaches, which solve complex
optimization problems. fdist can be computed effi-
ciently through simple incrementation in one pass
through the corpus. In contrast, the other two ap-
proaches are an order of magnitude slower.

6 Related work

Unsupervised DA methods can be broadly put
into four categories: representation learning and
constraint-based frameworks – which require some
tailoring to a task – and instance weighting and boot-
strapping – which can be more generally applied to a
wide range of problems. Since many approaches are
application-specific, we focus on the ones that have
been applied to POS tagging.

Representation learning. We already discussed
two important approaches to representation learning
in Section 5: C&W embeddings and Brown clusters.

Blitzer et al.’s (2006) structural correspondence
learning (SCL) supports DA by creating similar
representations for correlated features in the pivot
feature space. This is a potentially powerful
method. FLORS is simpler in that correlations are
made directly accessible to the supervised learner.

23

newsgroups reviews weblogs answers emails wsj
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

1

FL
O

R
S fdist(w), n=500 90.86 66.42 92.95 75.29 94.71 83.64 90.30 62.15 89.44 62.61 96.59 90.37

2 fdist(w), n=0 89.14∗ 55.59∗ 91.80∗ 66.31∗ 93.40∗ 72.55∗ 89.47∗ 55.82∗ 88.21∗ 57.83∗ 96.29∗ 85.55∗

3 C&W for fdist(w) 90.57 64.57 92.54∗ 72.48∗ 94.51 80.58∗ 90.23 60.99 89.44 63.13 96.72 90.48
4 Brown for fdist(w) 90.34∗ 62.41∗ 92.23∗ 71.47∗ 94.45 81.76 89.71∗ 56.28∗ 89.02∗ 63.20 96.48∗ 87.50

Table 7: Tagging accuracy of different word representations on the dev sets. Line 1 corresponds to FLORS basic. n:
number of indicator words. A column’s best result is bold.

Moreover, FLORS representations consist of simple
counts whereas SCL solves a separate optimization
problem for each pivot feature.

Umansky-Pesin et al. (2010) derive distributional
information for OOVs by running web queries. This
approach is slow since it depends on a search engine.

Ganchev et al. (2012) successfully use search
logs. This is a promising enhancement for FLORS.

Huang and Yates (2009) evaluate CRFs with dis-
tributional features. They examine lower dimen-
sional feature representations using SVD or the la-
tent states of an unsupervised HMM. They find bet-
ter accuracies for their HMM method than Blitzer
et al. (2006); however, they do not compare them
against a CRF baseline using distributional features.

In later work, Huang and Yates (2010) add the la-
tent states of multiple, differently trained HMMs as
features to their CRF. Huang and Yates (2012) ar-
gue that finding an optimal feature representation
is computationally intractable and propose a new
framework that allows prior knowledge to be inte-
grated into representation learning.

Latent sequence states are a form of word repre-
sentation. Thus, it would be interesting to compare
them to the non-sequence-based distributional rep-
resentation that FLORS uses.

Constraint-based methods. Rush et al. (2012)
use global constraints on OOVs to improve out-of-
domain tagging. Although constraints ensure con-
sistency, they require careful manual engineering.
Distributional features can also be seen as a form
of constraint since feature weights will be shared
among all words.

Subramanya et al. (2010) construct a graph to en-
courage similar n-grams to be tagged similarly, re-
sulting in moderate gains in one domain, but no
gains on BIO when compared to self-training. The
reason could be an insufficient amount of unsuper-
vised data for BIO (100,000 sentences). Our ap-

proach does not seem to suffer from this problem.
Bootstrapping. Both self-training (McClosky et

al., 2006) – which uses one classification model –
and co-training (Blum and Mitchell, 1998) – which
uses≥2 models – have been applied to POS tagging.

Self-training usually improves a POS baseline
only slightly if at all (Huang et al., 2009; Huang and
Yates, 2010). Devising features based on labeled in-
stances (instead of training on them) has been more
successful (Florian et al., 2004; Søgaard, 2011).

Chen et al. (2011) use co-training for DA. In each
round of their algorithm, both new training instances
from the unlabeled data and new features are added.
Their model is limited to binary classification. The
co-training method of Kübler and Baucom (2011)
trains several taggers and adds sentences from the
TD to the training set on which they agree. They
report slight, but statistically significant increases in
accuracy for POS tagging of dialogue data.

Instance weighting. Instance weighting formal-
izes DA as the problem of having data from differ-
ent probability distributions in each domain. The
goal is to make these two distributions align by us-
ing instance-specific weights during training. Jiang
and Zhai (2007) propose a framework that integrates
prior knowledge from different data sets into the
learning objective by weights.

In related work, C&P train generalized and
domain-specific models. An input sentence is tagged
by the model that is most similar to the sentence.
FLORS could be easily extended along these lines,
an experiment we plan for the future.

In terms of the basic classification setup, our POS
tagger is most similar to the SVM-based approaches
of Giménez and Màrquez (2004) and C&P. How-
ever, we do not use a left-to-right approach when
tagging sentences. Moreover, SVMTool trains two
separate models, one for OOVs and one for known
words. FLORS only has a single model. In addition,

24

we do not make use of ambiguity classes, token-tag
dictionaries and rare feature thresholds. Instead, we
rely only on three types of features: distributional
representations, suffixes and word shapes.

The local-context-only approach of SVMTool,
C&P and FLORS is different from standard se-
quence classification such as MEMMs (e.g., Rat-
naparkhi (1996), Toutanova et al. (2003), Tsuruoka
and Tsujii (2005)) and CRFs (e.g., Collins (2002)).
Sequence models are more powerful in theory, but
this may not be an advantage in DA because the sub-
tle dependencies they exploit may not hold across
domains.

7 Conclusion

We have presented FLORS, a new POS tagger for
DA. FLORS uses robust representations that work
especially well for unknown words and for known
words with unseen tags. FLORS is simpler and
faster than previous DA methods, yet we were able
to demonstrate that it has significantly better accu-
racy than several baselines.

Acknowledgments. This work was supported by
DFG (Deutsche Forschungsgemeinschaft).

References
John Blitzer, Ryan McDonald, and Fernando Pereira.

2006. Domain adaptation with structural correspon-
dence learning. In EMNLP, pages 120–128.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In COLT,
pages 92–100.

Thorsten Brants. 2000. TnT: A statistical part-of-speech
tagger. In ANLP, pages 224–231.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18:467–479.

Minmin Chen, Kilian Q. Weinberger, and John Blitzer.
2011. Co-training for domain adaptation. In NIPS,
pages 1–9.

Jinho D. Choi and Martha Palmer. 2012. Fast and robust
part-of-speech tagging using dynamic model selection.
In ACL: Short Papers, pages 363–367.

Michael Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In EMNLP, pages 1–8.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.

Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874.

Steven Finch and Nick Chater. 1992. Bootstrapping syn-
tactic categories using statistical methods. In Back-
ground and Experiments in Machine Learning of Nat-
ural Language, pages 229–235.

Radu Florian, Hany Hassan, Abraham Ittycheriah,
Hongyan Jing, Nanda Kambhatla, Xiaoqiang Luo,
Nicolas Nicolov, and Salim Roukos. 2004. A statisti-
cal model for multilingual entity detection and track-
ing. In HLT-NAACL, pages 1–8.

Kuzman Ganchev, Keith Hall, Ryan McDonald, and Slav
Petrov. 2012. Using search-logs to improve query tag-
ging. In ACL: Short Papers, pages 238–242.

Jesús Giménez and Lluís Màrquez. 2004. SVMTool: A
general pos tagger generator based on support vector
machines. In LREC, pages 43–46.

Fei Huang and Alexander Yates. 2009. Distributional
representations for handling sparsity in supervised
sequence-labeling. In ACL-IJCNLP, pages 495–503.

Fei Huang and Alexander Yates. 2010. Exploring
representation-learning approaches to domain adapta-
tion. In DANLP, pages 23–30.

Fei Huang and Alexander Yates. 2012. Biased repre-
sentation learning for domain adaptation. In EMNLP-
CoNLL, pages 1313–1323.

Zhongqiang Huang, Vladimir Eidelman, and Mary
Harper. 2009. Improving a simple bigram HMM part-
of-speech tagger by latent annotation and self-training.
In NAACL-HLT: Short Papers, pages 213–216.

Jing Jiang and ChengXiang Zhai. 2007. Instance weight-
ing for domain adaptation in NLP. In ACL, pages 264–
271.

S. Sathiya Keerthi and Chih-Jen Lin. 2003. Asymptotic
behaviors of support vector machines with Gaussian
kernel. Neural computation, 15(7):1667–1689.

Sandra Kübler and Eric Baucom. 2011. Fast domain
adaptation for part of speech tagging for dialogues. In
RANLP, pages 41–48.

Percy Liang, Hal Daumé III, and Dan Klein. 2008.
Structure compilation: trading structure for features.
In ICML, pages 592–599.

Percy Liang. 2005. Semi-supervised learning for natural
language processing. Master’s thesis, Massachusetts
Institute of Technology.

Christopher D. Manning. 2011. Part-of-speech tagging
from 97% to 100%: Is it time for some linguistics? In
CICLing, pages 171–189.

25

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn treebank. Computational
Linguistics, 19(2):313–330.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Reranking and self-training for parser adapta-
tion. In ACL, pages 337–344.

John Miller, Manabu Torii, and Vijay K. Shanker. 2007.
Building domain-specific taggers without annotated
(domain) data. In EMNLP-CoNLL, pages 1103–1111.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In HLT-NAACL, pages 404–
411.

Slav Petrov and Ryan McDonald. 2012. Overview of the
2012 Shared Task on Parsing the Web. Notes of the
1st SANCL Workshop.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
CoNLL, pages 147–155.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In EMNLP, pages 133–
142.

Alexander M. Rush, Roi Reichart, Michael Collins, and
Amir Globerson. 2012. Improved parsing and POS
tagging using inter-sentence consistency constraints.
In EMNLP-CoNLL, pages 1434–1444.

Beatrice Santorini. 1990. Part-of-speech tagging guide-
lines for the Penn Treebank project (3rd revision, 2nd
printing). Technical report, Department of Linguistics,
University of Pennsylvania.

Tobias Schnabel and Hinrich Schütze. 2013. Towards
robust cross-domain domain adaptation for part-of-
speech tagging. In IJCNLP, pages 198–206.

Hinrich Schütze. 1993. Part-of-speech induction from
scratch. In ACL, pages 251–258.

Hinrich Schütze. 1995. Distributional part-of-speech
tagging. In EACL, pages 141–148.

Anders Søgaard. 2011. Semisupervised condensed near-
est neighbor for part-of-speech tagging. In ACL: Short
papers, pages 48–52.

Amarnag Subramanya, Slav Petrov, and Fernando
Pereira. 2010. Efficient graph-based semi-supervised
learning of structured tagging models. In EMNLP,
pages 167–176.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In NAACL-
HLT, pages 173–180.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidirec-
tional inference with the easiest-first strategy for tag-
ging sequence data. In EMNLP-HLT, pages 467–474.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In ACL, pages 384–394.

Shulamit Umansky-Pesin, Roi Reichart, and Ari Rap-
poport. 2010. A multi-domain web-based algorithm
for POS tagging of unknown words. In COLING,
pages 1274–1282.

Jakob Uszkoreit and Thorsten Brants. 2008. Distributed
word clustering for large scale class-based language
modeling in machine translation. In ACL, pages 755–
762.

26

A Tabular Method for Dynamic Oracles in Transition-Based Parsing

Yoav Goldberg
Department of

Computer Science
Bar Ilan University, Israel

yoav.goldberg@gmail.com

Francesco Sartorio
Department of

Information Engineering
University of Padua, Italy
sartorio@dei.unipd.it

Giorgio Satta
Department of

Information Engineering
University of Padua, Italy
satta@dei.unipd.it

Abstract

We develop parsing oracles for two trans-
ition-based dependency parsers, including the
arc-standard parser, solving a problem that
was left open in (Goldberg and Nivre, 2013).
We experimentally show that using these or-
acles during training yields superior parsing
accuracies on many languages.

1 Introduction
Greedy transition-based dependency parsers (Nivre,
2008) incrementally process an input sentence from
left to right. These parsers are very fast and
provide competitive parsing accuracies (Nivre et al.,
2007). However, greedy transition-based parsers
still fall behind search-based parsers (Zhang and
Clark, 2008; Huang and Sagae, 2010) with respect
to accuracy.

The training of transition-based parsers relies on
a component called the parsing oracle, which maps
parser configurations to optimal transitions with re-
spect to a gold tree. A discriminative model is then
trained to simulate the oracle’s behavior. A parsing
oracle is deterministic if it returns a single canon-
ical transition. Furthermore, an oracle is partial if it
is defined only for configurations that can reach the
gold tree, that is, configurations representing pars-
ing histories with no mistake. Oracles that are both
deterministic and partial are called static. Tradition-
ally, only static oracles have been exploited in train-
ing of transition-based parsers.

Recently, Goldberg and Nivre (2012; 2013)
showed that the accuracy of greedy parsers can be
substantially improved without affecting their pars-
ing speed. This improvement relies on the intro-
duction of novel oracles that are nondeterministic

and complete. An oracle is nondeterministic if it re-
turns the set of all transitions that are optimal with
respect to the gold tree, and it is complete if it is
well-defined and correct for every configuration that
is reachable by the parser. Oracles that are both non-
deterministic and complete are called dynamic.

Goldberg and Nivre (2013) develop dynamic or-
acles for several transition-based parsers. The con-
struction of these oracles is based on a property of
transition-based parsers that they call arc decompos-
ition. They also prove that the popular arc-standard
system (Nivre, 2004) is not arc-decomposable, and
they leave as an open research question the construc-
tion of a dynamic oracle for the arc-standard system.
In this article, we develop one such oracle (§4) and
prove its correctness (§5).

An extension to the arc-standard parser was
presented by Sartorio et al. (2013), which relaxes
the bottom-up construction order and allows mixing
of bottom-up and top-down strategies. This parser,
called here the LR-spine parser, achieves state-of-
the-art results for greedy parsing. Like the arc-stand-
ard system, the LR-spine parser is not arc-decom-
posable, and a dynamic oracle for this system was
not known. We extend our oracle for the arc-stand-
ard system to work for the LR-spine system as well
(§6).

The dynamic oracles developed by Goldberg and
Nivre (2013) for arc-decomposable systems are
based on local properties of computations. In con-
trast, our novel dynamic oracle algorithms rely on
arguably more complex structural properties of com-
putations, which are computed through dynamic
programming. This leaves open the question of
whether a machine-learning model can learn to ef-
fectively simulate such complex processes: will the

119

Transactions of the Association for Computational Linguistics, 2 (2014) 119–130. Action Editor: Ryan McDonald.
Submitted 11/2013; Revised 2/2014; Published 4/2014. c©2014 Association for Computational Linguistics.

benefit of training with the dynamic oracle carry
over to the arc-standard and LR-spine systems? We
show experimentally that this is indeed the case (§8),
and that using the training-with-exploration method
of (Goldberg and Nivre, 2013) with our dynamic
programming based oracles yields superior parsing
accuracies on many languages.

2 Arc-Standard Parser

In this section we introduce the arc-standard parser
of Nivre (2004), which is the model that we use in
this article. To keep the notation at a simple level,
we only discuss the unlabeled version of the parser;
however, a labeled extension is used in §8 for our
experiments.

2.1 Preliminaries and Notation

The set of non-negative integers is denoted as N0.
For i, j ∈ N0 with i ≤ j, we write [i, j] to denote
the set {i, i + 1, . . . , j}. When i > j, [i, j] denotes
the empty set.

We represent an input sentence as a string w =
w0 · · ·wn, n ∈ N0, where token w0 is a special
root symbol, and each wi with i ∈ [1, n] is a lex-
ical token. For i, j ∈ [0, n] with i ≤ j, we write
w[i, j] to denote the substring wiwi+1 · · ·wj of w.

We write i → j to denote a grammatical de-
pendency of some unspecified type between lexical
tokens wi and wj , where wi is the head and wj is the
dependent. A dependency tree for w is a directed,
ordered tree t = (Vw, A), such that Vw = [0, n] is
the set of nodes, A ⊆ Vw×Vw is the set of arcs, and
node 0 is the root. Arc (i, j) encodes a dependency
i → j, and we will often use the latter notation to
denote arcs.

2.2 Transition-Based Dependency Parsing

We assume the reader is familiar with the formal
framework of transition-based dependency parsing
originally introduced by Nivre (2003); see Nivre
(2008) for an introduction. We only summarize here
our notation.

Transition-based dependency parsers use a stack
data structure, where each stack element is associ-
ated with a tree spanning (generating) some sub-
string of the input w. The parser processes the in-
put string incrementally, from left to right, applying
at each step a transition that updates the stack and/or

consumes one token from the input. Transitions may
also construct new dependencies, which are added to
the current configuration of the parser.

We represent the stack data structure as an
ordered sequence σ = [σd, . . . , σ1], d ∈ N0, of
nodes σi ∈ Vw, with the topmost element placed
at the right. When d = 0, we have the empty stack
σ = []. Sometimes we use the vertical bar to denote
the append operator for σ, and write σ = σ′|σ1 to
indicate that σ1 is the topmost element of σ.

The parser also uses a buffer to store the portion
of the input string still to be processed. We represent
the buffer as an ordered sequence β = [i, . . . , n] of
nodes from Vw, with i the first element of the buf-
fer. In this way β always encodes a (non-necessarily
proper) suffix of w. We denote the empty buffer as
β = []. Sometimes we use the vertical bar to denote
the append operator for β, and write β = i|β′ to in-
dicate that i is the first token of β; consequently, we
have β′ = [i+ 1, . . . , n].

When processing w, the parser reaches several
states, technically called configurations. A config-
uration of the parser relative to w is a triple c =
(σ, β,A), where σ and β are a stack and a buffer,
respectively, and A ⊆ Vw × Vw is a set of arcs. The
initial configuration for w is ([], [0, . . . , n], ∅). For
the purpose of this article, a configuration is final
if it has the form ([0], [], A), and in a final config-
uration arc set A always defines a dependency tree
for w.

The core of a transition-based parser is the set of
its transitions, which are specific to each family of
parsers. A transition is a binary relation defined
over the set of configurations of the parser. We use
symbol ` to denote the union of all transition rela-
tions of a parser.

A computation of the parser on w is a sequence
c0, . . . , cm, m ∈ N0, of configurations (defined rel-
ative to w) such that ci−1 ` ci for each i ∈ [1,m].
We also use the reflexive and transitive closure rela-
tion `∗ to represent computations. A computation is
called complete whenever c0 is initial and cm is fi-
nal. In this way, a complete computation is uniquely
associated with a dependency tree for w.

2.3 Arc-Standard Parser

The arc-standard model uses the three types of trans-
itions formally specified in Figure 1

120

(σ, i|β,A) `sh (σ|i, β, A)

(σ|i|j, β,A) `la (σ|j, β,A ∪ {j → i})
(σ|i|j, β,A) `ra (σ|i, β, A ∪ {i→ j})

Figure 1: Transitions in the arc-standard model.

• Shift (sh) removes the first node in the buffer
and pushes it into the stack;

• Left-Arc (la) creates a new arc with the topmost
node on the stack as the head and the second-
topmost node as the dependent, and removes
the second-topmost node from the stack;

• Right-Arc (ra) is symmetric to la in that it cre-
ates an arc with the second-topmost node as the
head and the topmost node as the dependent,
and removes the topmost node.

Notation We sometimes use the functional nota-
tion for a transition τ ∈ {sh, la, ra}, and write
τ(c) = c′ in place of c `τ c′. Naturally, sh applies
only when the buffer is not empty, and la,ra require
two elements on the stack. We denote by valid(c)
the set of valid transitions in a given configuration.

2.4 Arc Decomposition

Goldberg and Nivre (2013) show how to derive dy-
namic oracles for any transition-based parser which
has the arc decomposition property, defined below.
They also show that the arc-standard parser is not
arc-decomposable.

For a configuration c, we write Ac to denote the
associated set of arcs. A transition-based parser is
arc-decomposable if, for every configuration c and
for every set of arcs A that can be extended to a pro-
jective tree, we have

∀(i→ j) ∈ A,∃c′[c `∗ c′ ∧ (i→ j) ∈ Ac′]
⇒ ∃c′′[c `∗ c′′ ∧A ⊆ Ac′′] .

In words, if each arc in A is individually derivable
from c, then the set A in its entirety can be derived
from c as well. The arc decomposition property
is useful for deriving dynamic oracles because it is
relatively easy to investigate derivability for single
arcs and then, using this property, draw conclusions
about the number of gold-arcs that are simultan-
eously derivable from the given configuration.

Unfortunately, the arc-standard parser is not arc-
decomposable. To see why, consider a configura-
tion with stack σ = [i, j, k]. Consider also arc set
A = {(i, j), (i, k)}. The arc (i, j) can be derived
through the transition sequence ra, ra, and the arc
(i, k) can be derived through the alternative trans-
ition sequence la, ra. Yet, it is easy to see that a con-
figuration containing both arcs cannot be reached.

As we cannot rely on the arc decomposition prop-
erty, in order to derive a dynamic oracle for the arc-
standard model we need to develop more sophistic-
ated techniques which take into account the interac-
tion among the applied transitions.

3 Configuration Loss and Dynamic Oracles
We aim to derive a dynamic oracle for the arc-stand-
ard (and related) system. This is a function that takes
a configuration c and a gold tree tG and returns a set
of transitions that are “optimal” for c with respect
to tG. As already mentioned in the introduction, a
dynamic oracle can be used to improve training of
greedy transition-based parsers. In this section we
provide a formal definition for a dynamic oracle.

Let t1 and t2 be two dependency trees over the
same stringw, with arc setsA1 andA2, respectively.
We define the loss of t1 with respect to t2 as

L(t1, t2) = |A1 \A2| . (1)

Note that L(t1, t2) = L(t2, t1), since |A1| =
|A2|. Furthermore L(t1, t2) = 0 if and only if t1
and t2 are the same tree.

Let c be a configuration of our parser relative to
input string w. We write D(c) to denote the set of
all dependency trees that can be obtained in a com-
putation of the form c `∗ cf , where cf is some final
configuration. We extend the loss function in (1) to
configurations by letting

L(c, t2) = min
t1∈D(c)

L(t1, t2) . (2)

Assume some reference (desired) dependency
tree tG for w, which we call the gold tree. Quantity
L(c, tG) can be used to compute a dynamic oracle
relating a parser configuration c to a set of optimal
actions by setting

oracle(c, tG) =

{τ | L(τ(c), tG)− L(c, tG) = 0} . (3)

121

We therefore need to develop an algorithm for com-
puting (2). We will do this first for the arc-standard
parser, and then for an extension of this model.

Notation We also apply the loss function L(t, tG)
in (1) when t is a dependency tree for a substring
of w. In this case the nodes of t are a subset of
the nodes of tG, and L(t, tG) provides a count of
the nodes of t that are assigned a wrong head node,
when tG is considered as the reference tree.

4 Main Algorithm
Throughout this section we assume an arc-standard
parser. Our algorithm takes as input a projective
gold tree tG and a configuration c = (σL, β, A). We
call σL the left stack, in contrast with a right stack
whose construction is specified below.

4.1 Basic Idea

The algorithm consists of two steps. Informally, in
the first step we compute the largest subtrees, called
here tree fragments, of the gold tree tG that have
their span entirely included in the buffer β. The
root nodes of these tree fragments are then arranged
into a stack data structure, according to the order in
which they appear in β and with the leftmost root in
β being the topmost element of the stack. We call
this structure the right stack σR. Intuitively, σR can
be viewed as the result of pre-computing β by ap-
plying all sequences of transitions that match tG and
that can be performed independently of the stack in
the input configuration c, that is, σL.

In the second step of the algorithm we use dy-
namic programming techniques to simulate all com-
putations of the arc-standard parser starting in a con-
figuration with stack σL and with a buffer consisting
of σR, with the topmost token of σR being the first
token of the buffer. As we will see later, the search
space defined by these computations includes the de-
pendency trees for w that are reachable from the in-
put configuration c and that have minimum loss. We
then perform a Viterbi search to pick up such value.

The second step is very similar to standard imple-
mentations of the CKY parser for context-free gram-
mars (Hopcroft and Ullman, 1979), running on an
input string obtained as the concatenation of σL and
σR. The main difference is that we restrict ourselves
to parse only those constituents in σLσR that dom-
inate the topmost element of σL (the rightmost ele-

ment, if σL is viewed as a string). In this way, we ac-
count for the additional constraint that we visit only
those configurations of the arc-standard parser that
can be reached from the input configuration c. For
instance, this excludes the reduction of two nodes in
σL that are not at the two topmost positions. This
would also exclude the reduction of two nodes in
σR: this is correct, since the associated tree frag-
ments have been chosen as the largest such frag-
ments in β.

The above intuitive explanation will be made
mathematically precise in §5, where the notion of
linear dependency tree is introduced.

4.2 Construction of the Right Stack

In the first step we process β and construct a stack
σR, which we call the right stack associated with c
and tG. Each node of σR is the root of a tree t which
satisfies the following properties

• t is a tree fragment of the gold tree tG having
span entirely included in the buffer β;

• t is bottom-up complete for tG, meaning that
for each node i of t different from t’s root, the
dependents of i in tG cannot be in σL;

• t is maximal for tG, meaning that every super-
tree of t in tG violates the above conditions.

The stack σR is incrementally constructed by pro-
cessig β from left to right. Each node i is copied into
σR if it satisfies any of the following conditions

• the parent node of i in tG is not in β;

• some dependent of i in tG is in σL or has
already been inserted in σR.

It is not difficult to see that the nodes in σR are the
roots of tree fragments of tG that satisfy the condi-
tion of bottom-up completeness and the condition of
maximality defined above.

4.3 Computation of Configuration Loss

We start with some notation. Let `L = |σL| and
`R = |σR|. We write σL[i] to denote the i-th ele-
ment of σL and t(σL[i]) to denote the correspond-
ing tree fragment; σR[i] and t(σR[i]) have a similar
meaning. In order to simplify the specification of
the algorithm, we assume below that σL[1] = σR[1].

122

Algorithm 1 Computation of the loss function for the arc-standard parser
1: T [1, 1](σL[1])← L(t(σL[1]), tG)
2: for d← 1 to `L + `R − 1 do . d is the index of a sub-anti-diagonal
3: for j ← max{1, d− `L + 1} to min{d, `R} do . j is the column index
4: i← d− j + 1 . i is the row index
5: if i < `L then . expand to the left
6: for each h ∈ ∆i,j do
7: T [i+ 1, j](h)← min{T [i+ 1, j](h), T [i, j](h) + δG(h→ σL[i+ 1])}
8: T [i+ 1, j](σL[i+ 1])← min{T [i+ 1, j](σL[i+ 1]), T [i, j](h) + δG(σL[i+ 1]→ h)}
9: if j < `R then . expand to the right

10: for each h ∈ ∆i,j do
11: T [i, j + 1](h)← min{T [i, j + 1](h), T [i, j](h) + δG(h→ σR[j + 1])}
12: T [i, j+1](σR[j + 1])← min{T [i, j+1](σR[j + 1]), T [i, j](h)+δG(σR[j + 1]→ h)}
13: return T [`L, `R](0) +

∑
i∈[1,`L] L(t(σL[i]), tG)

Therefore the elements of σR which have been con-
structed in §4.2 are σR[i], i ∈ [2, `R].

Algorithm 1 uses a two-dimensional array T of
size `L × `R, where each entry T [i, j] is an as-
sociation list from integers to integers. An entry
T [i, j](h) stores the minimum loss among depend-
ency trees rooted at h that can be obtained by run-
ning the parser on the first i elements of stack σL and
the first j elements of buffer σR. More precisely, let

∆i,j = {σL[k] | k ∈ [1, i]} ∪
{σR[k] | k ∈ [1, j]} . (4)

For each h ∈ ∆i,j , the entry T [i, j](h) is the
minimum loss among all dependency trees defined
as above and with root h. We also assume that
T [i, j](h) is initialized to +∞ (not reported in the
algorithm).

Algorithm 1 starts at the top-left corner of T , vis-
iting each individual sub-anti-diagonal of T in as-
cending order, and eventually reaching the bottom-
right corner of the array. For each entry T [i, j], the
left expansion is considered (lines 5 to 8) by com-
bining with tree fragment σL[i+ 1], through a left
or a right arc reduction. This results in the update
of T [i + 1, j](h), for each h ∈ ∆i+1,j , whenever a
smaller value of the loss is achieved for a tree with
root h. The Kronecker-like function used at line 8
provides the contribution of each single arc to the
loss of the current tree. Denoting with AG the set of

arcs of tG, such a function is defined as

δG(i→ j) =

{
0, if (i→ j) ∈ AG;
1, otherwise.

(5)

A symmetrical process is implemented for the
right expansion of T [i, j] through tree fragment
σR[j + 1] (lines 9 to 12).

As we will see in the next section, quantity
T [`L, `R](0) is the minimal loss of a tree composed
only by arcs that connect nodes in σL and σR. By
summing the loss of all tree fragments t(σL[i]) to
the loss in T [`L, `R](0), at line 13, we obtain the
desired result, since the loss of each tree fragment
t(σR[j]) is zero.

5 Formal Properties
Throughout this section we let w, tG, σL, σR and
c = (σL, β, A) be defined as in §4, but we no longer
assume that σL[1] = σR[1]. To simplify the present-
ation, we sometimes identify the tokens in w with
the associated nodes in a dependency tree for w.

5.1 Linear Trees

Algorithm 1 explores all dependency trees that can
be reached by an arc-standard parser from configur-
ation c, under the condition that (i) the nodes in the
buffer β are pre-computed into tree fragments and
collapsed into their root nodes in the right stack σR,
and (ii) nodes in σR cannot be combined together
prior to their combination with other nodes in the
left stack σL. This set of dependency trees is char-

123

j4

i6 i5 i3 j5

i4 i1 j3

i2 j1 j2
σRσL

Figure 2: A possible linear tree for string pair (σL, σR),
where σL = i6i5i4i3i2i1 and σR = j1j2j3j4j5. The
spine of the tree consists of nodes j4, i3 and i1.

acterized here using the notion of linear tree, to be
used later in the correctness proof.

Consider two nodes σL[i] and σL[j] with j >
i > 1. An arc-standard parser can construct an arc
between σL[i] and σL[j], in any direction, only after
reaching a configuration in which σL[i] is at the top
of the stack and σL[j] is at the second topmost posi-
tion. In such configuration we have that σL[i] dom-
inates σL[1]. Furthermore, consider nodes σR[i] and
σR[j] with j > i ≥ 1. Since we are assuming that
tree fragments t(σR[i]) and t(σR[j]) are bottom-up
complete and maximal, as defined in §4.2, we allow
the construction of an arc between σR[i] and σR[j],
in any direction, only after reaching a configuration
in which σR[i] dominates node σL[1].

The dependency trees satisfying the restrictions
above are captured by the following definition. A
linear tree over (σL, σR) is a projective dependency
tree t for string σLσR satisfying both of the addi-
tional conditions reported below. The path from t’s
root to node σL[1] is called the spine of t.

• Every node of t not in the spine is a dependent
of some node in the spine.

• For each arc i → j in t with j in the spine, no
dependent of i can be placed in between i and
j within string σLσR.

An example of a linear tree is depicted in Figure 2.
Observe that the second condition above forbids the
reduction of two nodes i and j, in case none of these
dominates node σL[1]. For instance, the ra reduc-
tion of nodes i3 and i2 would result in arc i3 → i2
replacing arc i1 → i2 in Figure 2. The new depend-
ency tree is not linear, because of a violation of the

second condition above. Similarly, the la reduction
of nodes j3 and j4 would result in arc j4 → j3 re-
placing arc i3 → j3 in Figure 2, again a violation of
the second condition above.

Lemma 1 Any tree t ∈ D(c) can be decomposed
into trees t(σL[i]), i ∈ [1, `L], trees tj , j ∈ [1, q] and
q ≥ 1, and a linear tree tl over (σL, σR,t), where
σR,t = r1 · · · rq and each rj is the root node of tj . 2

PROOF (SKETCH) Trees t(σL[i]) are common to
every tree in D(c), since the arc-standard model can
not undo the arcs already built in the current con-
figuration c. Similar to the construction in §4.2 of
the right stack σR from tG, we let tj , j ∈ [1, q], be
tree fragments of t that cover only nodes associated
with the tokens in the buffer β and that are bottom-
up complete and maximal for t. These trees are in-
dexed according to their left to right order in β. Fi-
nally, tl is implicitly defined by all arcs of t that are
not in trees t(σL[i]) and tj . It is not difficult to see
that tl has a spine ending with node σL[1] and is a
linear tree over (σL, σR,t). �

5.2 Correctness

Our proof of correctness for Algorithm 1 is based on
a specific dependency tree t∗ for w, which we define
below. Let SL = {σL[i] | i ∈ [1, `L]} and letDL be
the set of nodes that are descendants of some node
in SL. Similarly, let SR = {σR[i] | i ∈ [1, `R]}
and let DR be the set of descendants of nodes in
SR. Note that sets SL, SR, DL and DR provide a
partition of Vw.

We choose any linear tree t∗l over (σL, σR) having
root 0, such that L(t∗l , tG) = mint L(t, tG), where
t ranges over all possible linear trees over (σL, σR)
with root 0. Tree t∗ consists of the set of nodes Vw
and the set of arcs obtained as the union of the set
of arcs of t∗l and the set of arcs of all trees t(σL[i]),
i ∈ [1, `L], and t(σR[j]), j ∈ [1, `R].

Lemma 2 t∗ ∈ D(c). 2

PROOF (SKETCH) All tree fragments t(σL[i]) have
already been parsed and are available in the stack
associated with c. Each tree fragment t(σR[j]) can
later be constructed in the computation, when a con-
figuration c′ is reached with the relevant segment of
w at the start of the buffer. Note also that parsing of
t(σR[j]) can be done in a way that does not depend
on the content of the stack in c′.

124

Finally, the parsing of the tree fragments t(σR[j])
is interleaved with the construction of the arcs from
the linear tree t∗l , which are all of the form (i → j)
with i, j ∈ (SL ∪ SR). More precisely, if (i → j)
is an arc from t∗l , at some point in the computation
nodes i and j will become available at the two top-
most positions in the stack. This follows from the
second condition in the definition of linear tree. �

We now show that tree t∗ is “optimal” within the
set D(c) and with respect to tG.

Lemma 3 L(t∗, tG) = L(c, tG). 2

PROOF Consider an arbitrary tree t ∈ D(c). As-
sume the decomposition of t defined in the proof of
Lemma 1, through trees t(σL[i]), i ∈ [1, `L], trees
tj , j ∈ [1, q], and linear tree tl over (σL, σR,t).

Recall that an arc i → j denotes an ordered pair
(i, j). Let us consider the following partition for the
set of arcs of any dependency tree for w

A1 = (SL ∪DL)×DL ,

A2 = (SR ∪DR)×DR ,

A3 = (Vw × Vw) \ (A1 ∪A2) .

In what follows, we compare the losses L(t, tG) and
L(t∗, tG) by separately looking into the contribution
to such quantities due to the arcs in A1, A2 and A3.

Note that the arcs of trees t(σL[i]) are all in A1,
the arcs of trees t(σR[j]) are all in A2, and the arcs
of tree t∗l are all in A3. Since t and t∗ share trees
t(σL[i]), when restricted to arcs in A1 quantities
L(t, tG) and L(t∗, tG) are the same. When restric-
ted to arcs in A2, quantity L(t∗, tG) is zero, by con-
struction of the trees t(σR[j]). Thus L(t, tG) can not
be smaller thanL(t∗, tG) for these arcs. The difficult
part is the comparison of the contribution to L(t, tG)
and L(t∗, tG) due to the arcs in A3. We deal with
this below.

LetAS,G be the set of all arcs from tG that are also
in set (SL × SR) ∪ (SR × SL). In words, AS,G rep-
resents gold arcs connecting nodes in SL and nodes
in SR, in any direction. Within tree t, these arcs can
only be found in the tl component, since nodes in
SL are all placed within the spine of tl, or else at the
left of that spine.

Let us consider an arc (j → i) ∈ AS,G with j ∈
SL and i ∈ SR, and let us assume that (j → i) is in
t∗l . If token ai does not occur in σR,t, node i is not

in tl and (j → i) can not be an arc of t. We then
have that (j → i) contributes one unit to L(t, tG)
but does not contribute to L(t∗, tG). Similarly, let
(i → j) ∈ AS,G be such that i ∈ SR and j ∈ SL,
and assume that (i→ j) is in t∗l . If token ai does not
occur in σR,t, arc (i → j) can not be in t. We then
have that (i → j) contributes one unit to L(t, tG)
but does not contribute to L(t∗, tG).

Intuitively, the above observations mean that the
winning strategy for trees in D(c) is to move nodes
from SR as much as possible into the linear tree
component tl, in order to make it possible for these
nodes to connect to nodes in SL, in any direction. In
this case, arcs fromA3 will also move into the linear
tree component of a tree inD(c), as it happens in the
case of t∗. We thus conclude that, when restricted to
the set of arcs in A3, quantity L(t, tG) is not smal-
ler than L(t∗, tG), because stack σR has at least as
many tokens corresponding to nodes in SR as stack
σR,t, and because t∗l has the minimum loss among
all the linear trees over (σL, σR).

Putting all of the above observations together,
we conclude that L(t, tG) can not be smaller than
L(t∗, tG). This concludes the proof, since t has been
arbitrarily chosen in D(c). �

Theorem 1 Algorithm 1 computes L(c, tG). 2

PROOF (SKETCH) Algorithm 1 implements a Vi-
terbi search for trees with smallest loss among all
linear trees over (σL, σR). Thus T [`L, `R](0) =
L(t∗l , tG). The loss of the tree fragments t(σR[j])
is 0 and the loss of the tree fragments t(σL[i]) is ad-
ded at line 13 in the algorithm. Thus the algorithm
returns L(t∗, tG), and the statement follows from
Lemma 2 and Lemma 3. �

5.3 Computational Analysis

Following §4.2, the right stack σR can be easily
constructed in time O(n), n the length of the in-
put string. We now analyze Algorithm 1. For each
entry T [i, j] and for each h ∈ ∆i,j , we update
T [i, j](h) a number of times bounded by a con-
stant which does not depend on the input. Each up-
dating can be computed in constant time as well.
We thus conclude that Algorithm 1 runs in time
O(`L · `R · (`L + `R)). Quantity `L+`R is bounded
by n, but in practice the former is significantly smal-
ler. When measured over the sentences in the Penn

125

Treebank, the average value of `L+`R
n is 0.29. In

terms of runtime, training is 2.3 times slower when
using our oracle instead of a static oracle.

6 Extension to the LR-Spine Parser
In this section we consider the transition-based
parser proposed by Sartorio et al. (2013), called
here the LR-spine parser. This parser is not arc-
decomposable: the same example reported in §2.4
can be used to show this fact. We therefore extend to
the LR-spine parser the algorithm developed in §4.

6.1 The LR-Spine Parser

Let t be a dependency tree. The left spine of t is
an ordered sequence 〈i1, . . . , ip〉, p ≥ 1, consisting
of all nodes in a descending path from the root of
t taking the leftmost child node at each step. The
right spine of t is defined symmetrically. We use ⊕
to denote sequence concatenation.

In the LR-spine parser each stack element σ[i] de-
notes a partially built subtree t(σ[i]) and is represen-
ted by a pair (lsi, rsi), with lsi and rsi the left and the
right spine, respectively, of t(σ[i]). We write lsi[k]
(rsi[k]) to represent the k-th element of lsi (rsi, re-
spectively). We also write r(σ[i]) to denote the root
of t(σ[i]), so that r(σ[i]) = lsi[1] = rsi[1].

Informally, the LR-spine parser uses the same
transition typologies as the arc-standard parser.
However, an arc (h → d) can now be created with
the head node h chosen from any node in the spine
of the involved tree. The transition types of the LR-
spine parser are defined as follows.

• Shift (sh) removes the first node from the buf-
fer and pushes into the stack a new element,
consisting of the left and right spines of the as-
sociated tree

(σ, i|β,A) `sh (σ|(〈i〉, 〈i〉), β, A) .

• Left-Arc k (lak) creates a new arc h → d from
the k-th node in the left spine of the topmost
tree in the stack to the head of the second ele-
ment in the stack. Furthermore, the two top-
most stack elements are replaced by a new ele-
ment associated with the resulting tree

(σ′|σ[2]|σ[1], β, A) `lak (σ′|σlak , β, A ∪ {h→ d})
where we have set h = ls1[k], d = r(σ[2]) and
σlak = (〈ls1[1], . . . , ls1[k]〉 ⊕ ls2, rs1).

• Right-Arc k (rak for short) is defined symmet-
rically with respect to lak

(σ′|σ[2]|σ[1], β, A) `rak (σ′|σrak , β, A ∪ {h→ d})

where we have set h = rs2[k], d = r(σ[1]) and
σrak = (ls2, 〈rs2[1], . . . , rs2[k]〉 ⊕ rs1).

Note that, at each configuration in the LR-spine
parser, there are |ls1| possible lak transitions, one for
each choice of a node in the left spine of t(σ[1]);
similarly, there are |rs2| possible rak transitions,
one for each choice of a node in the right spine of
t(σ[2]).

6.2 Configuration Loss

We only provide an informal description of the ex-
tended algorithm here, since it is very similar to the
algorithm in §4.

In the first phase we use the procedure of §4.2 for
the construction of the right stack σR, considering
only the roots of elements in σL and ignoring the
rest of the spines. The only difference is that each
element σR[j] is now a pair of spines (lsR,j , rsR,j).
Since tree fragment t(σR[j]) is bottom-up complete
(see §4.1), we now restrict the search space in such
a way that only the root node r(σR[j]) can take de-
pendents. This is done by setting lsR,j = rsR,j =
〈r(σR[j])〉 for each j ∈ [1, `R]. In order to simplify
the presentation we also assume σR[1] = σL[1], as
done in §4.3.

In the second phase we compute the loss of an in-
put configuration using a two-dimensional array T ,
defined as in §4.3. However, because of the way
transitions are defined in the LR-spine parser, we
now need to distinguish tree fragments not only on
the basis of their roots, but also on the basis of their
left and right spines. Accordingly, we define each
entry T [i, j] as an association list with keys of the
form (ls, rs). More specifically, T [i, j](ls, rs) is the
minimum loss of a tree with left and right spines ls
and rs, respectively, that can be obtained by running
the parser on the first i elements of stack σL and the
first j elements of buffer σR.

We follow the main idea of Algorithm 1 and ex-
pand each tree in T [i, j] at its left side, by combin-
ing with tree fragment t(σL[i+ 1]), and at its right
side, by combining with tree fragment t(σR[j + 1]).

126

Tree combination deserves some more detailed dis-
cussion, reported below.

We consider the combination of a tree ta from
T [i, j] and tree t(σL[i+ 1]) by means of a left-arc
transition. All other cases are treated symmetric-
ally. Let (lsa, rsa) be the spine pair of ta, so that
the loss of ta is stored in T [i, j](lsa, rsa). Let also
(lsb, rsb) be the spine pair of t(σL[i+ 1]). In case
there exists a gold arc in tG connecting a node from
lsa to r(σL[i+ 1]), we choose the transition lak,
k ∈ [1, |lsa|], that creates such arc. In case such gold
arc does not exists, we choose the transition lak with
the maximum possible value of k, that is, k = |lsa|.
We therefore explore only one of the several pos-
sible ways of combining these two trees by means
of a left-arc transition.

We remark that the above strategy is safe. In fact,
in case the gold arc exists, no other gold arc can ever
involve the nodes of lsa eliminated by lak (see the
definition in §6.1), because arcs can not cross each
other. In case the gold arc does not exist, our choice
of k = |lsa| guarantees that we do not eliminate any
element from lsa.

Once a transition lak is chosen, as described
above, the reduction is performed and the spine
pair (ls, rs) for the resulting tree is computed from
(lsa, rsa) and (lsb, rsb), as defined in §6.1. At the
same time, the loss of the resulting tree is com-
puted, on the basis of the loss T [i, j](lsa, rsa), the
loss of tree t(σL[i+ 1]), and a Kronecker-like func-
tion defined below. This loss is then used to update
T [i+ 1, j](ls, rs).

Let ta and tb be two trees that must be combined
in such a way that tb becomes the dependent of
some node in one of the two spines of ta. Let also
pa = (lsa, rsa) and pb = (lsb, rsb) be spine pairs for
ta and tb, respectively. Recall that AG is the set of
arcs of tG. The new Kronecker-like function for the
computation of the loss is defined as

δG(pa, pb) =

0, if r(ta) < r(tb)∧
∃k[(rska → r(tb)) ∈ AG];

0, if r(ta) > r(tb)∧
∃k[(lska → r(tb)) ∈ AG];

1, otherwise.

6.3 Efficiency Improvement

The algorithm in §6.2 has an exponential behaviour.
To see why, consider trees in T [i, j]. These trees are
produced by the combination of trees in T [i − 1, j]
with tree t(σL[i]), or by the combination of trees in
T [i, j − 1] with tree t(σR[j]). Since each combin-
ation involves either a left-arc or a right-arc trans-
ition, we obtain a recursive relation that resolves into
a number of trees in T [i, j] bounded by 4i+j−2.

We introduce now two restrictions to the search
space of our extended algorithm that result in a huge
computational saving. For a spine s, we write N (s)
to denote the set of all nodes in s. We also let ∆i,j be
the set of all pairs (ls, rs) such that T [i, j](ls, rs) 6=
+∞.

• Every time a new pair (ls, rs) is created in
∆[i, j], we remove from ls all nodes different
from the root that do not have gold dependents
in {r(σL[k]) | k < i}, and we remove from
rs all nodes different from the root that do not
have gold dependents in {r(σR[k]) | k > j}.

• A pair pa = (lsa, rsa) is removed from
∆[i, j] if there exists a pair pb = (lsb, rsb)
in ∆[i, j] with the same root node as pa and
with (lsa, rsa) 6= (lsb, rsb), such that N (lsa) ⊆
N (lsb), N (rsa) ⊆ N (rsb), and T [i, j](pa) ≥
T [i, j](pb).

The first restriction above reduces the size of a spine
by eliminating a node if it is irrelevant for the com-
putation of the loss of the associated tree. The
second restriction eliminates a tree ta if there is a
tree tb with smaller loss than ta, such that in the
computations of the parser tb provides exactly the
same context as ta. It is not difficult to see that
the above restrictions do not affect the correctness of
the algorithm, since they always leave in our search
space some tree that has optimal loss.

A mathematical analysis of the computational
complexity of the extended algorithm is quite in-
volved. In Figure 3, we plot the worst case size
of T [i, j] for each value of j + i − 1, computed
over all configurations visited in the training phase
(see §7). We see that |T [i, j]| grows linearly with
j + i− 1, leading to the same space requirements of
Algorithm 1. Empirically, training with the dynamic

127

0 10 20 30 40 50
0

10
20
30
40
50

i+ j − 1

m
ax

nu
m

be
ro

fe
le

m
en

ts

Figure 3: Empirical worst case size of T [i, j] for each
value of i + j − 1 as measured on the Penn Treebank
corpus.

Algorithm 2 Online training for greedy transition-
based parsers

1: w← 0
2: for k iterations do
3: shuffle(corpus)
4: for sentencew and gold tree tG in corpus do
5: c← INITIAL(w)
6: while not FINAL(c) do
7: τp ← argmaxτ∈valid(c)w · φ(c, τ)
8: τo ← argmaxτ∈oracle(c,tG)w·φ(c, τ)
9: if τp 6∈ oracle(c, tG) then

10: w← w + φ(c, τo)− φ(c, τp)

11: τ ←
{
τp if EXPLORE

τo otherwise
12: c← τ(c)

return averaged(w)

oracle is only about 8 times slower than training with
the oracle of Sartorio et al. (2013) without exploring
incorrect configurations.

7 Training

We follow the training procedure suggested by
Goldberg and Nivre (2013), as described in Al-
gorithm 2. The algorithm performs online learning
using the averaged perceptron algorithm. A weight
vector w (initialized to 0) is used to score the valid
transitions in each configuration based on a feature
representation φ, and the highest scoring transition
τp is predicted. If the predicted transition is not
optimal according to the oracle, the weights w are
updated away from the predicted transition and to-

wards the highest scoring oracle transition τo. The
parser then moves to the next configuration, by tak-
ing either the predicted or the oracle transition. In
the “error exploration” mode (EXPLORE is true), the
parser follows the predicted transition, and other-
wise the parser follows the oracle transition. Note
that the error exploration mode requires the com-
pleteness property of a dynamic oracle.

We consider three training conditions: static, in
which the oracle is deterministic (returning a single
canonical transition for each configuration) and no
error exploration is performed; nondet, in which we
use a nondeterministic partial oracle (Sartorio et al.,
2013), but do not perform error exploration; and ex-
plore in which we use the dynamic oracle and per-
form error exploration. The static setup mirrors the
way greedy parsers are traditionally trained. The
nondet setup allows the training procedure to choose
which transition to take in case of spurious ambigu-
ities. The explore setup increases the configuration
space explored by the parser during training, by ex-
posing the training procedure to non-optimal con-
figurations that are likely to occur during parsing,
together with the optimal transitions to take in these
configurations. It was shown by Goldberg and Nivre
(2012; 2013) that the nondet setup outperforms the
static setup, and that the explore setup outperforms
the nondet setup.

8 Experimental Evaluation

Datasets Performance evaluation is carried out on
CoNLL 2007 multilingual dataset, as well as on the
Penn Treebank (PTB) (Marcus et al., 1993) conver-
ted to Stanford basic dependencies (De Marneffe
et al., 2006). For the CoNLL datasets we use gold
part-of-speech tags, while for the PTB we use auto-
matically assigned tags. As usual, the PTB parser is
trained on sections 2-21 and tested on section 23.

Setup We train labeled versions of the arc-stand-
ard (std) and LR-spine (lrs) parsers under the static,
nondet and explore setups, as defined in §7. In
the nondet setup we use a nondeterministic partial
oracle and in the explore setup we use the non-
deterministic complete oracles we present in this pa-
per. In the static setup we resolve oracle ambiguities
and choose a canonic transition sequence by attach-
ing arcs as soon as possible. In the explore setup,

128

parser:train Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish PTB
UAS

std:static 81.39 75.37 90.32 85.17 78.90 85.69 79.90 77.67 82.98 77.04 89.86
std:nondet 81.33 74.82 90.75 84.80 79.92 86.89 81.19 77.51 84.15 76.85 90.56
std:explore 82.56 74.39 90.95 85.65 81.01 87.70 81.85 78.72 84.37 77.21 90.92
lrs:static 81.67 76.07 91.47 84.24 77.93 86.36 79.43 76.56 84.64 77.00 90.33
lrs:nondet 83.14 75.53 91.31 84.98 80.03 88.38 81.12 76.98 85.29 77.63 91.18
lrs:explore 84.54 75.82 91.92 86.72 81.19 89.37 81.78 77.48 85.38 78.61 91.77

LAS
std:static 71.93 65.64 84.90 80.35 71.39 84.60 72.25 67.66 78.77 65.90 87.56
std:nondet 71.09 65.28 85.36 80.06 71.47 85.91 73.40 67.77 80.06 65.81 88.30
std:explore 72.89 65.27 85.82 81.28 72.92 86.79 74.22 69.57 80.25 66.71 88.72
lrs:static 72.24 66.21 86.02 79.36 70.48 85.38 72.36 66.79 80.38 66.02 88.07
lrs:nondet 72.94 65.66 86.03 80.47 71.32 87.45 73.09 67.70 81.32 67.02 88.96
lrs:explore 74.54 66.91 86.83 82.38 72.72 88.44 74.04 68.76 81.50 68.06 89.53

Table 1: Scores on the CoNLL 2007 dataset (including punctuation, gold parts of speech) and on Penn Tree Bank
(excluding punctuation, predicted parts of speech). Label ‘std’ refers to the arc-standard parser, and ‘lrs’ refers to the
LR-spine parser. Each number is an average over 5 runs with different randomization seeds.

from the first round of training onward, we always
follow the predicted transition (EXPLORE is true).
For all languages, we deal with non-projectivity by
skipping the non-projective sentences during train-
ing but not during test. For each parsing system,
we use the same feature templates across all lan-
guages.1 The arc-standard models are trained for 15
iterations and the LR-spine models for 30 iterations,
after which all the models seem to have converged.

Results In Table 1 we report the labeled (LAS)
and unlabeled (UAS) attachment scores. As expec-
ted, the LR-spine parsers outperform the arc-stand-
ard parsers trained under the same setup. Training
with the dynamic oracles is also beneficial: despite
the arguable complexity of our proposed oracles, the
trends are consistent with those reported by Gold-
berg and Nivre (2012; 2013). For the arc-standard
model we observe that the move from a static to
a nondeterministic oracle during training improves
the accuracy for most of languages. Making use of
the completeness of the dynamic oracle and moving
to the error exploring setup further improve results.
The only exceptions are Basque, that has a small
dataset with more than 20% of non-projective sen-
tences, and Chinese. For Chinese we observe a re-
duction of accuracy in the nondet setup, but an in-
crease in the explore setup.

For the LR-spine parser we observe a practically
constant increase of performance by moving from

1Our complete code, together with the description of the fea-
ture templates, is available on the second author’s homepage.

the static to the nondeterministic and then to the er-
ror exploring setups.

9 Conclusions
We presented dynamic oracles, based on dynamic
programming, for the arc-standard and the LR-
spine parsers. Empirical evaluation on 10 languages
showed that, despite the apparent complexity of the
oracle calculation procedure, the oracles are still
learnable, in the sense that using these oracles in
the error exploration training algorithm presented in
(Goldberg and Nivre, 2012) considerably improves
the accuracy of the trained parsers.

Our algorithm computes a dynamic oracle using
dynamic programming to explore a forest of depend-
ency trees that can be reached from a given parser
configuration. For the arc-standard parser, the com-
putation takes cubic time in the size of the largest of
the left and right input stacks. Dynamic program-
ming for the simulation of arc-standard parsers have
been proposed by Kuhlmann et al. (2011). That al-
gorithm could be adapted to compute minimum loss
for a given configuration, but the running time is
O(n4), n the size of the input string: besides being
asymptotically slower by one order of magnitude, in
practice n is also larger than the stack size above.

Acknowledgments We wish to thank the anonym-
ous reviewers. In particular, we are indebted to one
of them for two important technical remarks. The
third author has been partially supported by MIUR
under project PRIN No. 2010LYA9RH 006.

129

References
Marie-Catherine De Marneffe, Bill MacCartney, and

Christopher D. Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of the 5th International Conference on Lan-
guage Resources and Evaluation (LREC), volume 6,
pages 449–454.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In Proc. of the
24th COLING, Mumbai, India.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic oracles.
Transactions of the association for Computational
Linguistics, 1.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Intro-
duction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, Reading, MA.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, July.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Techno-
logies, pages 673–682, Portland, Oregon, USA, June.
Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics, 19(2):313–330.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of EMNLP-CoNLL.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Workshop on Parsing Technolo-
gies (IWPT), pages 149–160, Nancy, France.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Workshop on Incremental Pars-
ing: Bringing Engineering and Cognition Together,
pages 50–57, Barcelona, Spain.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguist-
ics, 34(4):513–553.

Francesco Sartorio, Giorgio Satta, and Joakim Nivre.
2013. A transition-based dependency parser using a
dynamic parsing strategy. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 135–144,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based and
transition-based dependency parsing. In Proceedings
of EMNLP.

130

Temporal Annotation in the Clinical Domain
William F. Styler IV1, Steven Bethard2, Sean Finan3, Martha Palmer1,
Sameer Pradhan3, Piet C de Groen4, Brad Erickson4, Timothy Miller3,

Chen Lin3, Guergana Savova3 and James Pustejovsky5

1 Department of Linguistics, University of Colorado at Boulder
2 Department of Computer and Information Sciences, University of Alabama at Birmingham

3 Children’s Hospital Boston Informatics Program and Harvard Medical School
4 Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN

5 Department of Computer Science, Brandeis University

Abstract

This article discusses the requirements of
a formal specification for the annotation of
temporal information in clinical narratives.
We discuss the implementation and extension
of ISO-TimeML for annotating a corpus of
clinical notes, known as the THYME cor-
pus. To reflect the information task and the
heavily inference-based reasoning demands
in the domain, a new annotation guideline
has been developed, “the THYME Guidelines
to ISO-TimeML (THYME-TimeML)”. To
clarify what relations merit annotation, we
distinguish between linguistically-derived and
inferentially-derived temporal orderings in the
text. We also apply a top performing Temp-
Eval 2013 system against this new resource to
measure the difficulty of adapting systems to
the clinical domain. The corpus is available to
the community and has been proposed for use
in a SemEval 2015 task.

1 Introduction

There is a long-standing interest in temporal reason-
ing within the biomedical community (Savova et al.,
2009; Hripcsak et al., 2009; Meystre et al., 2008;
Bramsen et al., 2006; Combi et al., 1997; Keravnou,
1997; Dolin, 1995; Irvine et al., 2008; Sullivan et
al., 2008). This interest extends to the automatic ex-
traction and interpretation of temporal information
from medical texts, such as electronic discharge sum-
maries and patient case summaries. Making effective
use of temporal information from such narratives is
a crucial step in the intelligent analysis of informat-
ics for medical researchers, while an awareness of
temporal information (both implicit and explicit) in a
text is also necessary for many data mining tasks.

It has also been demonstrated that the temporal in-
formation in clinical narratives can be usefully mined

to provide information for some higher-level tempo-
ral reasoning (Zhao et al., 2005). Robust temporal
understanding of such narratives, however, has been
difficult to achieve, due to the complexity of deter-
mining temporal relations among events, the diver-
sity of temporal expressions, and the interaction with
broader computational linguistic issues.

Recent work on Electronic Health Records (EHRs)
points to new ways to exploit and mine the informa-
tion contained therein (Savova et al., 2009; Roberts
et al., 2009; Zheng et al., 2011; Turchin et al., 2009).
We target two main use cases for extracted data. First,
we hope to enable interactive displays and summaries
of the patient’s records to the physician at the time of
visit, making a comprehensive review of the patient’s
history both faster and less prone to oversights. Sec-
ond, we hope to enable temporally-aware secondary
research across large databases of medical records
(e.g., “What percentage of patients who undergo pro-
cedure X develop side-effect Y within Z months?”).
Both of these applications require the extraction of
time and date associations for critical events and the
relative ordering of events during the patient’s period
of care, all from the various records which make up a
patient’s EHR. Although we have these two specific
applications in mind, the schema we have developed
is generalizable and could potentially be embedded
in a wide variety of biomedical use cases.

Narrative texts in EHRs are temporally rich doc-
uments that frequently contain assertions about the
timing of medical events, such as visits, laboratory
values, symptoms, signs, diagnoses, and procedures
(Bramsen et al., 2006; Hripcsak et al., 2009; Zhou
et al., 2008). Temporal representation and reason-
ing in the medical record are difficult due to: (1) the
diversity of time expressions; (2) the complexity of
determining temporal relations among events (which
are often left to inference); (3) the difficulty of han-
dling the temporal granularity of an event; and (4)

143

Transactions of the Association for Computational Linguistics, 2 (2014) 143–154. Action Editor: Ellen Riloff.
Submitted 9/2013; Revised 2/2014; Published 4/2014. c©2014 Association for Computational Linguistics.

general issues in natural language processing (e.g.,
ambiguity, anaphora, ellipsis, conjunction). As a re-
sult, the signals used for reconstructing a timeline can
be both domain-specific and complex, and are often
left implicit, requiring significant domain knowledge
to accurately detect and interpret.

In this paper, we discuss the demands on accurately
annotating such temporal information in clinical
notes. We describe an implementation and extension
of ISO-TimeML (Pustejovsky et al., 2010), devel-
oped specifically for the clinical domain, which we
refer to as the “THYME Guidelines to ISO-TimeML”
(“THYME-TimeML”), where THYME stands for
“Temporal Histories of Your Medical Events”. A sim-
plified version of these guidelines formed the basis
for the 2012 i2b2 medical-domain temporal relation
challenge (Sun et al., 2013a).

This is being developed in the context of the
THYME project, whose goal is to both create ro-
bust gold standards for semantic information in clini-
cal notes, as well as to develop state-of-the-art algo-
rithms to train and test on this dataset.

Deriving timelines from news text requires the con-
crete realization of context-dependent assumptions
about temporal intervals, orderings and organization,
underlying the explicit signals marked in the text
(Pustejovsky and Stubbs, 2011). Deriving patient
history timelines from clinical notes also involves
these types of assumptions, but there are special de-
mands imposed by the characteristics of the clinical
narrative. Due to both medical shorthand practices
and general domain knowledge, many event-event
relations are not signaled in the text at all, and rely
on a shared understanding and common conceptual
models of the progressions of medical procedures
available only to readers familiar with language use
in the medical community.

Identifying these implicit relations and temporal
properties puts a heavy burden on the annotation
process. As such, in the THYME-TimeML guideline,
considerable effort has gone into both describing and
proscribing the annotation of temporal orderings that
are inferable only through domain-specific temporal
knowledge.

Although the THYME guidelines describe a num-
ber of departures from the ISO-TimeML standard for
expediency and ease of annotation, this paper will
focus on those differences specifically motivated by
the needs of the clinical domain, and on the conse-
quences for systems built to extract temporal data in

both the clinical and general domain.

2 The Nature of Clinical Documents

In the THYME corpus, we have been examining
1,254 de-identified1 notes from a large healthcare
practice (the Mayo Clinic), representing two distinct
fields within oncology: brain cancer, and colon can-
cer. To date, we have principally examined two dif-
ferent general types of clinical narrative in our EHRs:
clinical notes and pathology reports.

Clinical notes are records of physician interactions
with a patient, and often include multiple, clearly
delineated sections detailing different aspects of the
patient’s care and present illness. These notes are
fairly generic across institutions and specialities, and
although some terms and inferences may be specific
to a particular type of practice (such as oncology),
they share a uniform structure and pattern. The ‘His-
tory of Present Illness’, for example, summarizes the
course of the patient’s chief complaint, as well as the
interventions and diagnostics which have been thus
far attempted. In other sections, the doctor may out-
line her current plan for the patient’s treatment, then
later describe the patient’s specific medical history,
allergies, care directives, and so forth.

Most critically for temporal reasoning, each clin-
ical note reflects a single time in the patient’s treat-
ment history at which all of the doctor’s statements
are accurate (the DOCTIME), and each section tends
to describe events of a particular timeframe. For
example, ‘History of Present illness’ predominantly
describes events occuring before DOCTIME, whereas
‘Medications’ provides a snapshot at DOCTIME and
‘Ongoing Care Orders’ discusses events which have
not yet occurred.2

Clinical notes contain rich temporal information
and background, moving fluidly from prior treat-
ments and symptoms to present conditions to future
interventions. They are also often rich with hypo-
thetical statements (“if the tumor recurs, we can...”),
each of which can form its own separate timeline.

By constrast, pathology notes are quite different.
Such notes are generated by a medical pathologist

1Although most patient information was removed, dates
and temporal information were not modified according to this
project’s specific data use agreement.

2One complication is the propensity of doctors and automated
systems to later update sections in a note without changing the
timestamp or metadata. We have added a SECTIONTIME to keep
these updated sections from affecting our overall timeline.

144

upon receipt and analysis of specimens (ranging from
tissue samples from biopsy to excised portions of
tumor or organs). Pathology notes provide crucial
information to the patient’s doctor confirming the
malignancy (cancer) in samples, describing surgi-
cal margins (which indicate whether a tumor was
completely excised), and classifying and ‘staging’ a
tumor, describing the severity and spread of the can-
cer. Because the information in such notes pertains
to samples taken at a single moment in time, they are
temporally sparse, seldom referring to events before
or after the examination of the specimen. However,
they contain critical information about the state of
the patient’s illness and about the cancer itself, and
must be interpreted to understand the history of the
patient’s illness.

Most importantly, in all EHRs, we must contend
with the results of a fundamental tension in mod-
ern medical records: hyper-detailed records provide
a crucial defense against malpractice litigation, but
including such detail takes enormous time, which
doctors seldom have. Given that these notes are writ-
ten by and for medical professionals (who form a
relatively insular speech community), a great many
non-standard expressions, abbreviations, and assump-
tions of shared knowledge are used, which are simul-
taneously concise and detail-rich for others who have
similar backgrounds.

These time-saving devices can range from tempo-
rally loaded acronyms (e.g., ‘qid’, Latin for quater in
die, ‘four times daily’), to assumed orderings (a diag-
nostic test for a disorder is assumed to come before
the procedure which treats it), and even to completely
implicit events and temporal details. For example,
consider the sentence in (1).
(1) Colonoscopy 3/12/10, nodule biopsies negative

We must understand that during the colonoscopy,
the doctor obtained biopsies of nodules, which were
packaged and sent to a pathologist, who reviewed
them and determined them to be ‘negative’ (non-
cancerous).

In such documents, we must recover as much tem-
poral detail as possible, even though it may be ex-
pressed in a way which is not easily understood out-
side of the medical community, let alone by linguists
or automated systems. We must also be aware of the
legal relevance of some events (e.g., “We discussed
the possible side effects”), even when they may not
seem relevant to the patient’s actual care.

Finally, each specialty and note type has separate

conventions. Within colon cancer notes, the Amer-
ican Joint Committee on Cancer (AJCC) Staging
Codes (e.g., T4N1, indicating the nature of the tumor,
lymph node and metastasis involvement) are metic-
ulously recorded, but are largely absent in the brain
cancer notes which make up the second corpus in
our project. So, although clinical notes share many
similarities, annotators without sufficient domain ex-
pertise may require additional training to adapt to the
inferences and nuances of a new clinical subdomain.

3 Interpreting ‘Event’ and Temporal
Expressions in the Clinical Domain

Much prior work has been done on standardizing
the annotation of events and temporal expressions
in text. The most widely used approach is the ISO-
TimeML specification (Pustejovsky et al., 2010), an
ISO standard that provides a common framework for
annotating and analyzing time, events, and event rela-
tions. As defined by ISO-TimeML, an EVENT refers
to anything that can be said “to obtain or hold true, to
happen or to occur”. This is a broad notion of event,
consistent with Bach’s use of the term “eventuality”
(Bach, 1986) as well as the notion of fluents in AI
(McCarthy, 2002).

Because the goals of the THYME project involve
automatically identifying the clinical timeline for
a patient from clincal records, the scope of what
should be admitted into the domain of events is inter-
preted more broadly than in ISO-TimeML3. Within
the THYME-TimeML guideline, an EVENT is any-
thing relevant to the clinical timeline, i.e., anything
that would show up on a detailed timeline of the pa-
tient’s care or life. The best single-word syntactic
head for the EVENT is then used as its span. For
example, a diagnosis would certainly appear on such
a timeline, as would a tumor, illness, or procedure.
On the other hand, entities that persist throughout
the relevant temporal period of the clinical timeline
(endurants in ontological circles) would not be con-
sidered as event-like. This includes the patient, other
humans mentioned (the patient’s mother-in-law or
the doctor), organizations (the emergency room),
non-anatomical objects (the patient’s car), or indi-
vidual parts of the patient’s anatomy (an arm is not
an EVENT unless missing or otherwise notable).

To meet our explicit goals, the THYME-TimeML
guideline introduces two additional levels of interpre-

3Our use of the term ‘EVENT’ corresponds with the less
specific ISO-TimeML term ‘Eventuality’

145

tation beyond that specified by ISO-TimeML: (i) a
well-defined task; and (ii) a clearly identified domain.
By focusing on the creation of a clinical timeline
from clinical narrative, the guideline imposes con-
straints that cannot be assumed for a broadly defined
and domain independent annotation schema.

Some EVENTs annotated under our guideline are
considered meaningful and eventive mostly by virtue
of a specific clinical or legal value. For example,
AJCC Staging Codes (discussed in Section 2) are
eventive only in the sense of the code being assigned
to a tumor at a given moment in the patient’s care.
However, they are of such critical importance and
informative value to doctors that we have chosen to
annotate them specifically so that they will show up
on the patient’s timeline in a clinical setting.

Similarly, because of legal pressures to establish in-
formed consent and patient knowledge of risk, entire
paragraphs of clinical notes are dedicated to docu-
menting the doctor’s discussion of risks, plans, and
alternative strategies. As such, we annotate verbs of
discussion (“We talked about the risks of this drug”),
consent (“She agreed with the current plan”), and
comprehension (“Mrs. Larsen repeated the potential
side effects back to me”), even though they are more
relevant to legal defense than medical treatment.

It is also because of this grounding in clinical lan-
guage that entities and other non-events are often
interpreted in terms of their associated eventive prop-
erties. There are two major types for which this is a
significant shift in semantic interpretation:

(2) a Medication as Event:
Orders: Lariam twice daily.

b Disorder as Event:
Tumor of the left lung.

In both these cases, entities which are not typically
marked as events are identified as such, because they
contribute significant information to the clinical time-
line being constructed. In (2a), for example, the
TIMEX3 “twice daily” is interpreted as scoping over
the eventuality of the patient taking the medication,
not the prescription event. In sentence (2b), the “tu-
mor” is interpreted as a stative eventuality of the
patient having a tumor located within an anatomical
region, rather than an entity within an entity.

Within the medical domain, these eventive inter-
pretations of medications, growths and status codes
are unambiguous and consistent. Doctors in clini-
cal notes (unlike in biomedical research texts) do

not discuss medications without an associated (im-
plicit) administering EVENT (though some mentions
may be hypothetical, generic or negated). Similarly,
mentions of symptoms or disorders reflect occur-
rences in a patient’s life, rather than abstract entities.
With these interpretations in mind, we can safely in-
fer, for instance, that all UMLS (Unified Medical
Language System, (Bodenreider, 2004)) entities of
the types Disorder, Chemical/Drug, Procedure and
Sign/Symptom will be EVENTs.

In general, in the medical domain, it is essential to
read “between the lines” of the shorthand expressions
used by the doctors, and recognize implicit events
that are being referred to by specific anatomical sites
or medications.

4 Modifications to ISO-TimeML for the
Clinical Domain

Overall, we have found that the specification required
for temporal annotation in the clinical domain does
not require substantial modification from existing
specifications for the general domain. The clinical
domain includes no shortage of inferences, short-
hands, and unusual use of language, but the structure
of the underlying timeline is not unique.

As a result of this, we have been able to adopt most
of the framework from ISO-TimeML, adapting the
guidelines where needed, as well as reframing the
focus of what gets annotated. This is reflected in a
comprehensive guideline, incorporating the specific
patterns and uses of events and temporal expressions
as seen in clinical data. This approach allows the
resulting annotations to be interoperable with exist-
ing solutions, while still accommodating the major
differences in the nature of the texts. Our guide-
lines, as well as the annotated data, are available at
http://thyme.healthnlp.org4

Our extensions of the ISO-TimeML specification
to the clinical domain are intended to address specific
constructions, meanings, and phenomena in medical
texts. Our schema differs from ISO-TimeML in a
few notable ways.

EVENT Properties We have both simplified the
ISO-TimeML coding of EVENTs, and extended it to
meet the needs of the clinical domain and the specific
language goals of the clinical narrative.

4Access to the corpus will require a data use agreement.
More information about this process is available from the corpus
website.

146

Consider, for example, how modal subordination is
handled in ISO-TimeML. This involves the semantic
characterization of an event as “likely”, “possible”, or
as presented by observation, evidence, or hearsay. All
of these are accounted for compositionally in ISO-
TimeML within the SLINK (Subordinating Link)
relation (Pustejovsky et al., 2005). While accept-
ing ISO-TimeML’s definition of event modality, we
have simplified the annotation task within the cur-
rent guideline, so that EVENTs now carry attributes
for “contextual modality”, “contextual aspect” and
“permanence”.

Contextual modality allows the values ACTUAL,
HYPOTHETICAL, HEDGED, and GENERIC. ACTUAL
covers EVENTs which have actually happened, e.g.,
“We’ve noted a tumor”. HYPOTHETICAL covers con-
ditionals and possibilities, e.g., “If she develops a
tumor”. HEDGED is for situations where doctors
proffer a diagnosis, but do so cautiously, to avoid
legal liability for an incorrect diagnosis or for over-
looking a correct one. For example:

(3) a. The signal in the MRI is not inconsistent
with a tumor in the spleen.

b. The rash appears to be measles, awaiting
antibody test to confirm.

These HEDGED EVENTs are more real than a hypo-
thetical diagnosis, and likely merit inclusion on a
timeline as part of the diagnostic history, but must
not be conflated with confirmed fact. These (and
other forms of uncertainty in the medical domain)
are discussed extensively in (Vincze et al., 2008). In
contrast, GENERIC EVENTs do not refer to the pa-
tient’s illness or treatment, but instead discuss illness
or treatment in general (often in the patient’s specific
demographic). For example:

(4) In other patients without significant comor-
bidity that can tolerate adjuvant chemother-
apy, there is a benefit to systemic adjuvant
chemotherapy.

These sections would be true if pasted into any pa-
tient’s note, and are often identical chunks of text
repeatedly used to justify a course of action or treat-
ment as well as to defend against liability.

Contextual Aspect (to distinguish from grammati-
cal aspect), allows the clinically-necessary category,
INTERMITTENT. This serves to distinguish intermit-
tent EVENTs (such as vomiting or seizures) from
constant, more stative EVENTs (such as fever or sore-
ness). For example, the bolded EVENT in (5a) would

be marked as INTERMITTENT, while that in (5b)
would not:
(5) a She has been vomiting since June.

b She has had swelling since June.
In the first case, we assume that her vomiting has
been intermittent, i.e., there were several points since
June in which she was not actively vomiting. In the
second case, unless made otherwise explicit (“she has
had occasional swelling”), we assume that swelling
was a constant state. This property is also used when
a particular instance of an EVENT is intermittent,
even though it generally would not be:
(6) Since starting her new regime, she has had occa-

sional bouts of fever, but is feeling much better.
The permanence attribute has two values, FINITE

and PERMANENT. Permanence is a property of dis-
eases themselves, roughly corresponding to the med-
ical concept of “chronic” vs. “acute” disease, which
marks whether a disease is persistent following diag-
nosis. For example, a (currently) uncurable disease
like Multiple Sclerosis would be classed as PERMA-
NENT, and thus, once mentioned in a patient’s note,
will be assumed to persist through the end of the
patient’s timeline. This is compared with FINITE
disorders like “Influenza” or “fever”, which, if not
mentioned in subsequent notes, should be considered
cured and no longer belongs on the patient’s time-
line. Because it requires domain-specific knowledge,
although present in the specification, Permanence
is not currently annotated. However, annotators are
trained on the basic idea and told about subsequent
axiomatic assignment. The addition of this property
to our schema is designed to relieve annotators of any
feeling of obligation to express this inferred informa-
tion in some other way.

TIMEX3 Types Temporal expressions (TIMEX3s)
in the clinical domain function the same as in the gen-
eral linguistic community, with two notable excep-
tions. ISO-TimeML SETs (statements of frequency)
occur quite frequently in the medical domain, par-
ticularly with regard to medications and treatments.
Medication sections within notes often contain long
lists of medications, each with a particular associated
set (“Claritin 30mg twice daily”), and further tempo-
ral specification is not uncommon (e.g., “three times
per day at meals”, “once a week at bedtime”).

The second major change for the medical domain
is a new type of TIMEX3 which we call PREPOS-
TEXP. This covers temporally complex terms like

147

“preoperative”, “postoperative”, and “intraoperative”.
These temporal expressions designate a span of time
bordered, usually only on one side, by the incorpo-
rated event (an operation, in the previous EVENTs).
In many cases, the referent is clear:
(7) She underwent hemicolectomy last week, and

had some postoperative bleeding.
Here we understand that “postoperative” refers to
“the period of time following the hemicolectomy”. In
these cases, the PREPOSTEXP makes explicit a tempo-
ral link between the bleeding and the hemicolectomy.
In other cases, no clear referent is present:
(8) Patient shows some post-procedure scarring.

In these situations, where no procedure is mentioned
(or the reference is never explicitly resolved), we
treat the PREPOSTEXP as a narrative container (see
Section 5), covering the span of time following the
unnamed procedure.

Finally, it is worth noting that the process of nor-
malizing those TIMEX3s is significantly more com-
plex relative to the general domain, because many
temporal expressions are anchored not to dates or
times, but to other EVENTs (whose dates are often
not mentioned or not known by the physician). As
we move towards a complete system, we are working
to expand the ISO-TimeML system for TIMEX3 nor-
malization to allow some value to be assigned to a
phrase like “in the months after her hemicolectomy”
when no referent date is present. ISO-TimeML, in
discussion with ISO TC 37SC 4, plans to reference
to such TIMEX3s in a future release of the standard.

5 Temporal Ordering and Narrative
Containers

The semantic content and informational impact of
a timeline is encoded in the ordering relations that
are identified between the temporal and event expres-
sions present in clinical notes. ISO-TimeML speci-
fies the standard thirteen “Allen relations” from the
interval calculus (Allen, 1983), which it refers to as
TLINK values. For unguided, general-purpose annota-
tion, the number of relations that could be annotated
grows quadratically with the number of events and
times, and the task quickly becomes unmanageable.
There are, however, strategies that we can adopt to
make this labeling task more tractable. Temporal
ordering relations in text are of three kinds:
1. Relations between two events
2. Relations between two times

3. Relations between a time and an event.

ISO-TimeML, as a formal specification of the tem-
poral information conveyed in language, makes no
distinction between these ordering types. Humans,
however, do make distinctions, based on local tempo-
ral markers and the discourse relations established in
a narrative (Miltsakaki et al., 2004; Poesio, 2004).

Because of the difficulty of humans capturing ev-
ery relationship present in the note (and the disagree-
ment which arises when annotators attempt to do so),
it is vital that the annotation guidelines describe an
approach that reduces the number of relations that
must be considered, but still results in maximally in-
formative temporal links. We have found that many
of the weaknesses in prior annotation approaches
stem from interaction between two competing goals:

• The guideline should specify certain types of an-
notations that should be performed;

• The guideline should not force annotations to be
performed when they need not be.

Failing in the first goal will result in under-annotation
and the neglect of relations which provide necessary
information for inference and analysis. Failure in the
second goal results in over-annotation, creating com-
plex webs of temporal relations which yield mostly
inferable information, but which complicate annota-
tion and adjudication considerably.

Our method of addressing both goals in tempo-
ral relations annotation is that of the narrative con-
tainer, discussed in Pustejovsky and Stubbs (2011).
A narrative container can be thought of as a temporal
bucket into which an EVENT or series of EVENTs
may fall, or a natural cluster of EVENTs around a
given time or situation. These narrative containers
are often represented (or “anchored”) by dates or
other temporal expressions (within which a variety
of different EVENTs occur), although they can also
be anchored to more abstract concepts (“recovery”
which might involve a variety of EVENTs) or even
durative EVENTs (many other EVENTs can occur dur-
ing a surgery). Rather than marking every possible
TLINK between each EVENT, we instead try to link
all EVENTs to their narrative containers, and then
link those containers so that the contained EVENTs
can be linked by inference.

First, annotators assign each event to one of four
broad narrative containers: before the DOCTIME, be-
fore and overlapping the DOCTIME, just overlapping
the DOCTIME or after the DOCTIME. This narrative

148

container is identified by the EVENT attribute Doc-
TimeRel. After the assignment of DocTimeRel, the
remainder of the narrative container relations must
be specified using temporal links (TLINKs). There
are five different temporal relations used for such
TLINKs: BEFORE, OVERLAP, BEGINS-ON, ENDS-ON
and CONTAINS5. Due to our narrative container ap-
proach, CONTAINS is the most frequent relation by a
large margin.

EVENTs serving as narrative container anchors are
not tagged as containers per-se. Instead, annotators
use the narrative container idea to help them visu-
alize the temporal relations within a document, and
then make a series of CONTAINS TLINK annotations
which establish EVENTs and TIMEX3s as anchors,
and specify their contents. If the annotators do their
jobs correctly, properly implementing DocTimeRel
and creating accurate TLINKs, a good understanding
of the narrative containers present in a document will
naturally emerge from the annotated text.

The major advantage introduced with narrative
containers is this: a narrative event is placed within a
bounding temporal interval which is explicitly men-
tioned in the text. This allows EVENTs within sep-
arate containers to be linked by post-hoc inference,
temporal reasoning, and domain knowledge, rather
than by explicit (and time-consuming) one-by-one
temporal relations annotation.

A secondary advantage is that this approach works
nicely with the general structure of story-telling in
both the general and clinical domains, and provides a
compelling and useful metaphor for interpreting time-
lines. Often, especially in clinical histories, doctors
will cluster discussions of symptoms, interventions
and diagnoses around a given date (e.g. a whole para-
graph starting “June 2009:”), a specific hospitaliza-
tion (“During her January stay at Mercy”), or a given
illness or treatment (“While she underwent Chemo”).
Even when specific EVENTs are not explicitly or-
dered within a cluster (often because the order can be
easily inferred with domain knowledge), it is often
quite easy to place the EVENTs into containers, and
just a few TLINKs can order the containers relative to
one another with enough detail to create a clinically
useful understanding of the overall timeline.

Narrative containers also allow the inference of re-
lations between sub-events within nested containers:

5This is a subset of the ISO-TimeML TLINK types, excluding
those seldom occurring in medical records, like ‘simultaneous’
as well as inverse relations like ‘during’ or ‘after’.

(9) December 19th: The patient underwent an MRI
and EKG as well as emergency surgery. Dur-
ing the surgery, the patient experienced mild
tachycardia, and she also bled significantly
during the initial incision.

1. December 19th CONTAINS MRI
2. December 19th CONTAINS EKG
3. December 19th CONTAINS surgery
a. surgery CONTAINS tachycardia
b. surgery CONTAINS incision
c. incision CONTAINS bled

Through our container nesting, we can automatically
infer that ‘bled’ occurred on December 19th (because
‘19th’ CONTAINS ‘surgery’ which CONTAINS ‘inci-
sion’ which CONTAINS ‘bled’). This also allows the
capture of EVENT/sub-event relations, and the rapid
expression of complex temporal interactions.

6 Explicit vs. Inferable Annotation

Given a specification language, there are essentially
two ways of introducing the elements into the docu-
ment (data source) being annotated:6

• Manual annotation: Elements are introduced into
the document directly by the human annotator fol-
lowing the guideline.

• Automatic (inferred) annotation: Elements are cre-
ated by applying an automated procedure that in-
troduces new elements that are derivable from the
human annotations.

As such, there is a complex interaction between spec-
ification and guideline, and we focus on how the
clinical annotation task has helped shape and refine
the annotation guidelines. It is important to note that
an annotation guideline does not necessarily force
the markup of certain elements in a text, even though
the specification language (and the eventual goal of
the project) might require those annotations to exist.

In some cases, these added annotations are derived
logically from human annotations. Explicitly marked
temporal relations can be used to infer others that are
not marked but exist implicitly through closure. For
instance, given EVENTs A, B and C and TLINKs ‘A
BEFORE B’ and ‘B BEFORE C’, the TLINK ‘A BE-
FORE C’ can be automatically inferred. Repeatedly
applying such inference rules allows all inferable

6We ignore the application of automatic techniques, such as
classifiers trained on external datasets, as our focus here is on
the preparation of the gold standard used for such classifiers.

149

TLINKs to be generated (Verhagen, 2005). We can
use this idea of closure to show our annotators which
annotations need not be marked explicitly, saving
time and effort. We have also incorporated these clo-
sure rules into our inter-annotator agreement (IAA)
calculation for temporal relations, described further
in Section 7.2.

The automatic application of rules following the
annotation of the text is not limited to the marking
of logically inferable relations or EVENTs. In the
clinical domain, the combination of within-group
shared knowledge and pressure towards concise writ-
ing leads to a number of common, inferred relations.
Take, for example, the sentence:
(10) Jan 2013: Colonoscopy, biopsies. Pathology

showed adenocarcinoma, resected at Mercy.
Diagnosis T3N1 Adenocarcinoma.

In this sentence, only the CONTAINS relations be-
tween “Jan 2013” and the EVENTs (in bold) are
explicitly stated. However, based on the known
progression-of-care for colon cancer, we can infer
that the colonoscopy occurs first, biopsies occur dur-
ing the colonoscopy, pathology happens afterwards,
a diagnosis (here, adenocarcinoma) is returned after
pathology, and resection of the tumor occurs after
diagnosis. The presence of the AJCC staging infor-
mation in the final sentence (along with the confir-
mation of the adenocarcinoma diagnosis) implies a
post-surgical pathology exam of the resected spec-
imen, as the AJCC staging information cannot be
determined without this additional examination.

These inferences come naturally to domain ex-
perts but are largely inaccessible to people outside
the medical community without considerable anno-
tator training. Making explicit our understanding of
these “understood orderings” is crucial; although they
are not marked by human annotators in our schema,
the annotators often found it initially frustrating to
leave these (purely inferential) relations unstated. Al-
though many of our (primarily linguistically trained)
annotators learned to see these patterns, we chose to
exclude them from the manual task since newer an-
notators with varying degrees of domain knowledge
may struggle if asked to manually annotate them.

Similar unspoken-but-understood orderings are
found throughout the clinical domain. As mentioned
in Section 3, both Permanence and Contextual As-
pect:Intermittent are properties of symptoms and dis-
eases themselves, rather than of the patient’s particu-
lar situation. As such, these properties could easily

Annotation Type Raw Count
EVENT 15,769
TIMEX3 1,426
LINK 7935
Total 25,130

Table 1: Raw Frequency of Annotation Types

TLINK Type Raw Count % of TLINKs
CONTAINS 5,112 64.42%
OVERLAP 1,205 15.19%
BEFORE 1,004 12.65%
BEGINS-ON 488 6.15%
ENDS-ON 126 1.59%
Total 7,935 100.00%

Table 2: Relative Frequency of TLINK types

be identified and marked across a medical ontology,
and then be automatically assigned to EVENTs rec-
ognized as specific medical named entities.

Finally, due to the peculiarities of EHR systems,
some annotations must be done programatically. Ex-
act dates of patient visit (or of pathology/radiology
consult) are often recorded as metadata on the EHR
itself, rather than within the text, making the canoni-
cal DOCTIME (or time of automatic section modifi-
cations) difficult to access in de-identified plaintext
data, but easy to find automatically.

7 Results

We report results on the annotations from the here-
released subset of the THYME colon cancer corpus,
which includes clinical notes and pathology reports
for 35 patients diagnosed with colon cancer for a
total of 107 documents. Each note was annotated
by a pair of graduate or undergraduate students in
Linguistics at the University of Colorado, then adju-
dicated by a domain expert. These clinical narratives
were sampled from the EHRs of a major healthcare
center (the Mayo Clinic). They were deidentified for
all patient-sensitive information; however, original
dates were retained.

7.1 Descriptive Statistics
Table 1 presents the raw counts for events, temporal
expressions and links in the adjudicated gold anno-
tations. Table 2 presents the number and percentage
of TLINKs by type in the adjudicated relations gold
annotations.

150

Annotation Type F1-Score Alpha
EVENT 0.8038 0.7899
TIMEX3 0.8047 0.6705
LINK: Participants only 0.5012 0.4999
LINK: Participants+type 0.4506 0.4503
LINK: CONTAINS 0.5630 0.5626

Table 3: IAA (F1-Score and Alpha) by annotation type

EVENT Property F1-Score Alpha
DocTimeRel 0.7189 0.6889
Cont.Aspect 0.9947 0.9930
Cont.Modality 0.9547 0.9420

Table 4: IAA (F1-Score and Alpha) for EVENT properties

7.2 Inter-annotator Agreement
We report inter-annotator agreement (IAA) results
on the THYME corpus. Each note was annotated by
two independent annotators. The final gold standard
was produced after disagreement adjudication by a
third annotator was performed.

We computed the IAA as F1-score and Krippen-
dorff’s Alpha (Krippendorff, 2012) by applying clo-
sure, using explicitly marked temporal relations to
identify others that are not marked but exist implicitly.
In the computation of the IAA, inferred-only TLINKs
do not contribute to the score, matched or unmatched.
For instance, if both annotators mark A BEFORE B
and B BEFORE C, to prevent artificially inflating the
agreement score, the inferred A BEFORE C is ignored.
Likewise, if one annotator marked A BEFORE B and
B BEFORE C and the other annotator did not, the
inferred A BEFORE C is not counted. However, if
one annotator did explicitly mark A BEFORE C, then
an equivalent inferred TLINK would be used to match
it. EVENT and TIMEX3 IAA was generated based
on exact and overlapping spans, respectively. These
results are reported in Table 3.

The THYME corpus also differs from ISO-
TimeML in terms of EVENT properties, with the
addition of DocTimeRel, ContextualModality and
ContextualAspect. IAA for these properties is in
Table 4.

7.3 Baseline Systems
To get an idea of how much work will be neces-
sary to adapt existing temporal information extrac-
tion systems to the clinical domain, we took the freely
available ClearTK-TimeML system (Bethard, 2013),

TempEval 2013 THYME Corpus
P R F1 P R F1

TIMEX3 83.2 71.7 77.0 59.3 42.8 49.7
EVENT 81.4 76.4 78.8 78.9 23.9 36.6
DocTimeRel - - - 47.4 47.4 47.4
LINK7 28.6 30.9 26.6 22.7 18.6 20.4

EVENT-TIMEX3 - - - 32.3 60.7 42.1
EVENT-EVENT - - - 7.0 3.0 4.2

Table 5: Performance of ClearTK-TimeML models, as
reported in the TempEval 2013 competition, and as applied
to the THYME Corpus development set.

which was among the top performing systems in
TempEval 2013 (UzZaman et al., 2013), and eval-
uated its performance on the THYME corpus.

ClearTK-TimeML uses support vector machine
classifiers trained on the TempEval 2013 training
data, employing a small set of features including
character patterns, tokens, stems, part-of-speech tags,
nearby nodes in the constituency tree, and a small
time word gazetteer. For EVENTs and TIMEX3s,
the ClearTK-TimeML system could be applied di-
rectly to the THYME corpus. For DocTimeRels, the
relation for an EVENT was taken from the TLINK
between that EVENT and the document creation time,
after mapping INCLUDES to OVERLAP. EVENTs
with no such TLINK were assumed to have a Doc-
TimeRel of OVERLAP. For other temporal relations,
INCLUDES was mapped to CONTAINS.

Results of this system on TempEval 2013 and the
THYME corpus are shown in Table 5. For time ex-
pressions, performance when moving to the clinical
data degrades about 25%, from F1 of 77.0 to 49.7.
For events, the degradation is much larger, about
40%, from 78.8 to 36.6, most likely because of the
large number of clinical symptoms, diseases, disor-
ders, etc. which have never been observed by the
system during training. Temporal relations are a bit
more difficult to compare because TempEval lumped
DocTimeRel and other temporal relations together
and had several differences in their evaluation met-
ric7. However, we at least can see that performance
of the ClearTK-TimeML system on temporal rela-
tions is low on clinical text, achieving only F1 of
20.4.

These results suggest that clinical narratives do

7The TempEval 2013 evaluation metric penalized systems
for parts of the text that were not examined by annotators, and
used different variants of closure-based precision and recall.

151

indeed present new challenges for temporal informa-
tion extraction systems, and that having access to
domain specific training data will be crucial for ac-
curate extraction in the clinical domain. At the same
time, it is encouraging that we were able to apply
existing ISO-TimeML-based systems to our corpus,
despite the several extensions to ISO-TimeML that
were necessary for clinical narratives.

8 Discussion

CONTAINS plays a large role in the THYME cor-
pus, representing 66% of TLINK annotations made,
compared with only 14.6% for OVERLAP, the second
most frequent type. We also see that BEFORE links
are relatively less common than OVERLAP and CON-
TAINS, illustrating that much of the temporal ordering
on the timeline is accomplished by using many ver-
tical links (CONTAINS, OVERLAP) to build contain-
ers, and few horizontal links (BEFORE, BEGINS-ON,
ENDS-ON) to order them.

IAA on EVENTs and Temporal Expressions is
strong, although differentiating implicit EVENTs
(which should not be marked) from explicit, mark-
able EVENTs remains one of the biggest sources of
disagreement. When compared to the data from the
2012 i2b2 challenge (Sun et al., 2013b), our IAA
figures are quite similar. Even with our more com-
plex schema, we achieved an F1-score of 0.8038 for
EVENTs (compared to the i2b2 score of 0.87 for par-
tial match). For TIMEX3s, our F1-score was 0.8047,
compared to an F1-score of 0.89 for i2b2.

TLINKing medical EVENTs remains a very diffi-
cult task. By using our narrative container approach
to constrain the number of necessary annotations and
by eliminating often-confusing inverse relations (like
‘after’ and ‘during’) (neither of which were done for
the i2b2 data), we were able to significantly improve
on the i2b2 TLINK span agreement F1-score of 0.39,
achieving an agreement score of 0.5012 for all LINKs
across our corpus. The majority of remaining an-
notator disagreement comes from different opinions
about whether any two EVENTs require an explicit
TLINK between them or an inferred one, rather than
what type of TLINK it would be (e.g. BEFORE vs.
CONTAINS). Although our results are still signifi-
cantly higher than the results reported for i2b2, and
in line with previously reported general news figures,
we are not satisfied. Improving IAA is an important
goal for future work, and with further training, speci-
fication, experience, and standardization, we hope to

clarify contexts for explicit TLINKS.
News-trained temporal information extraction sys-

tems see a significant drop in performance when ap-
plied to the clinical texts of the THYME corpus. But
as the corpus is an extension of ISO-TimeML, future
work will be able to train ISO-TimeML compliant
systems on the annotations of the THYME corpus to
reduce or eliminate this performance gap.

Some applications that our work may enable in-
clude (1) better understanding of event semantics,
such as whether a disease is chronic or acute and
its usual natural history, (2) typical event duration
for these events, (3) the interaction of general and
domain-specific events and their importance in the fi-
nal timeline, and, more generally, (4) the importance
of rough temporality and narrative containers as a
step towards finer-grained timelines.

We have several avenues of ongoing and future
work. First, we are working to demonstrate the utility
of the THYME corpus for training machine learning
models. We have designed support vector machine
models with constituency tree kernels that were able
to reach an F1-score of 0.737 on an EVENT-TIMEX3
narrative container identification task (Miller et al.,
2013), and we are working on training models to
identify events, times and the remaining types of
temporal relations. Second, as per our motivating
use cases, we are working to integrate this annotation
data with timeline visualization tools and to use these
annotations in quality-of-care research. For example,
we are using temporal reasoning built on this work to
investigate the liver toxicity of methotrexate across
a large corpus of EHRs (Lin et al., under review)].
Finally, we plan to explore the application of our
notion of an event (anything that should be visible on
a domain-appropriate timeline) to other domains. It
should transfer naturally to clinical notes about other
(non-cancer) conditions, and even to other types of
clinical notes, as certain basic events should always
be included in a patient’s timeline. Applying our
notion of event to more distant domains, such as legal
opinions, would require first identifying a consensus
within the domain about which events must appear
on a timeline.

9 Conclusion

Much of the information in clinical notes critical to
the construction of a detailed timeline is left implicit
by the concise shorthand used by doctors. Many
events are referred to only by a term such as “tu-

152

mor”, while properties of the event itself, such as
“intermittent”, may not be specified. In addition, the
ordering of events on a timeline is often left to the
reader to infer, based on domain-specific knowledge.
It is incumbent upon the annotation guideline to in-
dicate that only informative event orderings should
be annotated, while leaving domain-specific order-
ings to post-annotation inference. This document
has detailed our approach to adapting the existing
ISO-TimeML standard to this recovery of implicit
information, and defining guidelines that support an-
notation within this complex domain. Our guide-
lines, as well as the annotated data, are available at
http://thyme.healthnlp.org, and the full
corpus has been proposed for use in a SemEval 2015
shared task.

Acknowledgments

The project described is supported by Grant Num-
ber R01LM010090 and U54LM008748 from the Na-
tional Library Of Medicine. The content is solely the
responsibility of the authors and does not necessarily
represent the official views of the National Library
Of Medicine or the National Institutes of Health.

We would also like to thank Dr. Piet C. de Groen
and Dr. Brad Erickson at the Mayo Clinic, as well as
Dr. William F. Styler III, for their contributions to the
schema and to our understanding of the intricacies of
clinical language.

References

James F Allen. 1983. Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11):832–843.

Emmon Bach. 1986. The algebra of events. Linguistics
and philosophy, 9(1):5–16.

Steven Bethard. 2013. Cleartk-timeml: A minimalist ap-
proach to tempeval 2013. In Second Joint Conference
on Lexical and Computational Semantics (*SEM), Vol-
ume 2: Proceedings of the Seventh International Work-
shop on Semantic Evaluation (SemEval 2013), pages
10–14, Atlanta, Georgia, USA, June. Association for
Computational Linguistics.

Olivier Bodenreider. 2004. The Unified Medical
Language System (UMLS): integrating biomedical
terminology. Nucleic acids research, 32(Database
issue):D267–D270, January.

Philip Bramsen, Pawan Deshpande, Yoong Keok Lee,
and Regina Barzilay. 2006. Finding temporal order
in discharge summaries. In AMIA Annual Symposium
Proceedings, volume 2006, page 81. American Medical
Informatics Association.

Carlo Combi, Yuval Shahar, et al. 1997. Temporal reason-
ing and temporal data maintenance in medicine: issues
and challenges. Computers in biology and medicine,
27(5):353–368.

Robert H Dolin. 1995. Modeling the temporal complex-
ities of symptoms. Journal of the American Medical
Informatics Association, 2(5):323–331.

George Hripcsak, Nicholas D Soulakis, Li Li, Frances P
Morrison, Albert M Lai, Carol Friedman, Neil S Cal-
man, and Farzad Mostashari. 2009. Syndromic surveil-
lance using ambulatory electronic health records. Jour-
nal of the American Medical Informatics Association,
16(3):354–361.

Ann K Irvine, Stephanie W Haas, and Tessa Sullivan.
2008. Tn-ties: A system for extracting temporal infor-
mation from emergency department triage notes. In
AMIA Annual Symposium proceedings, volume 2008,
page 328. American Medical Informatics Association.

Elpida T Keravnou. 1997. Temporal abstraction of med-
ical data: Deriving periodicity. In Intelligent Data
Analysis in Medicine and Pharmacology, pages 61–79.
Springer.

Klaus H. Krippendorff. 2012. Content Analysis: An
Introduction to Its Methodology. SAGE Publications,
Inc, third edition edition, April.

Chen Lin, Elizabeth Karlson, Dmitriy Dligach, Mon-
ica Ramirez, Timothy Miller, Huan Mo, Natalie
Braggs, Andrew Cagan, Joshua Denny, and Guer-
gana. Savova. under review. Automatic identification
of methotrexade-induced liver toxicity in rheumatoid
arthritis patients from the electronic medical records.
Journal of the Medical Informatics Association.

John McCarthy. 2002. Actions and other events in sit-
uation calculus. In Proceedings of the International
conference on Principles of Knowledge Representation
and Reasoning, pages 615–628. Morgan Kaufmann
Publishers; 1998.

Stéphane M Meystre, Guergana K Savova, Karin C Kipper-
Schuler, John F Hurdle, et al. 2008. Extracting infor-
mation from textual documents in the electronic health
record: a review of recent research. Yearb Med Inform,
35:128–44.

Timothy Miller, Steven Bethard, Dmitriy Dligach, Sameer
Pradhan, Chen Lin, and Guergana Savova. 2013. Dis-
covering temporal narrative containers in clinical text.
In Proceedings of the 2013 Workshop on Biomedical
Natural Langua ge Processing, pages 18–26, Sofia,
Bulgaria, August. Association for Computational Lin-
guistics.

153

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and Bon-
nie Webber. 2004. The penn discourse treebank. In In
Proceedings of LREC 2004.

Massimo Poesio. 2004. Discourse annotation and seman-
tic annotation in the gnome corpus. In In Proceedings
of the ACL Workshop on Discourse Annotation.

James Pustejovsky and Amber Stubbs. 2011. Increasing
informativeness in temporal annotation. In Proceedings
of the 5th Linguistic Annotation Workshop, pages 152–
160. Association for Computational Linguistics.

James Pustejovsky, Robert Knippen, Jessica Littman, and
Roser Sauri. 2005. Temporal and event information in
natural language text. Language Resources and Evalu-
ation, 39(2-3):123–164.

James Pustejovsky, Kiyong Lee, Harry Bunt, and Laurent
Romary. 2010. Iso-timeml: An international standard
for semantic annotation. In Proceedings of the Seventh
International Conference on Language Resources and
Evaluation (LREC 2010), Valletta, Malta.

Angus Roberts, Robert Gaizauskas, Mark Hepple, George
Demetriou, Yikun Guo, and Ian Roberts. 2009. Build-
ing a semantically annotated corpus of clinical texts.
Journal of biomedical informatics, 42(5):950–966.

Guergana Savova, Steven Bethard, Will Styler, James Mar-
tin, Martha Palmer, James Masanz, and Wayne Ward.
2009. Towards temporal relation discovery from the
clinical narrative. In AMIA Annual Symposium Pro-
ceedings, volume 2009, page 568. American Medical
Informatics Association.

Tessa Sullivan, Ann Irvine, and Stephanie W Haas. 2008.
It’s all relative: usage of relative temporal expressions
in triage notes. Proceedings of the American Society
for Information Science and Technology, 45(1):1–8.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013a.
Evaluating temporal relations in clinical text: 2012 i2b2
challenge. Journal of the American Medical Informat-
ics Association.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013b.
Evaluating temporal relations in clinical text: 2012 i2b2
challenge. Journal of the American Medical Informat-
ics Association, 20(5):806–813.

Alexander Turchin, Maria Shubina, Eugene Breydo,
Merri L Pendergrass, and Jonathan S Einbinder. 2009.
Comparison of information content of structured and
narrative text data sources on the example of medica-
tion intensification. Journal of the American Medical
Informatics Association, 16(3):362–370.

Naushad UzZaman, Hector Llorens, Leon Derczynski,
James Allen, Marc Verhagen, and James Pustejovsky.
2013. Semeval-2013 task 1: Tempeval-3: Evaluating
time expressions, events, and temporal relations. In Sec-
ond Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evaluation

(SemEval 2013), pages 1–9, Atlanta, Georgia, USA,
June. Association for Computational Linguistics.

Marc Verhagen. 2005. Temporal Closure in an Annota-
tion Environment. Language Resources and Evalua-
tion, 39(2):211–241.

Veronika Vincze, Gyrgy Szarvas, Richrd Farkas, Gyrgy
Mra, and Jnos Csirik. 2008. The bioscope corpus:
biomedical texts annotated for uncertainty, negation
and their scopes. BMC Bioinformatics, 9(Suppl 11):1–
9.

Ying Zhao, George Karypis, and Usama M. Fayyad.
2005. Hierarchical clustering algorithms for docu-
ment datasets. Data Mining and Knowledge Discovery,
10:141–168.

Jiaping Zheng, Wendy W Chapman, Rebecca S Crowley,
and Guergana K Savova. 2011. Coreference resolution:
A review of general methodologies and applications in
the clinical domain. Journal of biomedical informatics,
44(6):1113–1122.

Li Zhou, Simon Parsons, and George Hripcsak. 2008. The
evaluation of a temporal reasoning system in processing
clinical discharge summaries. Journal of the American
Medical Informatics Association, 15(1):99–106.

154

Entity Linking meets Word Sense Disambiguation: a Unified Approach

Andrea Moro, Alessandro Raganato, Roberto Navigli
Dipartimento di Informatica,
Sapienza Università di Roma,

Viale Regina Elena 295, 00161 Roma, Italy
{moro,navigli}@di.uniroma1.it

ale.raganato@gmail.com

Abstract

Entity Linking (EL) and Word Sense Disam-
biguation (WSD) both address the lexical am-
biguity of language. But while the two tasks
are pretty similar, they differ in a fundamen-
tal respect: in EL the textual mention can be
linked to a named entity which may or may not
contain the exact mention, while in WSD there
is a perfect match between the word form (bet-
ter, its lemma) and a suitable word sense.
In this paper we present Babelfy, a unified
graph-based approach to EL and WSD based
on a loose identification of candidate mean-
ings coupled with a densest subgraph heuris-
tic which selects high-coherence semantic in-
terpretations. Our experiments show state-of-
the-art performances on both tasks on 6 differ-
ent datasets, including a multilingual setting.
Babelfy is online at http://babelfy.org

1 Introduction

The automatic understanding of the meaning of text
has been a major goal of research in computational
linguistics and related areas for several decades,
with ambitious challenges, such as Machine Read-
ing (Etzioni et al., 2006) and the quest for knowl-
edge (Schubert, 2006). Word Sense Disambiguation
(WSD) (Navigli, 2009; Navigli, 2012) is a historical
task aimed at assigning meanings to single-word and
multi-word occurrences within text, a task which is
more alive than ever in the research community.

Recently, the collaborative creation of large semi-
structured resources, such as Wikipedia, and knowl-
edge resources built from them (Hovy et al., 2013),

such as BabelNet (Navigli and Ponzetto, 2012a),
DBpedia (Auer et al., 2007) and YAGO2 (Hoffart
et al., 2013), has favoured the emergence of new
tasks, such as Entity Linking (EL) (Rao et al., 2013),
and opened up new possibilities for tasks such as
Named Entity Disambiguation (NED) and Wikifi-
cation. The aim of EL is to discover mentions of
entities within a text and to link them to the most
suitable entry in a reference knowledge base. How-
ever, in contrast to WSD, a mention may be partial
while still being unambiguous thanks to the context.
For instance, consider the following sentence:

(1) Thomas and Mario are strikers playing in Munich.

This example makes it clear how intertwined the
two tasks of WSD and EL are. In fact, on the one
hand, striker and play are polysemous words which
can be disambiguated by selecting the game/soccer
playing senses of the two words in a dictionary; on
the other hand, Thomas and Mario are partial men-
tions which have to be linked to the appropriate en-
tries of a knowledge base, that is, Thomas Müller
and Mario Gomez, two well-known soccer players.

The two main differences between WSD and EL
lie, on the one hand, in the kind of inventory used,
i.e., dictionary vs. encyclopedia, and, on the other
hand, in the assumption that the mention is complete
or potentially partial. Notwithstanding these differ-
ences, the tasks are similar in nature, in that they
both involve the disambiguation of textual fragments
according to a reference inventory. However, the re-
search community has so far tackled the two tasks
separately, often duplicating efforts and solutions.

In contrast to this trend, research in knowledge
acquisition is now heading towards the seamless in-

231

Transactions of the Association for Computational Linguistics, 2 (2014) 231–244. Action Editor: Noah Smith.
Submitted 9/2013; Revised 1/2014; Published 5/2014. c©2014 Association for Computational Linguistics.

tegration of encyclopedic and lexicographic knowl-
edge into structured language resources (Hovy et al.,
2013), and the main representative of this new direc-
tion is undoubtedly BabelNet (Navigli and Ponzetto,
2012a). Given such structured language resources it
seems natural to suppose that they might provide a
common ground for the two tasks of WSD and EL.

More precisely, in this paper we explore the hy-
pothesis that the lexicographic knowledge used in
WSD is also useful for tackling the EL task, and,
vice versa, that the encyclopedic information uti-
lized in EL helps disambiguate nominal mentions in
a WSD setting. We propose Babelfy, a novel, uni-
fied graph-based approach to WSD and EL, which
performs two main steps: i) it exploits random walks
with restart, and triangles as a support for reweight-
ing the edges of a large semantic network; ii) it uses
a densest subgraph heuristic on the available seman-
tic interpretations of the input text to perform a joint
disambiguation with both concepts and named enti-
ties. Our experiments show the benefits of our syn-
ergistic approach on six gold-standard datasets.

2 Related Work

2.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the task of
choosing the right sense for a word within a given
context. Typical approaches for this task can be clas-
sified as i) supervised, ii) knowledge-based, and iii)
unsupervised. However, supervised approaches re-
quire huge amounts of annotated data (Zhong and
Ng, 2010; Shen et al., 2013; Pilehvar and Navigli,
2014), an effort which cannot easily be repeated
for new domains and languages, while unsupervised
ones suffer from data sparsity and an intrinsic diffi-
culty in their evaluation (Agirre et al., 2006; Brody
and Lapata, 2009; Manandhar et al., 2010; Van de
Cruys and Apidianaki, 2011; Di Marco and Nav-
igli, 2013). On the other hand, knowledge-based
approaches are able to obtain good performance us-
ing readily-available structured knowledge (Agirre
et al., 2010; Guo and Diab, 2010; Ponzetto and Nav-
igli, 2010; Miller et al., 2012; Agirre et al., 2014).
Some of these approaches marginally take into ac-
count the structural properties of the knowledge base
(Mihalcea, 2005). Other approaches, instead, lever-
age the structural properties of the knowledge base

by exploiting centrality and connectivity measures
(Sinha and Mihalcea, 2007; Tsatsaronis et al., 2007;
Agirre and Soroa, 2009; Navigli and Lapata, 2010).

One of the key steps of many knowledge-based
WSD algorithms is the creation of a graph repre-
senting the semantic interpretations of the input text.
Two main strategies to build this graph have been
proposed: i) exploiting the direct connections, i.e.,
edges, between the considered sense candidates; ii)
populating the graph according to (shortest) paths
between them. In our approach we manage to unify
these two strategies by automatically creating edges
between sense candidates performing Random Walk
with Restart (Tong et al., 2006).

The recent upsurge of interest in multilinguality
has led to the development of cross-lingual and mul-
tilingual approaches to WSD (Lefever and Hoste,
2010; Lefever and Hoste, 2013; Navigli et al., 2013).
Multilinguality has been exploited in different ways,
e.g., by using parallel corpora to build multilingual
contexts (Guo and Diab, 2010; Banea and Mihalcea,
2011; Lefever et al., 2011) or by means of ensemble
methods which exploit complementary sense evi-
dence from translations in different languages (Nav-
igli and Ponzetto, 2012b). In this work, we present
a novel exploitation of the structural properties of a
multilingual semantic network.

2.2 Entity Linking

Entity Linking (Erbs et al., 2011; Rao et al., 2013;
Cornolti et al., 2013) encompasses a set of similar
tasks, which include Named Entity Disambiguation
(NED), that is the task of linking entity mentions
in a text to a knowledge base (Bunescu and Pasca,
2006; Cucerzan, 2007), and Wikification, i.e., the
automatic annotation of text by linking its relevant
fragments of text to the appropriate Wikipedia arti-
cles. Mihalcea and Csomai (2007) were the first to
tackle the Wikification task. In their approach they
disambiguate each word in a sentence independently
by exploiting the context in which it occurs. How-
ever, this approach is local in that it lacks a collective
notion of coherence between the selected Wikipedia
pages. To overcome this problem, Cucerzan (2007)
introduced a global approach based on the simulta-
neous disambiguation of all the terms in a text and
the use of lexical context to disambiguate the men-
tions. To maximize the semantic agreement Milne

232

and Witten (2008) introduced the analysis of the se-
mantic relations between the candidate senses and
the unambiguous context, i.e., words with a single
sense candidate. However, the performance of this
algorithm depends heavily on the number of links
incident to the target senses and on the availabil-
ity of unambiguous words within the input text. To
overcome this issue a novel class of approaches have
been proposed (Kulkarni et al., 2009; Ratinov et al.,
2011; Hoffart et al., 2011) that exploit global and
local features. However, these systems either rely
on a difficult NP-hard formalization of the problem
which is infeasible for long text, or exploit popular-
ity measures which are domain-dependent. In con-
trast, we show that the semantic network structure
can be leveraged to obtain state-of-the-art perfor-
mance by synergistically disambiguating both word
senses and named entities at the same time.

Recently, the explosion of on-line social network-
ing services, such as Twitter and Facebook, have
contributed to the development of new methods for
the efficient disambiguation of short texts (Ferrag-
ina and Scaiella, 2010; Hoffart et al., 2012; Böhm et
al., 2012). Thanks to a loose candidate identification
technique coupled with a densest subgraph heuristic,
we show that our approach is particularly suited for
short and highly ambiguous text disambiguation.

2.3 The Best of Two Worlds

Our main goal is to bring together the two worlds of
WSD and EL. On the one hand, this implies relaxing
the constraint of a perfect association between men-
tions and meanings, which is, instead, assumed in
WSD. On the other hand, this relaxation leads to the
inherent difficulty of encoding a full-fledged sense
inventory for EL. Our solution to this problem is to
keep the set of candidate meanings for a given men-
tion as open as possible (see Section 6), so as to en-
able high recall in linking partial mentions, while
providing an effective method for handling this high
ambiguity (see Section 7).

A key assumption of our work is that the lexico-
graphic knowledge used in WSD is also useful for
tackling the EL task, and vice versa the encyclopedic
information utilized in EL helps disambiguate nom-
inal mentions in a WSD setting. We enable the joint
treatment of concepts and named entities by enforc-
ing high coherence in our semantic interpretations.

3 WSD and Entity Linking Together

Task. Our task is to disambiguate and link all
nominal and named entity mentions occurring
within a text. The linking task is performed by asso-
ciating each mention with the most suitable entry of
a given knowledge base.1

We point out that our definition is unconstrained
in terms of what to link, i.e., unlike Wikification and
WSD, we can link overlapping fragments of text.
For instance, given the text fragment Major League
Soccer, we identify and disambiguate several dif-
ferent nominal and entity mentions: Major League
Soccer, major league, league and soccer. In contrast
to EL, we link not only named entity mentions, such
as Major League Soccer, but also nominal mentions,
e.g., major league, to their corresponding meanings
in the knowledge base.

Babelfy. We provide a unified approach to WSD
and entity linking in three steps:

1. Given a lexicalized semantic network, we as-
sociate with each vertex, i.e., either concept or
named entity, a semantic signature, that is, a set
of related vertices (Section 5). This is a prelim-
inary step which needs to be performed only
once, independently of the input text.

2. Given a text, we extract all the linkable frag-
ments from this text and, for each of them, list
the possible meanings according to the seman-
tic network (Section 6).

3. We create a graph-based semantic interpreta-
tion of the whole text by linking the candidate
meanings of the extracted fragments using the
previously-computed semantic signatures. We
then extract a dense subgraph of this represen-
tation and select the best candidate meaning for
each fragment (Section 7).

4 Semantic Network

Our approach requires the availability of a wide-
coverage semantic network which encodes struc-
tural and lexical information both of an encyclope-
dic and of a lexicographic kind. Although in prin-
ciple any semantic network with these properties

1Mentions which are not contained in the reference knowl-
edge base are not taken into account.

233

could be utilized, in our work we used the Babel-
Net2 1.1.1 semantic network (Navigli and Ponzetto,
2012a) since it is the largest multilingual knowl-
edge base, obtained from the automatic seamless
integration of Wikipedia3 and WordNet (Fellbaum,
1998). We consider BabelNet as a directed multi-
graph which contains both concepts and named en-
tities as its vertices and a multiset of semantic rela-
tions as its edges. We leverage the multilingual lex-
icalizations of the vertices of BabelNet to identify
mentions in the input text. For example, the entity
FC Bayern Munich can be lexicalized in different
languages, e.g., F.C. Bayern de Múnich in Spanish,
Die Roten in English and Bayern München in Ger-
man, among others. As regards semantic relations,
the only information we use is that of the end points,
i.e., vertices, that these relations connect, while ne-
glecting the relation type.

5 Building Semantic Signatures

One of the major issues affecting both manually-
curated and automatically constructed semantic net-
works is data sparsity. For instance, we calculated
that the average number of incident edges is roughly
10 in WordNet, 50 in BabelNet and 80 in YAGO2,
to mention a few. Although automatically-built re-
sources typically provide larger amounts of edges,
two issues have to be taken into account: concepts
which should be related might not be directly con-
nected despite being structurally close within the
network, and, vice versa, weakly-related or even un-
related concepts can be erroneously connected by an
edge. For instance, in BabelNet we do not have an
edge between playmaker and Thomas Müller, while
we have an incorrect edge connecting FC Bayern
Munich and Yellow Submarine (song). However,
this crisp notion of relatedness can be overcome by
exploiting the global structure of the semantic net-
work, thereby obtaining a more precise and higher-
coverage measure of relatedness. We address this
issue in two steps: first, we provide a structural
weighting of the network’s edges; second, for each
vertex we create a set of related vertices using ran-
dom walks with restart.

2http://babelnet.org
3http://www.wikipedia.org

Structural weighting. Our first objective is to as-
sign higher weights to edges which are involved in
more densely connected areas of the directed net-
work. To this end, inspired by the local cluster-
ing coefficient measure (Watts and Strogatz, 1998)
and its recent success in Word Sense Induction
(Di Marco and Navigli, 2013), we use directed tri-
angles, i.e., directed cycles of length 3, and weight
each edge (v, v′) by the number of directed triangles
it occurs in:

weight(v, v′) := |{(v, v′, v′′) : (v, v′), (1)
(v′, v′′), (v′′, v) ∈ E}|+ 1

We add one to each weight to ensure the highest de-
gree of reachability in the network.

Random Walk with Restart. Our goal is to cre-
ate a semantic signature (i.e., a set of highly related
vertices) for each concept and named entity of the
semantic network. To do this, we perform a Random
Walk with Restart (RWR) (Tong et al., 2006), that is,
a stochastic process that starts from an initial vertex
of the graph4 and then, for a fixed number n of steps
or until convergence, explores the graph by choos-
ing the next vertex within the current neighborhood
or by restarting from the initial vertex with a given,
fixed restart probability α. For each edge (v, v′) in
the network, we model the conditional probability
P (v′|v) as the normalized weight of the edge:

P (v′|v) = weight(v, v′)∑
v′′∈V weight(v, v

′′)

where V is the set of vertices of the semantic net-
work and weight(v, v′) is the function defined in
Equation 1. We then run the RWR from each ver-
tex v of the semantic network for a fixed number n
of steps (we show in Algorithm 1 our RWR pseu-
docode). We keep track of the encountered ver-
tices using the map counts, i.e., we increase the
counter associated with vertex v′ in counts every
time we hit v′ during a RWR started from v (see
line 11). As a result, we obtain a frequency distri-
bution over the whole set of concepts and entities.
To eliminate weakly-related vertices we keep only
those items that were hit at least η times (see lines
16–18). Finally, we save the remaining vertices in
the set semSignv which is the semantic signature
of v (see line 19).

4RWR can be used with an initial set of vertices, however in
this paper we use a single initial vertex.

234

Algorithm 1 Random walk with restart.
1: input: v, the starting vertex;

α, the restart probability;
n, the number of steps to be executed;
P , the transition probabilities;
η, the frequency threshold.

2: output: semSignv , set of related vertices for v.
3: function RWR(v, α, n, P, η)
4: v′ := v
5: counts := newMap < Synset, Integer >
6: while n > 0 do
7: if random() > α then
8: given the transition probabilities P (·|v′)
9: of v′, choose a random neighbor v′′

10: v′ := v′′

11: counts[v′] + +
12: else
13: restart the walk
14: v′ := v
15: n := n− 1

16: for each v′ in counts.keys() do
17: if counts[v′] < η then
18: remove v′ from counts.keys()

19: return semSignv = counts.keys()

The creation of our set of semantic signatures, one
for each vertex in the semantic network, is a prelim-
inary step carried out once only before starting pro-
cessing any input text. We now turn to the candidate
identification and disambiguation steps.

6 Candidate Identification

Given a text as input, we apply part-of-speech tag-
ging and identify the set F of all the textual frag-
ments, i.e., all the sequences of words of maximum
length five, which contain at least one noun and that
are substrings of lexicalizations in BabelNet, i.e.,
those fragments that can potentially be linked to an
entry in BabelNet. For each textual fragment f ∈ F ,
i.e., a single- or multi-word expression of the input
text, we look up the semantic network for candidate
meanings, i.e., vertices that contain f or, only for
named entities, a superstring of f as their lexical-
ization. For instance, for sentence (1) in the intro-
duction, we identify the following textual fragments:
Thomas, Mario, strikers, Munich. This output is ob-
tained thanks to our loose candidate identification
routine, i.e., based on superstring matching instead
of exact matching, which, for instance, enables us to
recognize the right candidate Mario Gomez for the

mention Mario even if this named entity does not
have Mario as one of its lexicalizations (for an anal-
ysis of the impact of this routine against the exact
matching approach see the discussion in Section 9).

Moreover, as we stated in Section 3, we allow
overlapping fragments, e.g., for major league we
recognize league and major league. We denote with
cand(f) the set of all the candidate meanings of
fragment f . For instance, for the noun league we
have that cand(league) contains among others the
sport word sense and the TV series named entity.

7 Candidate Disambiguation

Semantic interpretation graph. After the identi-
fication of fragments (F) and their candidate mean-
ings (cand(·)), we create a directed graph GI =
(VI , EI) of the semantic interpretations of the input
text. We show the pseudocode in Algorithm 2. VI
contains all the candidate meanings of all fragments,
that is, VI := {(v, f) : v ∈ cand(f), f ∈ F}, where
f is a fragment of the input text and v is a candidate
Babel synset that has a lexicalization which is equal
to or is a superstring of f (see lines 4–8). The set
of edges EI connects related meanings and is pop-
ulated as follows: we add an edge from (v, f) to
(v′, f ′) if and only if f 6= f ′ and v′ ∈ semSignv
(see lines 9–11). In other words, we connect two
candidate meanings of different fragments if one is
in the semantic signature of the other. For instance,
we add an edge between (Mario Gomez, Mario) and
(Thomas Müller, Thomas), while we do not add one
between (Mario Gomez, Mario) and (Mario Basler,
Mario) since these are two candidate meanings of
the same fragment, i.e., Mario. In Figure 1, we show
an excerpt of our graph for sentence (1).

At this point we have a graph-based representa-
tion of all the possible interpretations of the input
text. In order to drastically reduce the degree of am-
biguity while keeping the interpretation coherence
as high as possible, we apply a novel densest sub-
graph heuristic (see line 12), whose description we
defer to the next paragraph. The result is a sub-
graph which contains those semantic interpretations
that are most coherent to each other. However, this
subgraph might still contain multiple interpretations
for the same fragment, and even unambiguous frag-
ments which are not correct. Therefore, the final

235

(Tomás Milián, Thomas)

(Thomas Müller, Thomas)

(forward, striker)

(striker, striker) (FC Bayern Munich, Munich)

(Munich, Munich)

(Mario Adorf, Mario)
(Mario Basler, Mario)

(Mario Gomez, Mario)

Figure 1: An excerpt of the semantic interpretation graph automatically built for the sentence Thomas and Mario are
strikers playing in Munich (the edges connecting the correct meanings are in bold).

step is the selection of the most suitable candidate
meaning for each fragment f given a threshold θ to
discard semantically unrelated candidate meanings.
We score each meaning v ∈ cand(f) with its nor-
malized weighted degree5 in the densest subgraph:

score((v, f)) =
w(v,f) · deg((v, f))∑

v′ ∈ cand(f)

w(v′,f) · deg((v′, f))
(2)

where w(v,f) is the fraction of fragments the candi-
date meaning v connects to:

w(v,f) :=

|{f ′ ∈ F : ∃v′ s.t. ((v, f), (v′, f ′))
or ((v′, f ′), (v, f)) ∈ EI}|
|F | − 1

The rationale behind this scoring function is to
take into account both the semantic coherence, us-
ing a graph centrality measure among the candidate
meanings, and the lexical coherence, in terms of the
number of fragments a candidate relates to.

Finally, we link each f to the highest ranking can-
didate meaning v? if score((v?, f)) ≥ θ, where θ is
a fixed threshold (see lines 14–18 of Algorithm 2).
For instance, in sentence (1) and for the fragment
Mario we select Mario Gomez as our final candidate
meaning and link it to the fragment.

Linking by densest subgraph. We now illustrate
our novel densest subgraph heuristic, used in line 12
of Algorithm 2, for reducing the level of ambiguity
of the initial semantic interpretation graph GI . The
main idea here is that the most suitable meanings of
each text fragment will belong to the densest area of
the graph. For instance, in Figure 1 the (candidate,
fragment) pairs (Thomas Müller, Thomas), (Mario
Gomez, Mario), (striker, striker) and (FC Bayern

5We denote with deg(v) the overall number of incoming and
outgoing edges, i.e., deg(v) := deg+(v) + deg−(v).

Algorithm 2 Candidate Disambiguation.
1: input: F , the fragments in the input text;

semSign, the semantic signatures;
µ, ambiguity level to be reached;
cand, fragments to candidate meanings.

2: output: selected, disambiguated fragments.
3: function DISAMB(F, semSign, µ, cand)
4: VI := ∅;EI := ∅
5: GI := (VI , EI)
6: for each fragment f ∈ F do
7: for each candidate v ∈ cand(f) do
8: VI := VI ∪ {(v, f)}
9: for each ((v, f), (v′, f ′)) ∈ VI × VI do

10: if f 6= f ′ and v′ ∈ semSignv then
11: EI := EI ∪ {((v, f), (v′, f ′))}
12: G?

I := DENSSUB(F, cand,GI , µ)
13: selected := newMap < String, Synset >
14: for each f ∈ F s.t. ∃(v, f) ∈ V ?

I do
15: cand?(f) := {v : (v, f) ∈ V ?

I }
16: v? := argmaxv∈cand?(f) score((v, f))
17: if score((v?, f)) ≥ θ then
18: selected(f) := v?

19: return selected

Munich, Munich) form a dense subgraph supporting
their relevance for sentence (1).

The problem of identifying the densest subgraph
of size at least k is NP-hard (Feige et al., 1999).
Therefore, we define a heuristic for k-partite graphs
inspired by a 2-approximation greedy algorithm for
arbitrary graphs (Charikar, 2000; Khuller and Saha,
2009). Our adapted strategy for selecting a dense
subgraph of GI is based on the iterative removal
of low-coherence vertices, i.e., fragment interpreta-
tions. We show the pseudocode in Algorithm 3.

We start with the initial graph G(0)
I at step t = 0

(see line 5). For each step t (lines 7–16), first, we
identify the most ambiguous fragment fmax, i.e., the
one with the maximum number of candidate mean-

236

Algorithm 3 Densest Subgraph.
1: input: F , the set of all fragments in the input text;

cand, from fragments to candidate meanings;
G

(0)
I , the full semantic interpretation graph;

µ, ambiguity level to be reached.
2: output: G?

I , a dense subgraph.
3: function DENSSUB(F, cand,G(0)

I , µ)
4: t := 0
5: G?

I := G
(0)
I

6: while true do
7: fmax := argmaxf∈F |{v : ∃(v, f) ∈ V (t)

I }|
8: if |{v : ∃(v, fmax) ∈ V (t)

I }| ≤ µ then
9: break;

10: vmin:= argmin
v ∈ cand(fmax)

score((v, fmax))

11: V
(t+1)
I := V

(t)
I \ {(vmin, fmax)}

12: E
(t+1)
I := E

(t)
I ∩ V

(t+1)
I × V (t+1)

I

13: G
(t+1)
I := (V

(t+1)
I , E

(t+1)
I)

14: if avgdeg(G(t+1)
I) > avgdeg(G?

I) then
15: G?

I := G
(t+1)
I

16: t := t+ 1

17: return G?
I

ings in the graph (see line 7). Next, we discard
the weakest interpretation of the current fragment
fmax. To do so, we determine the lexical and seman-
tic coherence of each candidate meaning (v, fmax)
using Formula 2 (see line 10). We then remove
from our graph G

(t)
I the lowest-coherence vertex

(vmin, fmax), i.e., the one whose score is minimum
(see lines 11–13). For instance, in Figure 1, fmax

is the fragment Mario and we have: score((Mario
Gomez, Mario)) ∝ 3

3 · 5 = 5, score((Mario Basler,
Mario)) ∝ 1

3 · 1 = 0.3 and score((Mario Adorf,
Mario))∝ 2

3 · 2 = 1.3, so we remove (Mario Basler,
Mario) from the graph since its score is minimum.

We then move to the next step, i.e., we set t :=
t + 1 (see line 16) and repeat the low-coherence re-
moval step. We stop when the number of remaining
candidates for each fragment is below a threshold
µ, i.e., |{v : ∃(v, f) ∈ V

(t)
I }| ≤ µ ∀f ∈ F (see

lines 8–9). During each iteration step t we com-
pute the average degree of the current graph G(t)

I ,

i.e., avgdeg(G(t)
I) =

2|E(t)
I |

|V (t)
I |

. Finally, we select as

the densest subgraph of the initial semantic interpre-
tation graphGI the graphG?

I that maximizes the av-
erage degree (see lines 14–15).

8 Experimental Setup

Datasets. We carried out our experiments on six
datasets, four for WSD and two for EL:
• The SemEval-2013 task 12 dataset for multilin-

gual WSD (Navigli et al., 2013), which consists
of 13 documents in different domains, available
in 5 languages. For each language, all noun
occurrences were annotated using BabelNet,
thereby providing Wikipedia and WordNet an-
notations wherever applicable. The number of
mentions to be disambiguated roughly ranges
from 1K to 2K per language in the different se-
tups.

• The SemEval-2007 task 7 dataset for coarse-
grained English all-words WSD (Navigli et al.,
2007). We take into account only nominal men-
tions obtaining a dataset containing 1107 nouns
to be disambiguated using WordNet.

• The SemEval-2007 task 17 dataset for fine-
grained English all-words WSD (Pradhan et al.,
2007). We considered only nominal mentions
resulting in 158 nouns annotated with WordNet
synsets.

• The Senseval-3 dataset for English all-words
WSD (Snyder and Palmer, 2004), which con-
tains 899 nouns to be disambiguated using
WordNet.

• KORE50 (Hoffart et al., 2012), which consists
of 50 short English sentences (mean length of
14 words) with a total number of 144 mentions
manually annotated using YAGO2, for which a
Wikipedia mapping is available. This dataset
was built with the idea of testing against a high
level of ambiguity for the EL task.

• AIDA-CoNLL6 (Hoffart et al., 2011), which
consists of 1392 English articles, for a total
of roughly 35K named entity mentions anno-
tated with YAGO concepts separated in devel-
opment, training and test sets.

We exploited the POS tags already available in the
SemEval and Senseval datasets, while we used the
Stanford POS tagger (Toutanova et al., 2003) for the
English sentences in the last two datasets.

6We used AIDA-CoNLL as it is the most recent and largest
available dataset for EL (Hachey et al., 2013). The TAC KBP
datasets are available only to participants.

237

Parameters. We fixed the parameters of RWR
(Section 5) to the values α = .85, η = 100 and
n = 1M which maximize F1 on a manually cre-
ated tuning set made up of 10 gold-standard seman-
tic signatures. We tuned our two disambiguation pa-
rameters µ = 10 and θ = 0.8 by optimizing F1 on
the trial dataset of the SemEval-2013 task on mul-
tilingual WSD (Navigli et al., 2013). We used the
same parameters on all the other WSD datasets. As
for EL, we used the training part of AIDA-CoNLL
(Hoffart et al., 2011) to set µ = 5 and θ = 0.0.

8.1 Systems
Multilingual WSD. We evaluated our system on
the SemEval-2013 task 12 by comparing it with the
participating systems:
• UMCC-DLSI (Gutiérrez et al., 2013) a state-

of-the-art Personalized PageRank-based ap-
proach that exploits the integration of different
sources of knowledge, such as WordNet Do-
mains/Affect (Strapparava and Valitutti, 2004),
SUMO (Zouaq et al., 2009) and the eXtended
WordNet (Mihalcea and Moldovan, 2001);

• DAEBAK! (Manion and Sainudiin, 2013)
which performs WSD on the basis of periph-
eral diversity within subgraphs of BabelNet;

• GETALP (Schwab et al., 2013) which uses an
Ant Colony Optimization technique together
with the classical measure of Lesk (1986).

We also compared with UKB w2w (Agirre
and Soroa, 2009), a state-of-the-art approach for
knowledge-based WSD, based on Personalized
PageRank (Haveliwala, 2002). We used the same
mapping from words to senses that we used in our
approach, default parameters7 and BabelNet as the
input graph. Moreover, we compared our system
with IMS (Zhong and Ng, 2010), a state-of-the-
art supervised English WSD system which uses an
SVM trained on sense-annotated corpora, such as
SemCor (Miller et al., 1993) and DSO (Ng and
Lee, 1996), among others. We used the IMS model
out-of-the-box with Most Frequent Sense (MFS) as
backoff routine since the model obtained using the
task trial data performed worse.

We followed the original task formulation and
evaluated the synsets in three different settings, i.e.,

7./ukb wsd -D dict.txt -K kb.bin --ppr w2w ctx.txt

when using BabelNet senses, Wikipedia senses and
WordNet senses, thanks to BabelNet being a super-
set of the other two inventories. We ran our sys-
tem on a document-by-document basis, i.e., disam-
biguating each document at once, so as to test its
effectiveness on long coherent texts. Performance
was calculated in terms of F1 score. We also com-
pared the systems with the MFS baseline computed
for the three inventories (Navigli et al., 2013).

Coarse-grained WSD. For the SemEval-2007
task 7 we compared our system with the two top-
ranked approaches, i.e., NUS-PT (Chan et al., 2007)
and UoR-SSI (Navigli, 2008), which respectively
exploited parallel texts and enriched semantic paths
in a semantic network, the previously described
UKB w2w system,8 a knowledge-based WSD ap-
proach (Ponzetto and Navigli, 2010) which exploits
an automatic extension of WordNet, and, as base-
line, the MFS.

Fine-grained WSD. For the remaining fine-
grained WSD datasets, i.e., Senseval-3 and
SemEval-2007 task 17, we compared our approach
with the previously described state-of-the-art
systems UKB and IMS, and, as baseline, the MFS.

KORE50 and AIDA-CoNLL. For the KORE50
and AIDA-CoNLL datasets we compared our sys-
tem with six approaches, including state-of-the-art
ones (Hoffart et al., 2012; Cornolti et al., 2013):
• MW, i.e., the Normalized Google Distance as

defined by Milne and Witten (2008);

• KPCS (Hoffart et al., 2012), which calcu-
lates a Mutual Information weighted vector of
keyphrases for each candidate and then uses the
cosine similarity to obtain candidates’ scores;

• KORE and its variants KORELSH−G and
KORELSH−F (Hoffart et al., 2012), based on
similarity measures that exploit the overlap be-
tween phrases associated with the considered
entities (KORE) and a hashing technique to re-
duce the space needed by the keyphrases asso-
ciated with the entities (LSH-G, LSH-F);

• Tagme 2.09 (Ferragina and Scaiella, 2012)
which uses the relatedness measure defined

8We report the results as given by Agirre et al. (2014).
9We used the out-of-the-box RESTful API available at

http://tagme.di.unipi.it

238

Sens3 Sem07 SemEval-2013 English French German Italian Spanish
System WN WN WN Wiki BN Wiki BN Wiki BN Wiki BN Wiki BN
Babelfy 68.3 62.7 65.9 87.4 69.2 71.6 ?56.9 81.6 69.4 84.3 66.6 83.8 69.5

IMS 71.2 63.3 65.7 – – – – – – – – – –
UKB w2w ?65.3 ?56.0 61.3 – 60.8 – 60.8 – 66.2 – 67.3 – 70.0

UMCC-DLSI – – 64.7 54.8 68.5 ?60.5 60.5 ?58.1 62.8 ?58.3 65.8 ?61.0 71.0

DAEBAK! – – – – 60.4 – 53.8 – 59.1 – ?61.3 – 60.0

GETALP-BN – – 51.4 – 58.3 – 48.3 – 52.3 – 52.8 – 57.8

MFS 70.3 65.8 ?63.0 ?80.3 ?66.5 69.4 45.3 83.1 ?67.4 82.3 57.5 82.4 ?64.4

Babelfy unif. weights 67.0 65.2 65.0 87.0 68.5 71.9 57.2 81.2 69.8 83.7 66.8 83.8 70.8

Babelfy w/o dens. sub. 68.3 63.3 65.4 87.3 68.7 71.6 57.0 81.7 69.1 84.4 66.5 83.9 69.5

Babelfy only concepts 68.2 62.7 65.5 83.0 68.7 70.2 56.6 79.3 69.3 83.0 66.3 84.0 69.7

Babelfy on sentences 66.0 65.2 63.5 84.0 67.1 70.7 53.6 82.3 68.1 83.8 64.2 83.5 68.7

Table 1: F1 scores (percentages) of the participating systems of SemEval-2013 task 12 together with MFS, UKB w2w,
IMS, our system and its ablated versions on the Senseval-3, SemEval-2007 task 17 and SemEval-2013 datasets. The
first system which has a statistically significant difference from the top system is marked with ? (χ2, p < 0.05).

by Milne and Witten (2008) weighted with
the commonness of a sense together with
the keyphraseness measure defined by Mihal-
cea and Csomai (2007) to exploit the context
around the target word;

• Illinois Wikifier10 (Cheng and Roth, 2013)
which combines local features, such as com-
monness and TF-IDF between mentions and
Wikipedia pages, with global coherence fea-
tures based on Wikipedia links and relational
inference;

• DBpedia Spotlight11 (Mendes et al., 2011)
which uses LingPipe’s string matching algo-
rithm implementation together with a weighted
cosine similarity measure to recognize and dis-
ambiguate mentions.

We also compared with UKB w2w, introduced
above. Note that we could not use supervised sys-
tems, as the training data of AIDA-CoNLL covers
less than half of the mentions used in the testing
part and less than 10% of the entities considered in
KORE50. To enable a fair comparison, we ran our
system by restricting the BabelNet sense inventory
of the target mentions to the English Wikipedia. As
is customary in the literature, we calculated the sys-
tems’ accuracy for both Entity Linking datasets.

10We used the out-of-the-box Java API available from
http://cogcomp.cs.illinois.edu/page/download view/Wikifier

11We used the 2011 version of DBpedia Spotlight as it ob-
tains better scores on the considered datasets in comparison to
the new version (Daiber et al., 2013). We used the out-of-the-
box RESTful API available at http://spotlight.dbpedia.org

9 Results

Multilingual WSD. In Table 1 we show the F1
performance on the SemEval-2013 task 12 for the
three setups: WordNet, Wikipedia and BabelNet.
Using BabelNet we surpass all systems on English
and German and obtain performance comparable
with the best systems on two other languages (UKB
on Italian and UMCC-DLSI on Spanish). Using the
WordNet sense inventory, our results are on a par
with the best system, i.e., IMS. On Wikipedia our
results range between 71.6% (French) and 87.4% F1
(English), i.e., more than 10 points higher than the
current state of the art (UMCC-DLSI) in all 5 lan-
guages. As for the MFS baseline, which is known
to be very competitive in WSD (Navigli, 2009), we
beat it in all setups except for German on Wikipedia.
Interestingly, we surpass the WordNet MFS by 2.9
points, a significant result for a knowledge-based
system (see also (Pilehvar and Navigli, 2014)).

Coarse- and fine-grained WSD. In Table 2, we
show the results of the systems on the SemEval-
2007 coarse-grained WSD dataset. As can be seen,
we obtain the second best result after Ponzetto and
Navigli (2010). In Table 1 (first two columns), we
show the results of IMS and UKB on the Senseval-3
and SemEval-2007 task 17 datasets. We rank second
on both datasets after IMS. However, the differences
are not statistically significant. Moreover, Agirre et
al. (2014, Table 5) note that using WordNet 3.0, in-
stead of 1.7 or 2.1, to annotate these datasets can
cause a more than one percent drop in performance.

239

System F1
(Ponzetto and Navigli, 2010) 85.5

Babelfy 84.6

UoR-SSI 84.1

UKB w2w 83.6

NUS-PT ?82.3

MFS 77.4

Babelfy unif. weights 85.7

Babelfy w/o dens. sub. 84.9

Babelfy only concepts 85.3

Babelfy on sentences 82.3

Table 2: F1 score (percentages) on the SemEval-2007
task 7. The first system which has a statistically signifi-
cant difference from the top system is marked with ? (χ2,
p < 0.05).

Entity Linking. In Table 3 we show the results on
the two Entity Linking datasets, i.e., KORE50 and
AIDA-CoNLL. Our system outperforms all other
approaches, with KORE-LSH-G getting closest, and
Tagme and Wikifier lagging behind on the KORE50
dataset. For the AIDA-CoNLL dataset we obtain the
third best performance after MW and KPCS, how-
ever the difference is not statistically significant.

We note the low performance of DBpedia Spot-
light which, even if it achieves almost 100% preci-
sion on the identified mentions on both datasets, suf-
fers from low recall due to its candidate identifica-
tion step, confirming previous evaluations (Derczyn-
ski et al., 2013; Hakimov et al., 2012; Ludwig and
Sack, 2011). This problem becomes even more ac-
centuated in the latest version of this system (Daiber
et al., 2013). Finally, UKB using BabelNet obtains
low performance on EL, i.e., 19.4-10.5 points below
the state of the art. This result is discussed below.

Discussion. The results obtained by UKB show
that the high performance of our unified approach
to EL and WSD is not just a mere artifact of the use
of a rich multilingual semantic network, that is, Ba-
belNet. In other words, it is not true that any graph-
based algorithm could be applied to perform both
EL and WSD at the same time equally well. This
also shows that BabelNet by itself is not sufficient
for achieving high performances for both tasks and
that, instead, an appropriate processing of the struc-
tural and lexical information of the semantic net-
work is needed. A manual analysis revealed that the
main cause of error for UKB in the EL setup stems

System KORE50 CoNLL
Babelfy 71.5 82.1

KORE-LSH-G 64.6 81.8

KORE 63.9 ?80.7

MW ?57.6 82.3

Tagme 56.3 70.1

KPCS 55.6 82.2

KORE-LSH-F 53.2 81.2

UKB w2w (on BabelNet) 52.1 71.8

Illinois Wikifier 41.7 72.4

DBpedia Spotlight 35.4 34.0

Babelfy unif. weights 69.4 81.7

Babelfy w/o dens. sub. 62.5 78.1

Babelfy only NE 68.1 78.8

Table 3: Accuracy (percentages) of state-of-the-art EL
systems and our system on KORE50 and AIDA-CoNLL.
The first system with a statistically significant difference
from the top system is marked with ? (χ2, p < 0.05).

from its inability to enforce high coherence, e.g., by
jointly disambiguating all the words, which is in-
stead needed when considering the high level of am-
biguity that we have in our semantic interpretation
graph (Cucerzan, 2007). For instance, for sentence
(1) in the introduction, UKB disambiguates Thomas
as a cricket player and Mario as the popular video
game rather than the two well-known soccer play-
ers, and Munich as the German city, rather than the
soccer team in which they play. Our approach, in-
stead, by enforcing highly coherent semantic inter-
pretations, correctly identifies all the soccer-related
entities.

In order to determine the need of our loose candi-
date identification heuristic (see Section 6), we com-
pared the percentage of times a candidate set con-
tains the correct entity against that obtained by an
exact string matching between the mention and the
sense inventory. On KORE50, our heuristic retrieves
the correct entity 98.6% of the time vs. 42.4% when
exact matching is used. This demonstrates the inad-
equacy of exact matching for EL, and the need for
a comprehensive sense inventory, as is done in our
approach.

We also performed different ablation tests by ex-
perimenting with the following variants of our sys-
tem (reported at the bottom of Tables 1, 2 and 3):
• Babelfy using uniform distribution during the

RWR to obtain the concepts’ semantic sig-
natures; this test assesses the impact of our
weighting and edge creation strategy.

240

• Babelfy without performing the densest sub-
graph heuristic, i.e., when line 12 in Algorithm
2 is G?

I = GI , so as to verify the impact of
identifying the most coherent interpretations.

• Babelfy applied to the BabelNet subgraph in-
duced by the entire set of named entity ver-
tices, for the EL task, and that induced by word
senses only, for the WSD task; this test aims to
stress the impact of our unified approach.

• Babelfy applied on sentences instead of on
whole documents.

The component which has a smaller impact on
the performance is our triangle-based weighting
scheme. The main exception is on the smallest
dataset, i.e., SemEval-2007 task 17, for which this
version attains an improvement of 2.5 percentage
points.

Babelfy without the densest subgraph algorithm
is the version which attains the lowest performances
on the EL task, with a 9% performance drop on the
KORE50 dataset, showing the need for a specially
designed approach to cope with the high level of am-
biguity that is encountered on this task. On the other
hand, in the WSD datasets this version attains almost
the same results as the full version, due to the lower
number of candidate word senses.

Babelfy applied on sentences instead of on whole
documents shows a lower performance, confirm-
ing the significance of higher semantic coherence
on whole documents (notwithstanding the two ex-
ceptions on the SemEval-2007 task 17 and on the
SemEval-2013 German Wikipedia datasets).

Finally, the version in which we restrict our
system to named entities only (for EL) and con-
cepts only (for WSD) consistently obtains lower re-
sults (notwithstanding the three exceptions on the
Spanish SemEval-2013 task 12 using BabelNet and
Wikipedia, and on the SemEval 2007 coarse-grained
task). This highlights the benefit of our joint use
of lexicographic and encyclopedic structured knowl-
edge, on each of the two tasks. The 3.4% per-
formance drop attained on KORE50 is of particu-
lar interest, since this dataset aims at testing perfor-
mance on highly ambiguous mentions within short
sentences. This indicates that the semantic analysis
of small contexts can be improved by leveraging the
coherence between concepts and named entities.

10 Conclusion

In this paper we presented Babelfy, a novel,
integrated approach to Entity Linking and
Word Sense Disambiguation, available at
http://babelfy.org. Our joint solution is
based on three key steps: i) the automatic creation
of semantic signatures, i.e., related concepts and
named entities, for each node in the reference
semantic network; ii) the unconstrained identifica-
tion of candidate meanings for all possible textual
fragments; iii) linking based on a high-coherence
densest subgraph algorithm. We used BabelNet
1.1.1 as our multilingual semantic network.

Our graph-based approach exploits the semantic
network structure to its advantage: two key features
of BabelNet, that is, its multilinguality and its in-
tegration of lexicographic and encyclopedic knowl-
edge, make it possible to run our general, unified ap-
proach on the two tasks of Entity Linking and WSD
in any of the languages covered by the semantic net-
work. However, we also demonstrated that Babel-
Net in itself does not lead to state-of-the-art accu-
racy on both tasks, even when used in conjunction
with a high-performance graph-based algorithm like
Personalized PageRank. This shows the need for our
novel unified approach to EL and WSD.

At the core of our approach lies the effective treat-
ment of the high degree of ambiguity of partial tex-
tual mentions by means of a 2-approximation algo-
rithm for the densest subgraph problem, which en-
ables us to output a semantic interpretation of the
input text with drastically reduced ambiguity, as was
previously done with SSI (Navigli, 2008).

Our experiments on six gold-standard datasets
show the state-of-the-art performance of our ap-
proach, as well as its robustness across languages.
Our evaluation also demonstrates that our approach
fares well both on long texts, such as those of the
WSD tasks, and short and highly-ambiguous sen-
tences, such as the ones in KORE50. Finally, abla-
tion tests and further analysis demonstrate that each
component of our system is needed to contribute
state-of-the-art performances on both EL and WSD.

As future work, we plan to use Babelfy for in-
formation extraction, where semantics is taking the
lead (Moro and Navigli, 2013), and for the valida-
tion of semantic annotations (Vannella et al., 2014).

241

Acknowledgments

The authors gratefully acknowl-
edge the support of the ERC Start-
ing Grant MultiJEDI No. 259234.

References
Eneko Agirre and Aitor Soroa. 2009. Personalizing

PageRank for Word Sense Disambiguation. In Proc.
of EACL, pages 33–41.

Eneko Agirre, David Martı́nez, Oier López de Lacalle,
and Aitor Soroa. 2006. Two graph-based algorithms
for state-of-the-art WSD. In Proc. of EMNLP, pages
585–593.

Eneko Agirre, Aitor Soroa, and Mark Stevenson. 2010.
Graph-based Word Sense Disambiguation of biomedi-
cal documents. Bioinformatics, 26(22):2889–2896.

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.
2014. Random Walks for Knowledge-Based Word
Sense Disambiguation. Computational Linguistics,
40(1):57–84.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
DBpedia: A Nucleus for a Web of Open Data. In Proc.
of ISWC/ASWC, pages 722–735.

Carmen Banea and Rada Mihalcea. 2011. Word Sense
Disambiguation with multilingual features. In Proc.
of IWCS, pages 25–34.

Christoph Böhm, Gerard de Melo, Felix Naumann, and
Gerhard Weikum. 2012. LINDA: distributed web-of-
data-scale entity matching. In Proc. of CIKM, pages
2104–2108.

Samuel Brody and Mirella Lapata. 2009. Bayesian Word
Sense Induction. In Proc. of EACL, pages 103–111.

Razvan C. Bunescu and Marius Pasca. 2006. Using en-
cyclopedic knowledge for named entity disambigua-
tion. In Proc. of EACL, pages 9–16.

Yee Seng Chan, Hwee Tou Ng, and Zhi Zhong. 2007.
NUS-PT: Exploiting Parallel Texts for Word Sense
Disambiguation in the English All-Words Tasks. In
Proc. of SemEval-2007, pages 253–256.

Moses Charikar. 2000. Greedy approximation algo-
rithms for finding dense components in a graph. In
Proc. of APPROX, pages 84–95.

Xiao Cheng and Dan Roth. 2013. Relational Inference
for Wikification. In Proc. of EMNLP, pages 1787–
1796.

Marco Cornolti, Paolo Ferragina, and Massimiliano Cia-
ramita. 2013. A framework for benchmarking entity-
annotation systems. In Proc. of WWW, pages 249–
260.

Silviu Cucerzan. 2007. Large-Scale Named Entity Dis-
ambiguation Based on Wikipedia Data. In Proc. of
EMNLP-CoNLL, pages 708–716.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Proc. of
I-Semantics, pages 121–124.

Leon Derczynski, Diana Maynard, Niraj Aswani, and
Kalina Bontcheva. 2013. Microblog-genre noise and
impact on semantic annotation accuracy. In Proc. of
Hypertext, pages 21–30.

Antonio Di Marco and Roberto Navigli. 2013. Cluster-
ing and Diversifying Web Search Results with Graph-
Based Word Sense Induction. Computational Linguis-
tics, 39(3):709–754.

Nicolai Erbs, Torsten Zesch, and Iryna Gurevych. 2011.
Link discovery: A comprehensive analysis. In Proc.
of ICSC, pages 83–86.

Oren Etzioni, Michele Banko, and Michael J Cafarella.
2006. Machine Reading. In Proc. of AAAI, pages
1517–1519.

Uriel Feige, Guy Kortsarz, and David Peleg. 1999. The
dense k-subgraph problem. Algorithmica, 29:2001.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME:
On-the-fly Annotation of Short Text Fragments (by
Wikipedia Entities). In Proc. of CIKM, pages 1625–
1628.

Paolo Ferragina and Ugo Scaiella. 2012. Fast and Accu-
rate Annotation of Short Texts with Wikipedia Pages.
IEEE Software, 29(1):70–75.

Weiwei Guo and Mona T. Diab. 2010. Combining
Orthogonal Monolingual and Multilingual Sources of
Evidence for All Words WSD. In Proc. of ACL, pages
1542–1551.

Yoan Gutiérrez, Yenier Castañeda, Andy González,
Rainel Estrada, Dennys D. Piug, Jose I. Abreu,
Roger Pérez, Antonio Fernández Orquı́n, Andrés
Montoyo, Rafael Muñoz, and Franc Camara. 2013.
UMCC DLSI: Reinforcing a Ranking Algorithm with
Sense Frequencies and Multidimensional Semantic
Resources to solve Multilingual Word Sense Disam-
biguation. In Proc. of SemEval-2013, pages 241–249.

Ben Hachey, Will Radford, Joel Nothman, Matthew Hon-
nibal, and James R. Curran. 2013. Evaluating En-
tity Linking with Wikipedia. Artificial Intelligence,
194:130–150.

Sherzod Hakimov, Salih Atilay Oto, and Erdogan Dogdu.
2012. Named entity recognition and disambiguation
using linked data and graph-based centrality scoring.
In Proc. of SWIM, pages 4:1–4:7.

Taher H. Haveliwala. 2002. Topic-sensitive PageRank.
In Proc. of WWW, pages 517–526.

242

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in text.
In Proc. of EMNLP, pages 782–792.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen, Mar-
tin Theobald, and Gerhard Weikum. 2012. KORE:
keyphrase overlap relatedness for entity disambigua-
tion. In Proc. of CIKM, pages 545–554.

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich,
and Gerhard Weikum. 2013. YAGO2: A spatially and
temporally enhanced knowledge base from Wikipedia.
Artificial Intelligence, 194:28–61.

Eduard H. Hovy, Roberto Navigli, and Simone P.
Ponzetto. 2013. Collaboratively built semi-structured
content and Artificial Intelligence: The story so far.
Artificial Intelligence, 194:2–27.

Samir Khuller and Barna Saha. 2009. On finding dense
subgraphs. In Proc. of ICALP, pages 597–608.

Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and
Soumen Chakrabarti. 2009. Collective Annotation of
Wikipedia Entities in Web Text. In Proc. of KDD,
pages 457–466.

Els Lefever and Véronique Hoste. 2010. Semeval-2010
task 3: Cross-lingual Word Sense Disambiguation. In
Proc. of SemEval-2010, pages 15–20.

Els Lefever and Véronique Hoste. 2013. SemEval-2013
Task 10: Cross-lingual Word Sense Disambiguation.
In Proc. of SemEval-2013, pages 158–166.

Els Lefever, Véronique Hoste, and Martine De Cock.
2011. Parasense or how to use parallel corpora for
Word Sense Disambiguation. In Proc. of ACL-HLT,
pages 317–322.

Michael E. Lesk. 1986. Automatic Sense Disambigua-
tion Using Machine Readable Dictionaries: How to
Tell a Pine Cone from an Ice Cream Cone. In Proc.
of the International Conference on Systems Documen-
tation, pages 24–26.

Nadine Ludwig and Harald Sack. 2011. Named entity
recognition for user-generated tags. In Proc. of DEXA,
pages 177–181.

Suresh Manandhar, Ioannis P. Klapaftis, Dmitriy Dli-
gach, and Sameer S. Pradhan. 2010. SemEval-2010
task 14: Word sense induction & disambiguation. In
Proc. of SemEval-2010, pages 63–68.

Steve L. Manion and Raazesh Sainudiin. 2013. DAE-
BAK!: Peripheral Diversity for Multilingual Word
Sense Disambiguation. In Proc. of SemEval-2013,
pages 250–254.

Pablo N. Mendes, Max Jakob, Andrés Garcı́a-Silva, and
Christian Bizer. 2011. DBpedia spotlight: shed-
ding light on the web of documents. In Proc. of I-
Semantics, pages 1–8.

Rada Mihalcea and Andras Csomai. 2007. Wikify!: link-
ing documents to encyclopedic knowledge. In Proc. of
CIKM, pages 233–242.

Rada Mihalcea and Dan I Moldovan. 2001. Extended
WordNet: Progress report. In Proc. of NAACL Work-
shop on WordNet and Other Lexical Resources, pages
95–100.

Rada Mihalcea. 2005. Unsupervised large-vocabulary
word sense disambiguation with graph-based algo-
rithms for sequence data labeling. In Proc. of
HLT/EMNLP, pages 411–418.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A semantic concordance. In
Proc. of HLT, pages 303–308.

Tristan Miller, Chris Biemann, Torsten Zesch, and Iryna
Gurevych. 2012. Using Distributional Similarity for
Lexical Expansion in Knowledge-based Word Sense
Disambiguation. In Proc. of COLING, pages 1781–
1796.

David Milne and Ian H. Witten. 2008. Learning to link
with Wikipedia. In Proc. of CIKM, pages 509–518.

Andrea Moro and Roberto Navigli. 2013. Integrating
Syntactic and Semantic Analysis into the Open Infor-
mation Extraction Paradigm. In Proc. of IJCAI, pages
2148–2154.

Roberto Navigli and Mirella Lapata. 2010. An Experi-
mental Study of Graph Connectivity for Unsupervised
Word Sense Disambiguation. TPAMI, 32(4):678–692.

Roberto Navigli and Simone Paolo Ponzetto. 2012a. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

Roberto Navigli and Simone Paolo Ponzetto. 2012b.
Joining forces pays off: Multilingual Joint Word Sense
Disambiguation. In Proc. of EMNLP, pages 1399–
1410.

Roberto Navigli, Kenneth C. Litkowski, and Orin Har-
graves. 2007. SemEval-2007 Task 07: Coarse-
Grained English All-Words Task. In Proc. of
SemEval-2007, pages 30–35.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 Task 12: Multilingual Word
Sense Disambiguation. In Proc. of SemEval-2013,
pages 222–231.

Roberto Navigli. 2008. A structural approach to the
automatic adjudication of word sense disagreements.
Natural Language Engineering, 14(4):293–310.

Roberto Navigli. 2009. Word Sense Disambiguation: A
survey. ACM Computing Surveys, 41(2):1–69.

Roberto Navigli. 2012. A Quick Tour of Word Sense
Disambiguation, Induction and Related Approaches.
In Proc. of SOFSEM, pages 115–129.

243

Hwee Tou Ng and Hian Beng Lee. 1996. Integrat-
ing multiple knowledge sources to disambiguate word
sense: An exemplar-based approach. In Proc. of ACL,
pages 40–47.

Mohammad Taher Pilehvar and Roberto Navigli. 2014.
A Large-scale Pseudoword-based Evaluation Frame-
work for State-of-the-Art Word Sense Disambigua-
tion. Computational Linguistics.

Simone P. Ponzetto and Roberto Navigli. 2010.
Knowledge-rich Word Sense Disambiguation rivaling
supervised system. In Proc. of ACL, pages 1522–1531.

Sameer S. Pradhan, Edward Loper, Dmitriy Dligach, and
Martha Palmer. 2007. SemEval-2007 task 17: En-
glish lexical sample, SRL and all words. In Proc. of
SemEval-2007, pages 87–92. Association for Compu-
tational Linguistics.

Delip Rao, Paul McNamee, and Mark Dredze. 2013. En-
tity Linking: Finding Extracted Entities in a Knowl-
edge Base. In Multi-source, Multilingual Information
Extraction and Summarization, Theory and Applica-
tions of Natural Language Processing, pages 93–115.
Springer Berlin Heidelberg.

Lev-Arie Ratinov, Dan Roth, Doug Downey, and Mike
Anderson. 2011. Local and Global Algorithms for
Disambiguation to Wikipedia. In Proc. of ACL, pages
1375–1384.

Lenhart K. Schubert. 2006. Turing’s dream and the
knowledge challenge. In Proc. of NCAI, pages 1534–
1538.

Didier Schwab, Andon Tchechmedjiev, Jérôme Goulian,
Mohammad Nasiruddin, Gilles Sérasset, and Hervé
Blanchon. 2013. GETALP System: Propagation of
a Lesk Measure through an Ant Colony Algorithm. In
Proc. of SemEval-2013, pages 232–240.

Hui Shen, Razvan Bunescu, and Rada Mihalcea. 2013.
Coarse to Fine Grained Sense Disambiguation in
Wikipedia. In Proc. of *SEM, pages 22–31.

Ravi Sinha and Rada Mihalcea. 2007. Unsupervised
Graph-based Word Sense Disambiguation Using Mea-
sures of Word Semantic Similarity. In Proc. of ICSC,
pages 363–369.

Benjamin Snyder and Martha Palmer. 2004. The English
all-words task. In Proc. of Senseval-3, pages 41–43.

Carlo Strapparava and Alessandro Valitutti. 2004. Word-
Net Affect: an Affective Extension of WordNet. In
Proc. of LREC, pages 1083–1086.

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan.
2006. Fast Random Walk with Restart and Its Appli-
cations. In Proc. of ICDM, pages 613–622.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proc. of
NAACL-HLT, pages 173–180.

George Tsatsaronis, Michalis Vazirgiannis, and Ion An-
droutsopoulos. 2007. Word Sense Disambiguation
with Spreading Activation Networks Generated from
Thesauri. In Proc. of IJCAI, pages 1725–1730.

Tim Van de Cruys and Marianna Apidianaki. 2011. La-
tent Semantic Word Sense Induction and Disambigua-
tion. In Proc. of ACL, pages 1476–1485.

Daniele Vannella, David Jurgens, Daniele Scarfini,
Domenico Toscani, and Roberto Navigli. 2014. Vali-
dating and Extending Semantic Knowledge Bases us-
ing Video Games with a Purpose. In Proc. of ACL.

Duncan J. Watts and Steven H. Strogatz. 1998. Col-
lective dynamics of ’small-world’ networks. Nature,
393(6684):409–10.

Zhi Zhong and Hwee Tou Ng. 2010. It Makes Sense: A
Wide-Coverage Word Sense Disambiguation System
for Free Text. In Proc. of ACL (Demo), pages 78–83.

Amal Zouaq, Michel Gagnon, and Benoit Ozell. 2009. A
SUMO-based Semantic Analysis for Knowledge Ex-
traction. In Proc of LTC.

244

Data-Driven Metaphor Recognition and Explanation

Hongsong Li
Microsoft Research Asia

hongsli@microsoft.com

Kenny Q. Zhu
Shanghai Jiao Tong University
kzhu@cs.sjtu.edu.cn

Haixun Wang
Google Research

haixun@google.com

Abstract

Recognizing metaphors and identifying the
source-target mappings is an important task
as metaphorical text poses a big challenge for
machine reading. To address this problem, we
automatically acquire a metaphor knowledge
base and an isA knowledge base from billions
of web pages. Using the knowledge bases,
we develop an inference mechanism to rec-
ognize and explain the metaphors in the text.
To our knowledge, this is the first purely data-
driven approach of probabilistic metaphor ac-
quisition, recognition, and explanation. Our
results shows that it significantly outperforms
other state-of-the-art methods in recognizing
and explaining metaphors.

1 Introduction

A metaphor is a way of communicating. It enables
us to comprehend one thing in terms of another. For
example, the metaphor, Juliet is the sun, allows us
to see Juliet much more vividly than if Shakespeare
had taken a more literal approach. We utter about
one metaphor for every ten to twenty-five words, or
about six metaphors a minute (Geary, 2011).

Specifically, a metaphor is a mapping of concepts
from a source domain to a target domain (Lakoff and
Johnson, 1980). The source domain is often con-
crete and based on sensory experience, while tar-
get domain is usually abstract. Two concepts are
connected by this mapping because they share some
common or similar properties, and as a result, the
meaning of one concept can be transferred to an-
other. For example, in “Juliet is the sun,” the sun is
the source concept while Juliet is the target concept.

One interpretation of this metaphor is that both con-
cepts share the property that their existence brings
about warmth, life, and excitement. In a metaphor-
ical sentence, at least one of the two concepts must
be explicitly present. This leads to three types of
metaphors:

1. Juliet is the sun. Here, both the source (sun)
and the target (Juliet) are explicit.

2. Please wash your claws before scratching me.
Here, the source (claws) is explicit, while the
target (hands) is implicit, and the context of
wash is in terms of the target.

3. Your words cut deep. Here, the target (words)
is explicit, while the source (possibly, knife) is
implicit, and the context of cut is in terms of
the source.

In this paper, we focus on the recognition and ex-
planation of metaphors. For a given sentence, we
first check whether it contains a metaphoric expres-
sion (which we call metaphor recognition), and if
it does, we identify the source and the target con-
cepts of the metaphor (which we call metaphor ex-
planation). Metaphor explanation is important for
understanding metaphors. Explaining type 2 and 3
metaphors is particularly challenging, and, to the
best of our knowledge, has not been attempted for
nominal concepts 1 before. In our examples, know-
ing that life and hands are the target concepts avoids
the confusion that may arise if source concepts sun
and claws are used literally in understanding the sen-
tences. This, however, does not mean that the source

1Nominal concepts are those represented by noun phrases.

379

Transactions of the Association for Computational Linguistics, 1 (2013) 379–390. Action Editor: Lillian Lee.
Submitted 6/2013; Revised 9/2013; Published 10/2013. c©2013 Association for Computational Linguistics.

concept is a useless embellishment. In the 3rd sen-
tence, knowing that words is mapped to knife en-
ables the system to understand the emotion or the
sentiment embedded in the text. This is the reason
why metaphor recognition and explanation is impor-
tant to applications such as affection mining (Smith
et al., 2007).

It is worth noting that some prefer to consider
the verb “cut”, rather than the noun “words”, to be
metaphoric in the 3rd sentence above. We instead
concentrate on nominal metaphors and seek to ex-
plain source-target mappings in which at least one
domain is a nominal concept. This is because verbs
usually have nominal arguments, as either subject or
object, thus explaining the source-target mapping of
the nominal argument covers most, if not all, cases
where a verb is metaphoric.

In order for machines to recognize and explain
metaphors, it must have extensive human knowl-
edge. It is not difficult to see why metaphor recog-
nition based on simple context modeling (e.g., by
selectional restriction/preference (Resnik, 1993)) is
insufficient. First, not all expressions that violate
the restriction are metaphors. For example, I hate
to read Heidegger violates selectional restriction, as
the context (embodied by the verb read) prefers an
object other than a person (Heidegger). But, Heideg-
ger is not a metaphor but a metonymy, which in this
case denotes Heidegger’s books. Second, not every
metaphor violates the restriction. For example, life
is a journey is clearly a metaphor, but selectional re-
striction or preference is helpless when it comes to
the isA context.

Existing approaches based on human-curated
knowledge bases fall short of the challenge. First,
the scale of a human-curated knowledge base is of-
ten very limited, which means at best it covers a
small set of metaphors. Second, new metaphors
are created all the time and the challenge is to rec-
ognize and understand metaphors that have never
been seen before. This requires extensive knowl-
edge. As a very simple example, even if the machine
knows Sports cars are fire engines is a metaphor,
it still needs to know what is a sports car before it
can understand My Ferrari is a fire engine is also
a metaphor. Third, existing human-curated knowl-
edge bases (including metaphor databases and the
WordNet) are not probabilistic. They cannot tell

how typical an instance is of a category (e.g., a robin
is a more typical bird than a penguin), or how popu-
lar an expression (e.g., a breath of fresh air) is used
as a source concept to describe targets in another
concept (e.g., young girls). Unfortunately, without
necessary probabilistic information, not much rea-
soning can be performed for metaphor explanation.

In this paper, we address the above challenges.
We start with a probabilistic isA knowledge base of
many entities and categories harnessed from billions
of web documents using a set of strict syntactic pat-
terns known as the Hearst patterns (Hearst, 1992).
We then automatically acquire a large probabilistic
metaphor database with the help of both syntactic
patterns and the isA knowledge base (Section 3).
Finally we combine the two knowledge bases and
a probabilistic reasoning mechanism for automatic
metaphor recognition and explanation (Section 4).

This paper makes the following contributions:

1. To our knowledge, we are the first to intro-
duce the metaphor explanation problem, which
seeks to recover missing or implied source or
target concepts in an implicit metaphor.

2. This is the first big-data driven, unsupervised
approach for metaphor recognition and expla-
nation. One of the benefits of leveraging big
data is that the knowledge we obtain is less bi-
ased, has great coverage, and can be updated
in a timely manner. More importantly, a data
driven approach can associate with each piece
of knowledge probabilities which are not avail-
able in human curated knowledge but are indis-
pensable for inference and reasoning.

3. Our results show the effectiveness both in terms
of coverage and accuracy of our approach. We
manage to acquire one of the largest metaphor
knowledge bases ever existed with a preci-
sion of 82%. The metaphor recognition accu-
racy significantly outperforms the state-of-the-
art methods (Section 5).

2 Related Work

Existing work on metaphor recognition and interpre-
tation can be divided into two categories: context-
oriented and knowledge-driven. The approach pro-
posed in this paper touches on both categories.

380

2.1 Context-oriented Methods

Some previous work relies on context to differentiate
metaphorical expressions from literal ones (Wilks,
1978; Resnik, 1993). The selection restriction the-
ory (Wilks, 1978) argues that the meaning of an ex-
pression is restricted by its context, and violations of
the restriction imply a metaphor.

Resnik (1993) uses KL divergence to measure
the selectional preference strength (SPS), i.e., how
strongly a context restricts an expression. Although
he did not use this measure directly for metaphor
recognition, SPS (and also a related measure called
the selection association) is widely used in more re-
cent approaches for metaphor recognition and inter-
pretation (Mason, 2004; Shutova, 2010; Shutova et
al., 2010; Baumer et al., 2010). For example, Ma-
son (2004) learns domain-specific selectional prefer-
ences and use them to find mappings between con-
cepts from different domains. Shutova (2010) de-
fines metaphor interpretation as a paraphrasing task.
The method discriminates between literal and fig-
urative paraphrases by detecting selectional prefer-
ence violation. The result of this work has been
compared with our approach in Section 5. Shutova
et al. (2010) identify concepts in a source domain
of a metaphor by clustering verb phrases and filter-
ing out verbs that have weak selectional preference
strength. Baumer (2010) uses semantic role labeling
techniques to calculate selectional preference on se-
mantic relations instead of grammatic relations for
metaphor recognition.

A less related but also context-based work is
analogy interpretation by relation mapping (Turney,
2008). The problem is to generate mapping between
source and target domains by computing pair-wise
co-occurrences for different contextual patterns.

Our approach uses selectional restriction when
enriching the metaphor knowledge base, and adopts
context preference when explaining type 2 and 3
metaphors by focusing on the nearby verbs of a po-
tential source or target concept.

2.2 Knowledge-driven Methods

A growing number of works use knowledge
bases for metaphor understanding (Martin, 1990;
Narayanan, 1997; Barnden et al., 2002; Veale and
Hao, 2008). MIDAS (Martin, 1990) checks if a sen-

tence contains an expression that can be explained
by a more general metaphor in a human-curated
metaphor knowledge base. ATT-Meta (Barnden
et al., 2002) performs metaphor reasoning with a
human-curated metaphor knowledge base and first
order logic, and it focuses on affection detection
(Smith et al., 2007; Agerri, 2008; Zhang, 2010). Kr-
ishnakumaran and Zhu (2007) use the isA relation
in WordNet (Miller, 1995) for metaphor recognition.
Gedigian et al. (2006) use FrameNet (Fillmore et al.,
2003) and Probank (Kingsbury and Palmer, 2002)
to train a maximum entropy classifier for metaphor
recognition. TroFi (Birke and Sarkar, 2006) rede-
fines literal and non-literal as two senses of the same
verb and provide two senses with seed sentences
from human-curated knowledge bases like Word-
Net, known metaphor and idiom sets. For a given
sentence containing target verb, it compares the sim-
ilarity of the sentence with two seed sets respec-
tively. If the sentence is closer to the non-literal
sense set, the verb is recognized as non-literal usage.

While the above work all relies on human cu-
rated data sets or manual labeling, Veale and Hao
(2008) introduced the notion of talking points which
are figurative properties of noun-based concepts.
For example, the concept “Hamas” has the follow-
ing talking points: is islamic:movement and gov-
erns:gaza strip. They automatically constructed a
knowledge base called Slip Net from WordNet and
Web corpus. Concepts that are connected on the
Slip Net can “slip” to one another and are hence
considered related in a metaphor. However, straight-
forward traversal on the Slip Net can become com-
putationally impractical and the authors did not elab-
orate on the implementation details. In practice, the
knowledge acquired in this paper is much larger but
our algorithms are computationally more feasible.

3 Obtaining Probabilistic Knowledge

In this section, we describe how to use a large,
general-purpose, probabilistic isA knowledge base
ΓH to create a probabilistic metaphor dataset Γm.
ΓH contains isA pairs as well as scores associated
with each pair. The metaphor dataset Γm contains
metaphors of the form: (source, target), and a
weight function Pm that maps a metaphor pair to a
probabilistic score. The purpose of creating ΓH is

381

to help clean and expand Γm, and to perform proba-
bilistic inference for metaphor detection.

3.1 IsA Knowledge ΓH

ΓH , a general-purpose, probabilistic isA knowl-
edge base, was previously constructed by Wu et
al.(2012).2 ΓH contains isA relations in the form of
(x, hx), a pair of hyponym and hypernym, for exam-
ple, (Steve Ballmer, CEO of IT companies), and each
pair is associated with a set of probabilistic scores.
Two of the most important scores are known as typ-
icality: P (x|hx), the typicality of x of category hx,
and P (hx|x), the typicality of category hx for in-
stance x, which will be used in metaphor recogni-
tion and explanation. Both scores are approximated
by frequencies, e.g.,

P (x|hx) =
of (x, hx) in Hearst extraction

of hx in Hearst extraction

In total, ΓH contains 16 million unique isA rela-
tionships, and 2.7 million unique concepts or cate-
gories (the hx’s in (x, hx) pairs). The importance of
big data is obvious. ΓH contains millions of cat-
egories and probabilistic scores for each category
which enables inference for metaphor understand-
ing, as we will show next.

3.2 Acquiring Metaphors Γm

We acquire an initial set of metaphors Γm from sim-
iles. A simile is a figure of speech that explicitly
compares two different things using words such as
“like” and “as”. For example, the sentence Life is
like a journey is a simile. Without the word “like,”
it becomes a metaphor: Life is a journey. This
property makes simile an attractive first target for
metaphor extraction from a large corpus. We use
the following syntactic pattern for extraction:

〈target〉 BE/VB like [a] 〈source〉 (1)

where BE denotes is/are/has been/have been, etc.,
VB denotes verb other than BE, and 〈target〉 and
〈source〉 denote noun phrases or verb phrases.

Note that not every extracted pair is a metaphor.
Poetry is like an art matches the pattern, but it is not
a metaphor because poetry is really an art. We will
use ΓH to clean such pairs. Furthermore, due to the

2Dataset can be found at http://probase.msra.cn/.

idiosyncrasies of natural languages, it is not trivial to
correctly extract the 〈target〉 and the 〈source〉 from
each sentence that matches the pattern. We use a
postagger and a lemmatizer on the sentences, and we
develop a rule-based system that contains more than
two dozen rules for extraction. For example, a rule
of high-precision but low-recall is “〈target〉 must be
at the beginning of a sentence or the beginning of a
clause (e.g., following the word that)”.

Finally, from 8,552,672 sentences that match the
above pattern (pattern 1), we obtain 1.2 million
unique (x, y) pairs, and after filtering, we are left
with close to 1 million unique metaphor pairs, which
form the starting point of Γm.

3.3 Cleaning, Expanding, and Weighting Γm

The simile pattern only allows us to extract some
of the available metaphor pairs. To expand Γm, we
use a more flexible but also noisier pattern to extract
more candidate metaphor pairs from billions of sen-
tences in the web corpus:

〈target〉 BE [a] 〈source〉 (2)

The above “is a” pattern covers metaphors such as
Life is a journey. But many pairs thus extracted are
not metaphors, for example, Malaysia is a tropical
country. That is, pairs extracted by the “is a” pat-
tern contains at least two types of relations: the lit-
eral isA relations and the metaphor relations. The
problem is how to distinguish one from the other. In
theory, the set of all IsA relations, I , and the set of
all metaphor relations, M , do not overlap, because
by definition, the source concept and the target con-
cept in a metaphor are not the same thing. Thus, our
intuition is the following. The pairs produced by the
simile pattern, called S, is a subset of M , while the
pairs extracted from the Hearst pattern, called H , is
also a subset of I . Since M and I hardly overlap,
S and H should have little overlap, too. In practice,
very few people would say something like journeys
such as life. Figure 1 illustrates this scenario.

To verify this intuition, we randomly sampled
1,000 sentences and manually annotated them. Of
these sentences, 40 contain an IsA relation, of which
27 are enclosed in a Hearst’s pattern and 13 can be
extracted by the “is a” pattern. Furthermore, 28 of
these 1000 sentences contain a metaphor expression,

382

(beast, sports car)(sports car, ferrari)
(vehicle, ferrari)

(beast, ferrari)

Hearst

pattern

Is-a

relation

Simile

pattern

Metaphor

relation
“Is a”

pattern

Figure 1: Relations among different sets. Dotted circles
represent relations (ground truth). Solid circles represent
pairs extracted by syntactic patterns.

and within the 28 metaphors, 15 are embedded in a
simile pattern. More importantly, there is no overlap
between the IsA relations and metaphors (and hence
the similes).

In a larger scale experiment, we crawled 1 billion
sentences which match the “is a” pattern (2) from the
web corpus. From these, we extracted 180 million
unique (x, y) pairs. 24.8% of ΓH can be found in “is
a” pattern pairs, while 16.8% of Γm can be found in
“is a” pattern pairs. Further more, there is almost no
overlap between ΓH and Γm: 1.26% of ΓH can be
found in Γm, and 1.31% of Γm can be found in ΓH .

Our goal is to use the information collected
through the syntactic patterns to enrich the metaphor
relations or Γm. Armed with the above observations,
we make two conclusions. First, the (life, journey)
pair we extracted from life is a journey is more likely
a metaphor since it does not appear in the set ex-
tracted from Hearst patterns. Second, if any existing
pair in Γm also appears in ΓH , we can remove that
pair from Γm.

From the 180 million unique (x, y) pairs we ex-
tracted earlier, by filtering out low frequency pairs 3

and those pairs in ΓH , we obtain 2.6 million of fresh
metaphors. This is almost 3 times larger than initial
metaphor set obtained from the simile pattern.

We further expand Γm by adding metaphors
derived from Γm and ΓH . Assume (x, y) ∈
Γm, and (x, hx) ∈ ΓH , then we add (hx, y) to
Γm. As an example, if (Julie, sun) ∈ Γm,

3Specifically, we randomly sample pairs of frequency 1, 2,
..., 10 from Γm and check the precisions of each group. We filter
out pairs with frequency less than 5 to optimize the precision.

then we add (person name, sun) to Γm, since
(Julie, person name) ∈ ΓH . This enables the
metaphor detection approach we describe in Section
4. Note that we ignore transitivity in the isa relations
from ΓH as such transitivity is not always reliable.
For example, car seat is a chair, and chair is furni-
ture, but car seat is not furniture. How to handle
transitivity in a data driven isA taxonomy is a chal-
lenging problem, and is beyond the scope here.

Finally, we calculate the weight of each metaphor
(x, y). The weightPm(x, y) is calculated as follows:

Pm(x, y) =
occurrences of (x, y) in isA pattern

occurrences of isA pattern
(3)

The weights of derived metaphors, such as
(person name, sun), are calculated as follows:

Pm(hx, y) =
∑

(x,hx)∈ΓH

Pm(x, y) (4)

4 Probabilistic Metaphor Understanding

In this paper, we consider two aspects of metaphor
understanding, metaphor recognition and metaphor
explanation. The latter is needed for type 2 and 3
metaphors where either the source or the target con-
cept is implicit or missing. Next, we describe a prob-
abilistic approach to accomplish these two tasks.

4.1 Type 1 Metaphors

In a type 1 metaphor, both the source and the tar-
get concepts appear explicitly. When a sentence
matches “is a” pattern (pattern 2), it is a potential
metaphor expression. The first noun in the pattern
is the target candidate, while the second noun is the
source candidate. To recognize type 1 metaphors,
we first obtain the candidate (source, target) pair
from the sentence. Then, we check if we have any
knowledge about the (source, target) pair.

Intuitively, if the pair exists in the metaphor
dataset Γm, then it is a metaphor. If the pair ex-
ists in the is-A knowledge base ΓH , then it is not a
metaphor. But because Γm is far from being com-
plete, if a pair exists in neither Γm nor ΓH , there is a
possibility that it is a metaphor we have never seen
before. In this case, we reason as follows.

Consider a sentence such as My Ferrari is a beast.
Assume (Ferrari, beast) 6∈ Γm, but (sports car,

383

beast) ∈ Γm. Note that (sports car, beast) may it-
self be a derived metaphor which is added into Γm in
metaphor expansion, and the original metaphor ex-
tracted from the web data is (Lamborghinis, beast).
Furthermore, from ΓH , we know Ferrari is a sports
car, that is, (Ferrari, sports car) ∈ ΓH , we can then
infer that Ferrari to beast is very likely a metaphor
mapping.

Specifically, let (x, y) be a pair we are concerned
with. We want to compute the odds of (x, y) repre-
senting a metaphor vs. a normal is-A relationship:

P (x, y)

1− P (x, y)
(5)

where P (x, y) is the probability that (x, y) forms a
metaphor. Now, combining the knowledge we have
in ΓH , we have

P (x, y) =
∑

(x,hx)∈ΓH

P (x, hx, y) (6)

Here, hx is a possible superconcept, i.e., a possible
interpretation, for x. For example, if x = apple,
then two highly possible interpretations are com-
pany and fruit. In Eq.(6), we want to aggregate on
all possible interpretations (all superconcepts) of x.
This is possible because of the massive size of the
concept space in ΓH .

We can rewrite Eq.(6) to the following:

P (x, y) =
∑

(x,hx)∈ΓH

P (y|x, hx)P (x|hx)P (hx)

(7)
Here, P (y|x, hx) means when x is interpreted as an
hx, the probability of y as a target metaphorical con-
cept for hx. Thus, given hx, y is independent with x,
so P (y|x, hx) can be simply replaced by P (y|hx).
We can then rewrite Eq.(7) to:

P (x, y) =
∑

(x,hx)∈ΓH

P (y|hx)P (x|hx)P (hx)

=
∑

(x,hx)∈ΓH

P (hx, y)P (x|hx) (8)

It is clear P (hx, y) is simply Pm(hx, y) in Eq.(4)
given by the metaphor dataset Γm. Furthermore,
P (x|hx) is the typicality of x in the hx category,
and P (hx) is the prior of the category hx. Both of
them are available from the isA knowledge base ΓH .

Thus, we can calculate Eq.(8) using information in
the two knowledge bases we have created.

If the odds in Eq.(5) is greater than a thresh-
old δ, which is determined empirically to be δ =
P (metaphor)

P (isa)
4, we declare (x, y) as a metaphor.

4.2 Context Preference Modeling
It is more difficult to recognize metaphors when the
source concept or the target concept is not explic-
itly given in a sentence. In this case, we rely on the
context in the sentence.

Given a sentence, we find metaphor candidates
and the context. Here, candidates are noun phrases
in the sentence which can potentially be the target
or the source concept of a metaphor, while context
denotes words that have a grammatic dependency
with the candidate. The dependency can be subject-
predicate, predicate-object, or modifier-header, etc.
The context can be a verb, a noun phrase, or an ad-
jective which has certain preference over the target
or source candidate. For example, the word horse
prefers verbs such as jump, drink and eat; the word
flower prefers modifiers such as red, yellow and
beautiful.

In this work, we focus on analyzing the prefer-
ences of verbs using subject-predicate or predicate-
object relation between the verb and the noun
phrases. We select 2,226 most frequent verbs from
the web corpus. For each verb, we construct the dis-
tribution of noun phrases depend on the verb in the
sentences sampled from the web corpus. The noun
phrases are restricted to be those that occur in ΓH .

More specifically, for any noun phrase y that ap-
pears in ΓH , we calculate the following

Pr(C|y) =
fr(y, C)∑
C fr(y, C)

(9)

where fr(y, C) means the frequency of y and con-
text C with relation r. Note we can build prefer-
ence distribution for context other than verbs since,
in theory, r can be any relation (e.g. modifier-head
relation).

4.3 Type 2 and Type 3 Metaphors
If a sentence contains type 2 and type 3 metaphors,
either the source or the target concepts in the sen-

4This is the ratio between the number of metaphors and is-a
pairs in a random sample of “is a” pattern sentences.

384

tence is missing. For each noun phrase x and a con-
text C in such a sentence, we want to know whether
x is of literal or metaphoric use. It is a metaphoric
use if the selectional preference of some y, which is
a source or target concept of x in Γm, is larger than
the selectional preference of any super-concept of x
in ΓH , by a factor δ. Formally, there exists a y where
(x, y) ∈ Γm or (y, x) ∈ Γm, such that

P (y|x,C)

P (h|x,C)
≥ δ, ∀(x, h) ∈ ΓH . (10)

To compute (10), we have

P (y|x,C) =
P (x, y, C)

P (x,C)

=
P (x, y)P (C|x, y)

P (x,C)
(11)

Assuming x is a target concept and y is a source
concept (a Type 3 metaphor), we can obtain P (x, y)
by Eq.(8). 5 Furthermore, C is independent of x
in a type 2 or 3 metaphor, since a metaphor is an
unusual use of x (the target) within a given context.
Therefore P (C|x, y) = P (C|y), where P (C|y) is
available from Eq. (9).

Similarly, we have

P (h|x,C) =
P (x, h)P (C|h)

P (x,C)
(12)

where P (x, h) is obtained from ΓH and P (C|h) is
from the context preference distribution.

To explain the metaphor, or uncover the missing
concept,

y∗ = arg max
y ∧ (y,x)∈Γm

P (y|x,C)

= arg max
y ∧ (y,x)∈Γm

P (y, x)P (C|y)

As a concrete example, consider sentence My car
drinks gasoline. There are two possible targets: car
and gasoline. The context for both targets is the verb
drink. Let x = car. By Eq.(11), we first find all
y’s for which (car, y) ∈ Γm or (y, car) ∈ Γm.
We get terms such as woman, friend, gun, horse,
etc. When we calculate P (car, y) by Eq.(8), we
also need to find hypernyms of car in ΓH , which

5Type 2 metaphors can be handled similarly.

may include vehicle, product, asset, etc. For each
candidate y, P (y|car, C) is calculated by metaphor
knowledge P (x, y) and context preference P (C|yi).
Table 1 shows the result. Since the selectional pref-
erence of horse (from Γm) is much larger than other
literal uses of car, this sentence is recognized as a
metaphor, and the missing source concept is horse.

Table 1: Log probabilities (M: Metaphor, L:Literal).
Type yi log log logP (yi

P (yi, car) P (C|yi) |car, C)

L vehicle -6.2 -∞ -∞
L product -6.9 -∞ -∞
L asset -6.3 -∞ -∞
M woman -8.5 -2.8 -11.3
M friend -8.0 -3.0 -11.0
M gun -8.4 -∞ -∞
M horse -8.2 -2.4 -10.6
...

5 Experimental Result

We evaluate the performance of metaphor acquisi-
tion, recognition and explanation in our system and
compare it with several state-of-the-art mechanisms.

5.1 Metaphor Acquisition

From the web corpus, we collected 8,552,672 sen-
tences matching the “is like a” pattern (pattern 1)
and we extracted 932,621 unique high quality sim-
ile mappings from them. These simile mappings
became the core of Γm. ΓH contains 16,736,068
unique isA pairs. We also collected 1,131,805,382
sentences matching the “is a” pattern (pattern 2),
from which 180,446,190 unique mappings were ex-
tracted. These mappings contain both metaphors
and isA relations. From there, we identified
2,663,127 pairs of metaphors unseen in the sim-
ile set. These new metaphor pairs were added to
Γm. Random samples show that the precisions of
the core metaphor dataset and the whole dataset are
93.5% and 82%, respectively. All of the above
datasets, a sample of context preference, as well
as the test sets mentioned in this section can be
found at http://adapt.seiee.sjtu.edu.
cn/˜kzhu/metaphor.

385

5.2 Type 1 Metaphor Recognition
We compare our type 1 metaphor recognition with
the method (known as KZ) by Krishnakumaran and
Zhu (2007). For sentences containing “x is a y” pat-
tern, KZ used WordNet to detect whether y is a hy-
pernym of x. If not, then this sentence is considered
a metaphor. Our test set is 200 random sentences
that match the “x BE a y” pattern. We label a sen-
tence in the set as a metaphor if the two nouns con-
nected by BE do not actually have isA relation; or if
they do have isA relation but the sentence expressed
a strong emotion 6.

Table 2: Type 1 metaphor recognition
Precision Recall F1

KZ 13% 30% 18%
Our Approach 73% 66% 69%

The result is summarized in Table 2. KZ does not
perform as well due to the small coverage of Word-
Net taxonomy. Only 33 out of 200 sentences con-
tain a concept x that exists in WordNet and has at
least one hypernym. And among these, only 2 sen-
tences contain a y which is the hypernym ancestor
of x in WordNet. Clearly, the bottleneck is the scale
of WordNet.

5.3 Type 2/3 Metaphor Recognition
For type 2/3 metaphor recognition, we compare our
results with three other methods. The first compet-
ing method (called SA) employs the selectional as-
sociation proposed by Resnik (1993). Selectional
association measures the strength of the connection
between a predicate (c) and a term (e) by:

A(c, e) =
Pr(e|c) log Pr(e|c)

Pr(e)

S(c)
, (13)

where

S(c) = KL(Pr(e|c)||Pr(e))

=
∑

e

Pr(e|c) log
Pr(e|c)
Pr(e)

Given an NP-predicate pair, if its SA score is less
than a threshold α (set to 10−4 by empirics), then
the pair is recognized as a metaphor context.

6For example, “this man is an animal!”.

Second competing method (called CP) is the con-
textual preference approach (Resnik, 1993) intro-
duced in Section 4.2. To establish context prefer-
ence distributions, we randomly select 100 million
sentences from the web corpus, parse each sentence
using Stanford parser (Group, 2013) to obtain all
subject-predicate-object triples, and aggregate the
triples to get 33,236,292 subject-predicate pairs and
38,890,877 predicate-object pairs. The occurrences
of these pairs are used as context preference. Given
a pair of NP-predicate pair, if its context preference
score is less than a threshold β (set to 10−5 by em-
pirics 7), then the pair is considered as metaphoric.

The third competing method (called VH) is a vari-
ant of our own algorithm with Γm replaced by a
metaphor database derived from the Slip Net pro-
posed by Veale and Hao (2008), which we call ΓV H .
We built a Slip Net containing 21,451 concept nodes
associated with 27,533 distinct talking points. We
consider two concepts to be metaphoric if they are
at most 5 hops apart on the Slip Net The choice of 5
hops is a trade-off between precision and recall for
Slip Net. We thus created ΓV H with 5,633,760 pairs
of concepts.

We sampled 1,000 sentences from the BNC
dataset (Clear, 1993) as follows. We prepare a list
of 2,945 frequent verbs (and their different forms).
For each verb, we obtain at most 5 sentences from
BNC dataset which contain this verb as a predicate.
At this point, we obtain a total of 22,601 sentences
and randomly sample 1,000 sentences to form a test
set. Each sentence in the set is then manually la-
beled as being “metaphor” or “non-metaphor”. We
label them according to this procedure:

1. for each verb, we collect the intended use, i.e.,
the categories of its arguments (subject or ob-
ject) according to Marriam Webster’s dictio-
nary;

2. if the argument of the verb in the sentence be-
longs to the intended category, the sentence is
labeled “non-metaphor”;

3. if the argument and the intended meaning form
a metonymy which uses a part or an attribute to

7The authors didn’t specify the choice of α and β, and we
pick values which optimize the performance of their algorithms.

386

represent the whole object, the pair is labeled
as “non-metaphor”;

4. else the sentence is labeled as “metaphor”.

Table 3: Type 2/3 metaphor recognition
Precision Recall F1

SA 23% 20% 21%
CP 50% 20% 26%
VH 11% 86% 20%

Our Approach 65% 52% 58%

The results for type 2 and 3 metaphor recogni-
tion are shown in Table 3. Our knowledge-based ap-
proach significantly outperforms the other peers by
F-1 measure. Although VH achieves a good recall,
its precision is poor. This is because i) Slip Net con-
struction makes heavy use of sibling terms on the
WordNet but sibling terms are not necessarily simi-
lar terms; ii) many pairs generated by slipping over
the Slip Net are in theory related but are not com-
monly uttered due to the lack of practical context.

0%

10%

20%

30%

40%

50%

60%

70%

80%

SPS (2,3] SPS (3,4] SPS (4,5]

F
1

 s
co

re

SPS of verbs

SA CP VH Our approach

Figure 2: Metaphor recognition of type 2 and 3

Fig. 2 compares the four methods on verbs with
different selectional preference strength, which indi-
cates how strong a verb’s arguments are restricted to
a certain scope of nouns.8 Again, our method shows
a significant advantage across the board.

We explain why our approach works better us-
ing the examples in Table 4. In sentence AAU200,
shatters is a metaphoric usage because silence is
not a thing that can be broken into pieces. SA
and CP scores for shatters-silence pair are high
because this word combination is quite common,

8Note that no verb has SPS larger than 5.

and hence these methods incorrectly treat it as lit-
eral expression. The situation is similar with stalk-
company pair in ABG2327. On the other hand, for
AN81309, manipulate-life is considered rare com-
bination and hence has low SA and CP scores and
is deemed a metaphor while in reality it is a literal
use. A similar case occurs for work-concur pair. In
all these cases, our knowledge bases Γm and ΓH

are comprehensive and accurate enough to correctly
identify metaphors vs. non-metaphors. On the con-
trary, the metaphor database ΓV H covers way too
many pairs that it treats every pair as a metaphor.

Besides our own dataset, we also experiment on
TroFi Example Base9, which consists of 50 verbs
and 3,736 sentences containing these verbs. Each
sentence is annotated as literal and nonliteral use of
the verb. Our algorithm is used to classify the sub-
jects and the objects of the verbs. We use Stanford
dependency parser to obtain collapsed typed depen-
dencies of these sentences, and for each sentence,
run our algorithm to classify the subjects and objects
related to the verb, if the verb acts as a predicate.
Results show that our approach achieves 77.5% pre-
cision but just under 5% in recall. The low recall is
because, i) non-literal uses in the TroFi dataset in-
clude not only metaphor but also metonymy, irony
and other anomalies; ii) our approach currently fo-
cuses on subject-predicate and predicate-object de-
pendencies in a sentence only, but the target verbs
do not act as predicate in many of the example sen-
tences; iii) the Stanford dependency parser is not ro-
bust enough so half of the sentences are not parsed
correctly.

5.4 Metaphor Explanation

In this experiment, we use the classic labeled
metaphoric sentences from (Lakoff and Johnson,
1980). Lakoff provided 24 metaphoric mappings,
and for each mapping there are about ten example
sentences. In total, there are 214 metaphoric sen-
tences. Among them, we focus on 83 sentences
whose metaphor is expressed by subject-predicate
or predicate-object relation, as this paper focuses on
verb centric context preferences.

We evaluate the results of competing algorithms

9TroFi Example Base is available at http://www.cs.
sfu.ca/˜anoop/students/jbirke/.

387

Table 4: Metaphor recognition for some example sentences from BNC dataset (HM: Human, M: Metaphor, L : Literal).

ID Sentence HM SA CP VH Ours
AAU 200 Road-block salvo shatters Bucharest’s fragile silence. M L L M M
ABG 2327 Obstruction and protectionism do not stalk only big companies. M L L M M
AN8 1309 But when science proposes to manipulate the life of a human baby, L M M M L
ACH 1075 Nevertheless, recent work on Mosley and the BUF has concurred L M M M L

about their basic unimportance.

by the following labeling criteria. We consider an
output (i.e. a pair of concept mapping) as a match, if
the produced pair exactly matches the ground truth
pair, of if the pair is subsumed by the ground truth
pair. For example, the ground truth for the sentence
Let that idea simmer on the back burner is ideas
→ foods according to Lakoff (Lakoff and Johnson,
1980). If our algorithm outputs idea→ stew, then it
is considered a match since stew belongs to the food
category. An output pair is considered correct if it
is not a match to the ground truth but is otherwise
considered metaphoric by at least 2 of the 3 human
judges.

Given a sentence, since our algorithm returns a
list of possible explanations for the missing concept,
ranked by the probability, we evaluate the results by
three different metrics:

Match Top 1: result considered correct if there is a
match with the top explanation;

Match Top 3: result considered correct if there is a
match in the top 3 ranked explanations;

Correct Top 3: result considered correct if there is
a correct in the top 3 explanations.

Table 5: Precision of metaphor explanation using differen
metaphor databases

Match Top 1 Match Top 3 Correct Top 3
ΓV H 26% 49% 54%
Γm 43% 67% 78%

Comparison with Slip Net
We compare the result of our algorithm (from

Section 4.3) against the variant which uses ΓV H ob-
tained in Section 5.3.

Table 5 summarizes the precisions of the two al-
gorithms under three different metrics. Some of
these sentences and the top explanations given by
our algorithm are listed in Table 6. The concept to
be explained is italicized while the explanation that
is a match or correct is bolded or bold-italicized, re-
spectively. The explanations are ordered from left to
right by the score.

Comparison with paraphrasing

While we define metaphor explanation as a task
to recover the missing noun-based concept in a
source-target mapping, an alternative way to explain
a metaphor (Shutova, 2010) is to find the paraphrase
of the verb in the metaphor. Here we evaluate para-
phrasing task on verbs in metaphoric sentence by
Shutova et al(Shutova, 2010). For a metaphoric
verb V in a sentence, Shutova et al. select a set
of verbs that probabilistically best matches grammar
relations of V , and then filter out those verbs that
are not related to V according to the WordNet, and
eventually re-rank remaining verbs based on selec-
tion association.

In some sense, Shutova’s work uses a similar
framework as ours: first restrict the target para-
phrasing set using a knowledge, then select the most
proper word based on the context. The difference
is that the target of (Shutova, 2010) is the verb in
sentence, while our approach focuses on the noun.

To implement algorithm by Shutova, we extract
and count each grammar relation in 1 billion sen-
tences. These counts are used to calculate con-
text matching in (Shutova, 2010), and are also
used to calculate selection association. We perform
Shutova’s paraphrasing on verbs in 83 sentences, of
which only 25 finds a good paraphrases in Shutova’s
top 3 results. After removing 17 sentences which
contain light verbs (e.g., take, give, put), the algo-

388

Table 6: Metaphor sentences explained by the system

Metaphor mapping Sentence Explanation
Ideas are food Let that idea simmer on the back burner. stew; carrot; onion

We don’t need to spoon-feed our students egg roll; acorn; word
with knowledge.

Eyes are containers His eyes displayed his compassion. window; symbol; tiny camera
His eyes were filled with anger. hollow ball; water balloon; balloon

Emotional effect is His mother’s death hit him hard. enemy; monster
physical contact That idea bowled me over. punch; stew; onion

Life is a container. Her life is crammed with activities. tapestry; beach; dance
Get the most out of life. game; journey; prison

rithm finds 21 good paraphrases in top 3 results.
One reason for the low recall is that Wordnet is in-
adequate in providing candidate metaphor mapping.
This is also the reason why our metaphor base is
better than the metaphor base generated by talking
points.

6 Conclusion

Knowledge is essential for a machine to identify and
understand metaphors In this paper, we show how to
make use of two probabilistic knowledge bases au-
tomatically acquired from billions of web pages for
this purpose. This work currently recognizes and ex-
plains metaphoric mappings between nominal con-
cepts with the help of selectional preference of just
subject-predicate or predicate-object contexts. An
immediate next step is to extend this framework to
more general contexts and a further improvement
will be to identify mappings between any source and
target domains.

7 Acknowledgements

Kenny Q. Zhu was partially supported by Google
Faculty Research Award, and NSFC Grants
61100050, 61033002 and 61373031.

References
Rodrigo Agerri. 2008. Metaphor in textual entailment.

In COLING (Posters), pages 3–6.
John Barnden, Sheila Glasbey, Mark Lee, and Alan

Wallington. 2002. Reasoning in metaphor under-
standing: the att-meta approach and system. In COL-
ING ’02, pages 1–5.

Eric P. S. Baumer, James P. White, and Bill Tomlinson.
2010. Comparing semantic role labeling with typed
dependency parsing in computational metaphor iden-
tification. In CALC ’10, pages 14–22.

Julia Birke and Anoop Sarkar. 2006. A clustering ap-
proach for nearly unsupervised recognition of nonlit-
eral language. In In Proceedings of EACL-06, pages
329–336.

Jeremy H. Clear. 1993. The digital word. chapter The
British national corpus, pages 163–187.

Charles J. Fillmore, Christopher R. Johnson, and
Miriam R.L. Petruck. 2003. Background to
FrameNet. International Journal of Lexicography,
16.3:235–250.

James Geary. 2011. I is an Other: The Secret Life
of Metaphor and How It Shapes the Way We See the
World. Harper.

Matt Gedigian, John Bryant, Srini Narayanan, and Bra-
nimir Ciric. 2006. Catching metaphors. In In Work-
shop On Scalable Natural Language Understanding.

Stanford NLP Group. 2013. The Stanford parser.
http://nlp.stanford.edu/software/
lex-parser.shtml.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING ’92,
pages 539–545.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In In Language Resources and
Evaluation.

Saisuresh Krishnakumaran and Xiaojin Zhu. 2007.
Hunting elusive metaphors using lexical resources.

389

In Proceedings of the Workshop on Computational
Approaches to Figurative Language, pages 13–20,
Rochester, New York, April. ACL.

George Lakoff and Mark Johnson. 1980. Metaphors We
Live By. University of Chicago Press, Chicago, USA.

J. H. Martin. 1990. A Computational Model of Metaphor
Interpretation. Academic Press Professional, Inc.

Zachary J. Mason. 2004. Cormet: a computational,
corpus-based conventional metaphor extraction sys-
tem. Comput. Linguist., 30:23–44, March.

George A. Miller. 1995. Wordnet: a lexical database for
english. Commun. ACM, 38:39–41, November.

Srinivas Sankara Narayanan. 1997. Knowledge-
based action representations for metaphor and aspect
(karma). Technical report.

Philip Stuart Resnik. 1993. Selection and information:
a class-based approach to lexical relationships. Ph.D.
thesis.

Ekaterina Shutova, Lin Sun, and Anna Korhonen. 2010.
Metaphor identification using verb and noun cluster-
ing. In COLING ’10, pages 1002–1010.

Ekaterina Shutova. 2010. Automatic metaphor interpre-
tation as a paraphrasing task. In HLT ’10, pages 1029–
1037.

Catherine Smith, Tim Rumbell, John Barnden, Bob
Hendley, Mark Lee, and Alan Wallington. 2007.
Don’t worry about metaphor: affect extraction for con-
versational agents. In ACL ’07, pages 37–40.

P.D. Turney. 2008. The latent relation mapping engine:
Algorithm and experiments. Journal of Artificial In-
telligence Research, 33(1):615–655.

Tony Veale and Yanfen Hao. 2008. A fluid knowledge
representation for understanding and generating cre-
ative metaphors. In COLING, pages 945–952.

Yorick Wilks. 1978. Making preferences more active.
Artificial Intelligence, 11(3):197 – 223.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Qili
Zhu. 2012. Probase: a probabilistic taxonomy for text
understanding. In SIGMOD Conference, pages 481–
492.

Li Zhang. 2010. Metaphor interpretation and context-
based affect detection. In COLING (Posters), pages
1480–1488.

390

Grounded Compositional Semantics
for Finding and Describing Images with Sentences

Richard Socher, Andrej Karpathy, Quoc V. Le*, Christopher D. Manning, Andrew Y. Ng
Stanford University, Computer Science Department, *Google Inc.

richard@socher.org, karpathy@cs.stanford.edu,
qvl@google.com, manning@stanford.edu, ang@cs.stanford.edu

Abstract

Previous work on Recursive Neural Networks
(RNNs) shows that these models can produce
compositional feature vectors for accurately
representing and classifying sentences or im-
ages. However, the sentence vectors of previ-
ous models cannot accurately represent visu-
ally grounded meaning. We introduce the DT-
RNN model which uses dependency trees to
embed sentences into a vector space in order
to retrieve images that are described by those
sentences. Unlike previous RNN-based mod-
els which use constituency trees, DT-RNNs
naturally focus on the action and agents in
a sentence. They are better able to abstract
from the details of word order and syntactic
expression. DT-RNNs outperform other re-
cursive and recurrent neural networks, kernel-
ized CCA and a bag-of-words baseline on the
tasks of finding an image that fits a sentence
description and vice versa. They also give
more similar representations to sentences that
describe the same image.

1 Introduction

Single word vector spaces are widely used (Turney
and Pantel, 2010) and successful at classifying sin-
gle words and capturing their meaning (Collobert
and Weston, 2008; Huang et al., 2012; Mikolov et
al., 2013). Since words rarely appear in isolation,
the task of learning compositional meaning repre-
sentations for longer phrases has recently received a
lot of attention (Mitchell and Lapata, 2010; Socher
et al., 2010; Socher et al., 2012; Grefenstette et al.,
2013). Similarly, classifying whole images into a

fixed set of classes also achieves very high perfor-
mance (Le et al., 2012; Krizhevsky et al., 2012).
However, similar to words, objects in images are of-
ten seen in relationships with other objects which are
not adequately described by a single label.

In this work, we introduce a model, illustrated in
Fig. 1, which learns to map sentences and images
into a common embedding space in order to be able
to retrieve one from the other. We assume word and
image representations are first learned in their re-
spective single modalities but finally mapped into a
jointly learned multimodal embedding space.

Our model for mapping sentences into this space
is based on ideas from Recursive Neural Networks
(RNNs) (Pollack, 1990; Costa et al., 2003; Socher
et al., 2011b). However, unlike all previous RNN
models which are based on constituency trees (CT-
RNNs), our model computes compositional vector
representations inside dependency trees. The com-
positional vectors computed by this new dependency
tree RNN (DT-RNN) capture more of the meaning
of sentences, where we define meaning in terms of
similarity to a “visual representation” of the textual
description. DT-RNN induced vector representa-
tions of sentences are more robust to changes in the
syntactic structure or word order than related mod-
els such as CT-RNNs or Recurrent Neural Networks
since they naturally focus on a sentence’s action and
its agents.

We evaluate and compare DT-RNN induced rep-
resentations on their ability to use a sentence such as
“A man wearing a helmet jumps on his bike near a
beach.” to find images that show such a scene. The
goal is to learn sentence representations that capture

207

Transactions of the Association for Computational Linguistics, 2 (2014) 207–218. Action Editor: Alexander Clark.
Submitted 10/2013; Revised 3/2014; Published 4/2014. c©2014 Association for Computational Linguistics.

A man wearing a helmet jumps on his bike near a beach.

Compositional Sentence Vectors

Two airplanes parked in an airport.

A man jumping his downhill bike.

Image Vector Representation

A small child sits on a cement wall near white flower.

Multi-Modal
Representations

Figure 1: The DT-RNN learns vector representations for sentences based on their dependency trees. We learn to
map the outputs of convolutional neural networks applied to images into the same space and can then compare both
sentences and images. This allows us to query images with a sentence and give sentence descriptions to images.

the visual scene described and to find appropriate
images in the learned, multi-modal sentence-image
space. Conversely, when given a query image, we
would like to find a description that goes beyond a
single label by providing a correct sentence describ-
ing it, a task that has recently garnered a lot of at-
tention (Farhadi et al., 2010; Ordonez et al., 2011;
Kuznetsova et al., 2012). We use the dataset intro-
duced by (Rashtchian et al., 2010) which consists of
1000 images, each with 5 descriptions. On all tasks,
our model outperforms baselines and related mod-
els.

2 Related Work

The presented model is connected to several areas of
NLP and vision research, each with a large amount
of related work to which we can only do some justice
given space constraints.

Semantic Vector Spaces and Their Composition-
ality. The dominant approach in semantic vec-
tor spaces uses distributional similarities of single
words. Often, co-occurrence statistics of a word and
its context are used to describe each word (Turney
and Pantel, 2010; Baroni and Lenci, 2010), such
as tf-idf. Most of the compositionality algorithms
and related datasets capture two-word compositions.
For instance, (Mitchell and Lapata, 2010) use two-
word phrases and analyze similarities computed by
vector addition, multiplication and others. Compo-
sitionality is an active field of research with many
different models and representations being explored
(Grefenstette et al., 2013), among many others. We
compare to supervised compositional models that

can learn task-specific vector representations such as
constituency tree recursive neural networks (Socher
et al., 2011b; Socher et al., 2011a), chain structured
recurrent neural networks and other baselines. An-
other alternative would be to use CCG trees as a
backbone for vector composition (K.M. Hermann,
2013).

Multimodal Embeddings. Multimodal embed-
ding methods project data from multiple sources
such as sound and video (Ngiam et al., 2011) or im-
ages and text. Socher et al. (Socher and Fei-Fei,
2010) project words and image regions into a com-
mon space using kernelized canonical correlation
analysis to obtain state of the art performance in an-
notation and segmentation. Similar to our work, they
use unsupervised large text corpora to learn seman-
tic word representations. Among other recent work
is that by Srivastava and Salakhutdinov (2012) who
developed multimodal Deep Boltzmann Machines.
Similar to their work, we use techniques from the
broad field of deep learning to represent images and
words.

Recently, single word vector embeddings have
been used for zero shot learning (Socher et al.,
2013c). Mapping images to word vectors enabled
their system to classify images as depicting objects
such as ”cat” without seeing any examples of this
class. Related work has also been presented at NIPS
(Socher et al., 2013b; Frome et al., 2013). This work
moves zero-shot learning beyond single categories
per image and extends it to unseen phrases and full
length sentences, making use of similar ideas of se-
mantic spaces grounded in visual knowledge.

208

Detailed Image Annotation. Interactions be-
tween images and texts is a growing research field.
Early work in this area includes generating single
words or fixed phrases from images (Duygulu et al.,
2002; Barnard et al., 2003) or using contextual in-
formation to improve recognition (Gupta and Davis,
2008; Torralba et al., 2010).

Apart from a large body of work on single object
image classification (Le et al., 2012), there is also
work on attribute classification and other mid-level
elements (Kumar et al., 2009), some of which we
hope to capture with our approach as well.

Our work is close in spirit with recent work in de-
scribing images with more detailed, longer textual
descriptions. In particular, Yao et al. (2010) describe
images using hierarchical knowledge and humans in
the loop. In contrast, our work does not require hu-
man interactions. Farhadi et al. (2010) and Kulkarni
et al. (2011), on the other hand, use a more automatic
method to parse images. For instance, the former ap-
proach uses a single triple of objects estimated for an
image to retrieve sentences from a collection written
to describe similar images. It forms representations
to describe 1 object, 1 action, and 1 scene. Kulkarni
et al. (2011) extends their method to describe an im-
age with multiple objects. None of these approaches
have used a compositional sentence vector repre-
sentation and they require specific language gener-
ation techniques and sophisticated inference meth-
ods. Since our model is based on neural networks in-
ference is fast and simple. Kuznetsova et al. (2012)
use a very large parallel corpus to connect images
and sentences. Feng and Lapata (2013) use a large
dataset of captioned images and experiments with
both extractive (search) and abstractive (generation)
models.

Most related is the very recent work of Hodosh et
al. (2013). They too evaluate using a ranking mea-
sure. In our experiments, we compare to kernelized
Canonical Correlation Analysis which is the main
technique in their experiments.

3 Dependency-Tree Recursive Neural
Networks

In this section we first focus on the DT-RNN model
that computes compositional vector representations
for phrases and sentences of variable length and syn-

tactic type. In section 5 the resulting vectors will
then become multimodal features by mapping im-
ages that show what the sentence describes to the
same space and learning both the image and sen-
tence mapping jointly.

The most common way of building representa-
tions for longer phrases from single word vectors is
to simply linearly average the word vectors. While
this bag-of-words approach can yield reasonable
performance in some tasks, it gives all the words the
same weight and cannot distinguish important dif-
ferences in simple visual descriptions such as The
bike crashed into the standing car. vs. The car
crashed into the standing bike..

RNN models (Pollack, 1990; Goller and Küchler,
1996; Socher et al., 2011b; Socher et al., 2011a) pro-
vided a novel way of combining word vectors for
longer phrases that moved beyond simple averag-
ing. They combine vectors with an RNN in binary
constituency trees which have potentially many hid-
den layers. While the induced vector representations
work very well on many tasks, they also inevitably
capture a lot of syntactic structure of the sentence.
However, the task of finding images from sentence
descriptions requires us to be more invariant to syn-
tactic differences. One such example are active-
passive constructions which can collapse words such
as “by” in some formalisms (de Marneffe et al.,
2006), relying instead on the semantic relationship
of “agent”. For instance, The mother hugged her
child. and The child was hugged by its mother.
should map to roughly the same visual space. Cur-
rent Recursive and Recurrent Neural Networks do
not exhibit this behavior and even bag of words rep-
resentations would be influenced by the words was
and by. The model we describe below focuses more
on recognizing actions and agents and has the po-
tential to learn representations that are invariant to
active-passive differences.

3.1 DT-RNN Inputs: Word Vectors and
Dependency Trees

In order for the DT-RNN to compute a vector repre-
sentation for an ordered list of m words (a phrase or
sentence), we map the single words to a vector space
and then parse the sentence.

First, we map each word to a d-dimensional vec-
tor. We initialize these word vectors with the un-

209

A man wearing a helmet jumps on his bike near a beach

det

nsubj

partmod det
dobj

root

prep poss
pobj

prep

det
pobj

Figure 2: Example of a full dependency tree for a longer sentence. The DT-RNN will compute vector representations
at every word that represents that word and an arbitrary number of child nodes. The final representation is computed
at the root node, here at the verb jumps. Note that more important activity and object words are higher up in this tree
structure.

supervised model of Huang et al. (2012) which can
learn single word vector representations from both
local and global contexts. The idea is to construct a
neural network that outputs high scores for windows
and documents that occur in a large unlabeled corpus
and low scores for window-document pairs where
one word is replaced by a random word. When
such a network is optimized via gradient descent the
derivatives backpropagate into a word embedding
matrix A which stores word vectors as columns. In
order to predict correct scores the vectors in the ma-
trix capture co-occurrence statistics. We use d = 50
in all our experiments. The embedding matrix X
is then used by finding the column index i of each
word: [w] = i and retrieving the corresponding col-
umn xw from X . Henceforth, we represent an input
sentence s as an ordered list of (word,vector) pairs:
s = ((w1, xw1), . . . , (wm, xwm)).

Next, the sequence of words (w1, . . . , wm) is
parsed by the dependency parser of de Marneffe
et al. (2006). Fig. 2 shows an example. We can
represent a dependency tree d of a sentence s as
an ordered list of (child,parent) indices: d(s) =
{(i, j)}, where every child word in the sequence
i = 1, . . . ,m is present and has any word j ∈
{1, . . . ,m} ∪ {0} as its parent. The root word has
as its parent 0 and we notice that the same word can
be a parent between zero and m number of times.
Without loss of generality, we assume that these in-
dices form a tree structure. To summarize, the input
to the DT-RNN for each sentence is the pair (s, d):
the words and their vectors and the dependency tree.

3.2 Forward Propagation in DT-RNNs

Given these two inputs, we now illustrate how the
DT-RNN computes parent vectors. We will use the
following sentence as a running example: Students1
ride2 bikes3 at4 night5. Fig. 3 shows its tree
and computed vector representations. The depen-

Students bikes night

ride
at x1

x2

x3

x4

x5

h1

h2

h3

h4

h5

Figure 3: Example of a DT-RNN tree structure for com-
puting a sentence representation in a bottom up fashion.

dency tree for this sentence can be summarized by
the following set of (child, parent) edges: d =
{(1, 2), (2, 0), (3, 2), (4, 2), (5, 4)}.

The DT-RNN model will compute parent vectors
at each word that include all the dependent (chil-
dren) nodes in a bottom up fashion using a com-
positionality function gθ which is parameterized by
all the model parameters θ. To this end, the algo-
rithm searches for nodes in a tree that have either
(i) no children or (ii) whose children have already
been computed and then computes the correspond-
ing vector.

In our example, the words x1, x3, x5 are leaf
nodes and hence, we can compute their correspond-
ing hidden nodes via:

hc = gθ(xc) = f(Wvxc) for c = 1, 3, 5, (1)

where we compute the hidden vector at position c
via our general composition function gθ. In the case
of leaf nodes, this composition function becomes
simply a linear layer, parameterized by Wv ∈ Rn×d,
followed by a nonlinearity. We cross-validate over
using no nonlinearity (f = id), tanh, sigmoid or
rectified linear units (f = max(0, x), but generally
find tanh to perform best.

The final sentence representation we want to com-
pute is at h2, however, since we still do not have h4,

210

we compute that one next:

h4 = gθ(x4, h5) = f(Wvx4 +Wr1h5), (2)

where we use the same Wv as before to map the
word vector into hidden space but we now also have
a linear layer that takes as input h5, the only child
of the fourth node. The matrix Wr1 ∈ Rn×n is used
because node 5 is the first child node on the right
side of node 4. Generally, we have multiple matri-
ces for composing with hidden child vectors from
the right and left sides: Wr· = (Wr1, . . . ,Wrkr) and
Wl· = (Wl1, . . . ,Wlkl). The number of needed ma-
trices is determined by the data by simply finding
the maximum numbers of left kl and right kr chil-
dren any node has. If at test time a child appeared
at an even large distance (this does not happen in
our test set), the corresponding matrix would be the
identity matrix.

Now that all children of h2 have their hidden vec-
tors, we can compute the final sentence representa-
tion via:

h2 = gθ(x2, h1, h3, h4) = (3)

f(Wvx2 +Wl1h1 +Wr1h3 +Wr2h4).

Notice that the children are multiplied by matrices
that depend on their location relative to the current
node.

Another modification that improves the mean
rank by approximately 6 in image search on the dev
set is to weight nodes by the number of words under-
neath them and normalize by the sum of words under
all children. This encourages the intuitive desidera-
tum that nodes describing longer phrases are more
important. Let `(i) be the number of leaf nodes
(words) under node i and C(i, y) be the set of child
nodes of node i in dependency tree y. The final com-
position function for a node vector hi becomes:

hi = f

 1

`(i)

Wvxi +

∑

j∈C(i)

`(j)Wpos(i,j)hj

 ,

(4)
where by definition `(i) = 1 +

∑
j∈C(i) `(j) and

pos(i, j) is the relative position of child j with re-
spect to node i, e.g. l1 or r2 in Eq. 3.

3.3 Semantic Dependency Tree RNNs
An alternative is to condition the weight matrices
on the semantic relations given by the dependency

parser. We use the collapsed tree formalism of
the Stanford dependency parser (de Marneffe et al.,
2006). With such a semantic untying of the weights,
the DT-RNN makes better use of the dependency
formalism and could give active-passive reversals
similar semantic vector representation. The equation
for this semantic DT-RNN (SDT-RNN) is the same
as the one above except that the matrices Wpos(i,j)
are replaced with matrices based on the dependency
relationship. There are a total of 141 unique such
relationships in the dataset. However, most are very
rare. For examples of semantic relationships, see
Fig. 2 and the model analysis section 6.7.

This forward propagation can be used for com-
puting compositional vectors and in Sec. 5 we will
explain the objective function in which these are
trained.

3.4 Comparison to Previous RNN Models
The DT-RNN has several important differences to
previous RNN models of Socher et al. (2011a) and
(Socher et al., 2011b; Socher et al., 2011c). These
constituency tree RNNs (CT-RNNs) use the follow-
ing composition function to compute a hidden par-
ent vector h from exactly two child vectors (c1, c2)

in a binary tree: h = f

(
W

[
c1
c2

])
, where W ∈

Rd×2d is the main parameter to learn. This can be
rewritten to show the similarity to the DT-RNN as
h = f(Wl1c1 +Wr1c2). However, there are several
important differences.

Note first that in previous RNN models the par-
ent vectors were of the same dimensionality to be
recursively compatible and be used as input to the
next composition. In contrast, our new model first
maps single words into a hidden space and then par-
ent nodes are composed from these hidden vectors.
This allows a higher capacity representation which
is especially helpful for nodes that have many chil-
dren.

Secondly, the DT-RNN allows for n-ary nodes in
the tree. This is an improvement that is possible even
for constituency tree CT-RNNs but it has not been
explored in previous models.

Third, due to computing parent nodes in con-
stituency trees, previous models had the problem
that words that are merged last in the tree have a
larger weight or importance in the final sentence rep-

211

Figure 4: The architecture of the visual model. This model has 3 sequences of filtering, pooling and local contrast
normalization layers. The learnable parameters are the filtering layer. The filters are not shared, i.e., the network is
nonconvolutional.

resentation. This can be problematic since these are
often simple non-content words, such as a leading
‘But,’. While such single words can be important for
tasks such as sentiment analysis, we argue that for
describing visual scenes the DT-RNN captures the
more important effects: The dependency tree struc-
tures push the central content words such as the main
action or verb and its subject and object to be merged
last and hence, by construction, the final sentence
representation is more robust to less important ad-
jectival modifiers, word order changes, etc.

Fourth, we allow some untying of weights de-
pending on either how far away a constituent is from
the current word or what its semantic relationship is.

Now that we can compute compositional vector
representations for sentences, the next section de-
scribes how we represent images.

4 Learning Image Representations with
Neural Networks

The image features that we use in our experiments
are extracted from a deep neural network, replicated
from the one described in (Le et al., 2012). The net-
work was trained using both unlabeled data (random
web images) and labeled data to classify 22,000 cat-
egories in ImageNet (Deng et al., 2009). We then
used the features at the last layer, before the classi-
fier, as the feature representation in our experiments.
The dimension of the feature vector of the last layer
is 4,096. The details of the model and its training
procedures are as follows.

The architecture of the network can be seen in
Figure 4. The network takes 200x200 pixel images
as inputs and has 9 layers. The layers consist of

three sequences of filtering, pooling and local con-
trast normalization (Jarrett et al., 2009). The pooling
function is L2 pooling of the previous layer (taking
the square of the filtering units, summing them up
in a small area in the image, and taking the square-
root). The local contrast normalization takes inputs
in a small area of the lower layer, subtracts the mean
and divides by the standard deviation.

The network was first trained using an unsuper-
vised objective: trying to reconstruct the input while
keeping the neurons sparse. In this phase, the net-
work was trained on 20 million images randomly
sampled from the web. We resized a given image
so that its short dimension has 200 pixels. We then
cropped a fixed size 200x200 pixel image right at the
center of the resized image. This means we may dis-
card a fraction of the long dimension of the image.

After unsupervised training, we used Ima-
geNet (Deng et al., 2009) to adjust the features in the
entire network. The ImageNet dataset has 22,000
categories and 14 million images. The number of
images in each category is equal across categories.
The 22,000 categories are extracted from WordNet.

To speed up the supervised training of this net-
work, we made a simple modification to the algo-
rithm described in Le et al. (2012): adding a “bottle-
neck” layer in between the last layer and the classi-
fier. to reduce the number of connections. We added
one “bottleneck” layer which has 4,096 units in be-
tween the last layer of the network and the softmax
layer. This newly-added layer is fully connected to
the previous layer and has a linear activation func-
tion. The total number of connections of this net-
work is approximately 1.36 billion.

212

The network was trained again using the super-
vised objective of classifying the 22,000 classes in
ImageNet. Most features in the networks are local,
which allows model parallelism. Data parallelism
by asynchronous SGD was also employed as in Le
et al. (2012). The entire training, both unsupervised
and supervised, took 8 days on a large cluster of ma-
chines. This network achieves 18.3% precision@1
on the full ImageNet dataset (Release Fall 2011).

We will use the features at the bottleneck layer as
the feature vector z of an image. Each scaled and
cropped image is presented to our network. The net-
work then performs a feedforward computation to
compute the values of the bottleneck layer. This
means that every image is represented by a fixed
length vector of 4,096 dimensions. Note that during
training, no aligned sentence-image data was used
and the ImageNet classes do not fully intersect with
the words used in our dataset.
5 Multimodal Mappings
The previous two sections described how we can
map sentences into a d = 50-dimensional space and
how to extract high quality image feature vectors of
4096 dimensions. We now define our final multi-
modal objective function for learning joint image-
sentence representations with these models. Our
training set consists of N images and their feature
vectors zi and each image has 5 sentence descrip-
tions si1, . . . , si5 for which we use the DT-RNN to
compute vector representations. See Fig. 5 for ex-
amples from the dataset. For training, we use a max-
margin objective function which intuitively trains
pairs of correct image and sentence vectors to have
high inner products and incorrect pairs to have low
inner products. Let vi = WIzi be the mapped image
vector and yij = DTRNNθ(sij) the composed sen-
tence vector. We define S to be the set of all sentence
indices and S(i) the set of sentence indices corre-
sponding to image i. Similarly, I is the set of all im-
age indices and I(j) is the image index of sentence
j. The set P is the set of all correct image-sentence
training pairs (i, j). The ranking cost function to
minimize is then: J(WI , θ) =

∑

(i,j)∈P

∑

c∈S\S(i)
max(0,∆− vTi yj + vTi yc)

+
∑

(i,j)∈P

∑

c∈I\I(j)
max(0,∆− vTi yj + vTc yj), (5)

where θ are the language composition matrices,
and both second sums are over other sentences com-
ing from different images and vice versa. The hyper-
parameter ∆ is the margin. The margin is found via
cross validation on the dev set and usually around 1.

The final objective also includes the regulariza-
tion term λ/left(‖θ‖22 + ‖WI‖F). Both the visual
model and the word vector learning require a very
large amount of training data and both have a huge
number of parameters. Hence, to prevent overfitting,
we assume their weights are fixed and only train the
DT-RNN parameters WI . If larger training corpora
become available in the future, training both jointly
becomes feasible and would present a very promis-
ing direction. We use a modified version of Ada-
Grad (Duchi et al., 2011) for optimization of both
WI and the DT-RNN as well as the other baselines
(except kCCA). Adagrad has achieved good perfor-
mance previously in neural networks models (Dean
et al., 2012; Socher et al., 2013a). We modify it
by resetting all squared gradient sums to 1 every 5
epochs. With both images and sentences in the same
multimodal space, we can easily query the model for
similar images or sentences by finding the nearest
neighbors in terms of negative inner products.

An alternative objective function is based on the
squared loss J(WI , θ) =

∑
(i,j)∈P ‖vi − yj‖22. This

requires an alternating minimization scheme that
first trains only WI , then fixes WI and trains the
DT-RNN weights θ and then repeats this several
times. We find that the performance with this ob-
jective function (paired with finding similar images
using Euclidean distances) is worse for all models
than the margin loss of Eq. 5. In addition kCCA
also performs much better using inner products in
the multimodal space.

6 Experiments

We use the dataset of Rashtchian et al. (2010) which
consists of 1000 images, each with 5 sentences. See
Fig. 5 for examples.

We evaluate and compare the DT-RNN in three
different experiments. First, we analyze how well
the sentence vectors capture similarity in visual
meaning. Then we analyze Image Search with
Query Sentences: to query each model with a sen-
tence in order to find an image showing that sen-

213

1. A woman and her dog watch the cameraman in their living with wooden floors.
2. A woman sitting on the couch while a black faced dog runs across the floor.
3. A woman wearing a backpack sits on a couch while a small dog runs on the hardwood floor next to her.
4. A women sitting on a sofa while a small Jack Russell walks towards the camera.
5. White and black small dog walks toward the camera while woman sits on couch, desk and computer seen
 in the background as well as a pillow, teddy bear and moggie toy on the wood floor.

1. A man in a cowboy hat check approaches a small red sports car.
2. The back and left side of a red Ferrari and two men admiring it.
3. The sporty car is admired by passer by.
4. Two men next to a red sports car in a parking lot.
5. Two men stand beside a red sports car.

Figure 5: Examples from the dataset of images and their sentence descriptions (Rashtchian et al., 2010). Sentence
length varies greatly and different objects can be mentioned first. Hence, models have to be invariant to word ordering.

tence’s visual ‘meaning.’ The last experiment De-
scribing Images by Finding Suitable Sentences does
the reverse search where we query the model with an
image and try to find the closest textual description
in the embedding space.

In our comparison to other methods we focus on
those models that can also compute fixed, continu-
ous vectors for sentences. In particular, we compare
to the RNN model on constituency trees of Socher
et al. (2011a), a standard recurrent neural network;
a simple bag-of-words baseline which averages the
words. All models use the word vectors provided by
Huang et al. (2012) and do not update them as dis-
cussed above. Models are trained with their corre-
sponding gradients and backpropagation techniques.
A standard recurrent model is used where the hidden
vector at word index t is computed from the hidden
vector at the previous time step and the current word
vector: ht = f(Whht−1 + Wxxt). During training,
we take the last hidden vector of the sentence chain
and propagate the error into that. It is also this vector
that is used to represent the sentence.

Other possible comparisons are to the very differ-
ent models mentioned in the related work section.
These models use a lot more task-specific engineer-
ing, such as running object detectors with bounding
boxes, attribute classifiers, scene classifiers, CRFs
for composing the sentences, etc. Another line of
work uses large sentence-image aligned resources
(Kuznetsova et al., 2012), whereas we focus on eas-
ily obtainable training data of each modality sepa-
rately and a rather small multimodal corpus.

In our experiments we split the data into 800 train-
ing, 100 development and 100 test images. Since
there are 5 sentences describing each image, we

have 4000 training sentences and 500 testing sen-
tences. The dataset has 3020 unique words, half of
which only appear once. Hence, the unsupervised,
pre-trained semantic word vector representations are
crucial. Word vectors are not fine tuned during train-
ing. Hence, the main parameters are the DT-RNN’s
Wl·,Wr· or the semantic matrices of which there are
141 and the image mappingWI . For both DT-RNNs
the weight matrices are initialized to block identity
matrices plus Gaussian noise. Word vectors and hid-
den vectors are set o length 50. Using the develop-
ment split, we found λ = 0.08 and the learning rate
of AdaGrad to 0.0001. The best model uses a mar-
gin of ∆ = 3.

Inspired by Socher and Fei-Fei (2010) and Ho-
dosh et al. (2013) we also compare to kernelized
Canonical Correlation Analysis (kCCA). We use the
average of word vectors for describing sentences and
the same powerful image vectors as before. We
use the code of Socher and Fei-Fei (2010). Tech-
nically, one could combine the recently introduced
deep CCA Andrew et al. (2013) and train the re-
cursive neural network architectures with the CCA
objective. We leave this to future work. With lin-
ear kernels, kCCA does well for image search but
is worse for sentence self similarity and describing
images with sentences close-by in embedding space.
All other models are trained by replacing the DT-
RNN function in Eq. 5.

6.1 Similarity of Sentences Describing the
Same Image

In this experiment, we first map all 500 sentences
from the test set into the multi-modal space. Then
for each sentence, we find the nearest neighbor sen-

214

Sentences Similarity for Image
Model Mean Rank
Random 101.1
BoW 11.8
CT-RNN 15.8
Recurrent NN 18.5
kCCA 10.7
DT-RNN 11.1
SDT-RNN 10.5

Image Search
Model Mean Rank
Random 52.1
BoW 14.6
CT-RNN 16.1
Recurrent NN 19.2
kCCA 15.9
DT-RNN 13.6
SDT-RNN 12.5

Describing Images
Model Mean Rank
Random 92.1
BoW 21.1
CT-RNN 23.9
Recurrent NN 27.1
kCCA 18.0
DT-RNN 19.2
SDT-RNN 16.9

Table 1: Left: Comparison of methods for sentence similarity judgments. Lower numbers are better since they indicate
that sentences describing the same image rank more highly (are closer). The ranks are out of the 500 sentences in the
test set. Center: Comparison of methods for image search with query sentences. Shown is the average rank of the
single correct image that is being described. Right: Average rank of a correct sentence description for a query image.

tences in terms of inner products. We then sort
these neighbors and record the rank or position of
the nearest sentence that describes the same im-
age. If all the images were very unique and the vi-
sual descriptions close-paraphrases and consistent,
we would expect a very low rank. However, usually
a handful of images are quite similar (for instance,
there are various images of airplanes flying, parking,
taxiing or waiting on the runway) and sentence de-
scriptions can vary greatly in detail and specificity
for the same image.

Table 1 (left) shows the results. We can see that
averaging the high quality word vectors already cap-
tures a lot of similarity. The chain structure of a
standard recurrent neural net performs worst since
its representation is dominated by the last words in
the sequence which may not be as important as ear-
lier words.

6.2 Image Search with Query Sentences

This experiment evaluates how well we can find im-
ages that display the visual meaning of a given sen-
tence. We first map a query sentence into the vector
space and then find images in the same space using
simple inner products. As shown in Table 1 (center),
the new DT-RNN outperforms all other models.

6.3 Describing Images by Finding Suitable
Sentences

Lastly, we repeat the above experiments but with
roles reversed. For an image, we search for suitable
textual descriptions again simply by finding close-
by sentence vectors in the multi-modal embedding
space. Table 1 (right) shows that the DT-RNN again
outperforms related models. Fig. 2assigned to im-

Image Search
Model mRank
BoW 24.7
CT-RNN 22.2
Recurrent NN 28.4
kCCA 13.7
DT-RNN 13.3
SDT-RNN 15.8

Describing Images
Model mRank
BoW 30.7
CT-RNN 29.4
Recurrent NN 31.4
kCCA 38.0
DT-RNN 26.8
SDT-RNN 37.5

Table 2: Results of multimodal ranking when models are
trained with a squared error loss and using Euclidean dis-
tance in the multimodal space. Better performance is
reached for all models when trained in a max-margin loss
and using inner products as in the previous table.

ages. The average ranking of 25.3 for a correct sen-
tence description is out of 500 possible sentences. A
random assignment would give an average ranking
of 100.

6.4 Analysis: Squared Error Loss vs. Margin
Loss

We analyze the influence of the multimodal loss
function on the performance. In addition, we com-
pare using Euclidean distances instead of inner prod-
ucts. Table 2 shows that performance is worse for all
models in this setting.

6.5 Analysis: Recall at n vs Mean Rank

Hodosh et al. (2013) and other related work use re-
call at n as an evaluation measure. Recall at n cap-
tures how often one of the top n closest vectors were
a correct image or sentence and gives a good intu-
ition of how a model would perform in a ranking
task that presents n such results to a user. Below, we
compare three commonly used and high performing
models: bag of words, kCCA and our SDT-RNN on

215

A gray convertible sports car is parked in front of the trees.
A close-up view of the headlights of a blue old-fashioned car.
Black shiny sports car parked on concrete driveway.
Five cows grazing on a patch of grass between two roadways.

A jockey rides a brown and white horse in a dirt corral.
A young woman is riding a Bay hose in a dirt riding-ring.
A white bird pushes a miniature teal shopping cart.
A person rides a brown horse.

A motocross bike with rider flying through the air.
White propeller plane parked in middle of grassy field.
The white jet with its landing gear down flies in the blue sky.
An elderly woman catches a ride on the back of the bicycle.

A green steam train running down the tracks.
Steamy locomotive speeding thou the forest.
A steam engine comes down a train track near trees.
A double decker bus is driving by Big Ben in London.

People in an outrigger canoe sail on emerald green water.
Two people sailing a small white sail boat.
behind a cliff, a boat sails away
Tourist move in on Big Ben on a typical overcast London day.

A group of people sitting around a table on a porch.
A group of four people walking past a giant mushroom.
A man and women smiling for the camera in a kitchen.
A group of men sitting around a table drinking while a man behind
stands pointing.

Figure 6: Images and their sentence descriptions assigned by the DT-RNN.

Image Search
Model mRank 4 R@1 5 R@5 5 R@10 5
BoW 14.6 15.8 42.2 60.0
kCCA 15.9 16.4 41.4 58.0
SDT-RNN 12.5 16.4 46.6 65.6

Describing Images
BoW 21.1 19.0 38.0 57.0
kCCA 18.0 21.0 47.0 61.0
SDT-RNN 16.9 23.0 45.0 63.0

Table 3: Evaluation comparison between mean rank of
the closest correct image or sentence (lower is better 4)
with recall at different thresholds (higher is better, 5).
With one exception (R@5, bottom table), the SDT-RNN
outperforms the other two models and all other models
we did not include here.

this different metric. Table 3 shows that the mea-
sures do correlate well and the SDT-RNN also per-
forms best on the multimodal ranking tasks when
evaluated with this measure.

6.6 Error Analysis

In order to understand the main problems with the
composed sentence vectors, we analyze the sen-
tences that have the worst nearest neighbor rank be-
tween each other. We find that the main failure mode
of the SDT-RNN occurs when a sentence that should
describe the same image does not use a verb but the
other sentences of that image do include a verb. For
example, the following sentence pair has vectors that
are very far apart from each other even though they
are supposed to describe the same image:

1. A blue and yellow airplane flying straight down
while emitting white smoke

2. Airplane in dive position

Generally, as long as both sentences either have a
verb or do not, the SDT-RNN is more robust to dif-
ferent sentence lengths than bag of words represen-
tations.

6.7 Model Analysis: Semantic Composition
Matrices

The best model uses composition matrices based on
semantic relationships from the dependency parser.
We give some insights into what the model learns
by listing the composition matrices with the largest
Frobenius norms. Intuitively, these matrices have
learned larger weights that are being multiplied with
the child vector in the tree and hence that child will
have more weight in the final composed parent vec-
tor. In decreasing order of Frobenius norm, the re-
lationship matrices are: nominal subject, possession
modifier (e.g. their), passive auxiliary, preposition
at, preposition in front of, passive auxiliary, passive
nominal subject, object of preposition, preposition
in and preposition on.

The model learns that nouns are very important as
well as their spatial prepositions and adjectives.

7 Conclusion

We introduced a new recursive neural network
model that is based on dependency trees. For eval-
uation, we use the challenging task of mapping sen-
tences and images into a common space for finding
one from the other. Our new model outperforms
baselines and other commonly used models that can
compute continuous vector representations for sen-
tences. In comparison to related models, the DT-
RNN is more invariant and robust to surface changes
such as word order.

216

References
G. Andrew, R. Arora, K. Livescu, and J. Bilmes. 2013.

Deep canonical correlation analysis. In ICML, At-
lanta, Georgia.

K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth,
D. Blei, and M. Jordan. 2003. Matching words and
pictures. JMLR.

M. Baroni and A. Lenci. 2010. Distributional mem-
ory: A general framework for corpus-based semantics.
Computational Linguistics, 36(4):673–721.

R. Collobert and J. Weston. 2008. A unified archi-
tecture for natural language processing: deep neural
networks with multitask learning. In Proceedings of
ICML, pages 160–167.

F. Costa, P. Frasconi, V. Lombardo, and G. Soda. 2003.
Towards incremental parsing of natural language using
recursive neural networks. Applied Intelligence.

M. de Marneffe, B. MacCartney, and C. D. Manning.
2006. Generating typed dependency parses from
phrase structure parses. In LREC.

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A.Y. Ng. 2012. Large scale distributed
deep networks. In NIPS.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. 2009. ImageNet: A Large-Scale Hierarchical Im-
age Database. In CVPR.

J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive sub-
gradient methods for online learning and stochastic op-
timization. JMLR, 12, July.

P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth.
2002. Object recognition as machine translation. In
ECCV.

A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young,
C. Rashtchian, J. Hockenmaier, and D. Forsyth. 2010.
Every picture tells a story: Generating sentences from
images. In ECCV.

Y. Feng and M. Lapata. 2013. Automatic caption gen-
eration for news images. IEEE Trans. Pattern Anal.
Mach. Intell., 35.

A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean,
M. Ranzato, and T. Mikolov. 2013. Devise: A deep
visual-semantic embedding model. In NIPS.

C. Goller and A. Küchler. 1996. Learning task-
dependent distributed representations by backpropaga-
tion through structure. In Proceedings of the Interna-
tional Conference on Neural Networks.

E. Grefenstette, G. Dinu, Y.-Z. Zhang, M. Sadrzadeh, and
M. Baroni. 2013. Multi-step regression learning for
compositional distributional semantics. In IWCS.

A. Gupta and L. S. Davis. 2008. Beyond nouns: Exploit-
ing prepositions and comparative adjectives for learn-
ing visual classifiers. In ECCV.

M. Hodosh, P. Young, and J. Hockenmaier. 2013. Fram-
ing image description as a ranking task: Data, mod-
els and evaluation metrics. J. Artif. Intell. Res. (JAIR),
47:853–899.

E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng.
2012. Improving Word Representations via Global
Context and Multiple Word Prototypes. In ACL.

K. Jarrett, K. Kavukcuoglu, M.A. Ranzato, and Y. Le-
Cun. 2009. What is the best multi-stage architecture
for object recognition? In ICCV.

P. Blunsom. K.M. Hermann. 2013. The role of syntax
in vector space models of compositional semantics. In
ACL.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012.
Imagenet classification with deep convolutional neural
networks. In NIPS.

G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C.
Berg, and T. L. Berg. 2011. Baby talk: Understanding
and generating image descriptions. In CVPR.

N. Kumar, A. C. Berg, P. N. Belhumeur, , and S. K. Na-
yar. 2009. Attribute and simile classifiers for face ver-
ification. In ICCV.

P. Kuznetsova, V. Ordonez, A. C. Berg, T. L. Berg, and
Yejin Choi. 2012. Collective generation of natural
image descriptions. In ACL.

Q. V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen,
G.S. Corrado, J. Dean, and A. Y. Ng. 2012. Build-
ing high-level features using large scale unsupervised
learning. In ICML.

T. Mikolov, W. Yih, and G. Zweig. 2013. Linguistic
regularities in continuous spaceword representations.
In HLT-NAACL.

J. Mitchell and M. Lapata. 2010. Composition in dis-
tributional models of semantics. Cognitive Science,
34(8):1388–1429.

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A.Y.
Ng. 2011. Multimodal deep learning. In ICML.

V. Ordonez, G. Kulkarni, and T. L. Berg. 2011. Im2text:
Describing images using 1 million captioned pho-
tographs. In NIPS.

J. B. Pollack. 1990. Recursive distributed representa-
tions. Artificial Intelligence, 46, November.

C. Rashtchian, P. Young, M. Hodosh, and J. Hocken-
maier. 2010. Collecting image annotations using
Amazon’s Mechanical Turk. In Workshop on Creat-
ing Speech and Language Data with Amazon’s MTurk.

R. Socher and L. Fei-Fei. 2010. Connecting modalities:
Semi-supervised segmentation and annotation of im-
ages using unaligned text corpora. In CVPR.

R. Socher, C. D. Manning, and A. Y. Ng. 2010. Learning
continuous phrase representations and syntactic pars-
ing with recursive neural networks. In Proceedings of
the NIPS-2010 Deep Learning and Unsupervised Fea-
ture Learning Workshop.

217

R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and
C. D. Manning. 2011a. Dynamic Pooling and Unfold-
ing Recursive Autoencoders for Paraphrase Detection.
In NIPS.

R. Socher, C. Lin, A. Y. Ng, and C.D. Manning. 2011b.
Parsing Natural Scenes and Natural Language with
Recursive Neural Networks. In ICML.

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and
C. D. Manning. 2011c. Semi-Supervised Recursive
Autoencoders for Predicting Sentiment Distributions.
In EMNLP.

R. Socher, B. Huval, C. D. Manning, and A. Y. Ng.
2012. Semantic Compositionality Through Recursive
Matrix-Vector Spaces. In EMNLP.

R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. 2013a.
Parsing With Compositional Vector Grammars. In
ACL.

R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng.
2013b. Zero-Shot Learning Through Cross-Modal
Transfer. In NIPS.

R. Socher, M. Ganjoo, H. Sridhar, O. Bastani, and
A. Y. Ng. C. D. Manning and. 2013c. Zero-shot learn-
ing through cross-modal transfer. In Proceedings of
the International Conference on Learning Representa-
tions (ICLR, Workshop Track).

N. Srivastava and R. Salakhutdinov. 2012. Multimodal
learning with deep boltzmann machines. In NIPS.

A. Torralba, K. P. Murphy, and W. T. Freeman. 2010.
Using the forest to see the trees: exploiting context for
visual object detection and localization. Communica-
tions of the ACM.

P. D. Turney and P. Pantel. 2010. From frequency to
meaning: Vector space models of semantics. Journal
of Artificial Intelligence Research, 37:141–188.

B. Yao, X. Yang, L. Lin, M. W. Lee, and S.-C. Zhu. 2010.
I2t:image parsing to text description. IEEE Xplore.

218

Parallel Algorithms for Unsupervised Tagging

Sujith Ravi
Google

Mountain View, CA 94043
sravi@google.com

Sergei Vassilivitskii
Google

Mountain View, CA 94043
sergeiv@google.com

Vibhor Rastogi∗
Twitter

San Francisco, CA
vibhor.rastogi@gmail.com

Abstract

We propose a new method for unsupervised
tagging that finds minimal models which are
then further improved by Expectation Max-
imization training. In contrast to previous
approaches that rely on manually specified
and multi-step heuristics for model minimiza-
tion, our approach is a simple greedy approx-
imation algorithm DMLC (DISTRIBUTED-
MINIMUM-LABEL-COVER) that solves this
objective in a single step.

We extend the method and show how to ef-
ficiently parallelize the algorithm on modern
parallel computing platforms while preserving
approximation guarantees. The new method
easily scales to large data and grammar sizes,
overcoming the memory bottleneck in previ-
ous approaches. We demonstrate the power
of the new algorithm by evaluating on various
sequence labeling tasks: Part-of-Speech tag-
ging for multiple languages (including low-
resource languages), with complete and in-
complete dictionaries, and supertagging, a
complex sequence labeling task, where the
grammar size alone can grow to millions of
entries. Our results show that for all of these
settings, our method achieves state-of-the-art
scalable performance that yields high quality
tagging outputs.

1 Introduction

Supervised sequence labeling with large labeled
training datasets is considered a solved problem. For

∗∗The research described herein was conducted while the
author was working at Google.

instance, state of the art systems obtain tagging ac-
curacies over 97% for part-of-speech (POS) tagging
on the English Penn Treebank. However, learning
accurate taggers without labeled data remains a chal-
lenge. The accuracies quickly drop when faced with
data from a different domain, language, or when
there is very little labeled information available for
training (Banko and Moore, 2004).

Recently, there has been an increasing amount
of research tackling this problem using unsuper-
vised methods. A popular approach is to learn from
POS-tag dictionaries (Merialdo, 1994), where we
are given a raw word sequence and a dictionary of
legal tags for each word type. Learning from POS-
tag dictionaries is still challenging. Complete word-
tag dictionaries may not always be available for use
and in every setting. When they are available, the
dictionaries are often noisy, resulting in high tag-
ging ambiguity. Furthermore, when applying tag-
gers in new domains or different datasets, we may
encounter new words that are missing from the dic-
tionary. There have been some efforts to learn POS
taggers from incomplete dictionaries by extending
the dictionary to include these words using some
heuristics (Toutanova and Johnson, 2008) or using
other methods such as type-supervision (Garrette
and Baldridge, 2012).

In this work, we tackle the problem of unsuper-
vised sequence labeling using tag dictionaries. The
first reported work on this problem was on POS tag-
ging from Merialdo (1994). The approach involved
training a standard Hidden Markov Model (HMM)
using the Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977), though EM does not

105

Transactions of the Association for Computational Linguistics, 2 (2014) 105–118. Action Editor: Sharon Goldwater.
Submitted 11/2013; Revised 2/2014; Published 4/2014. c©2014 Association for Computational Linguistics.

perform well on this task (Johnson, 2007). More re-
cent methods have yielded better performance than
EM (see (Ravi and Knight, 2009) for an overview).

One interesting line of research introduced by
Ravi and Knight (2009) explores the idea of per-
forming model minimization followed by EM train-
ing to learn taggers. Their idea is closely related
to the classic Minimum Description Length princi-
ple for model selection (Barron et al., 1998). They
(1) formulate an objective function to find the small-
est model that explains the text (model minimization
step), and then, (2) fit the minimized model to the
data (EM step). For POS tagging, this method (Ravi
and Knight, 2009) yields the best performance to
date; 91.6% tagging accuracy on a standard test
dataset from the English Penn Treebank. The orig-
inal work from (Ravi and Knight, 2009) uses an in-
teger linear programming (ILP) formulation to find
minimal models, an approach which does not scale
to large datasets. Ravi et al. (2010b) introduced a
two-step greedy approximation to the original ob-
jective function (called the MIN-GREEDY algo-
rithm) that runs much faster while maintaining the
high tagging performance. Garrette and Baldridge
(2012) showed how to use several heuristics to fur-
ther improve this algorithm (for instance, better
choice of tag bigrams when breaking ties) and stack
other techniques on top, such as careful initialization
of HMM emission models which results in further
performance gains. Their method also works un-
der incomplete dictionary scenarios and can be ap-
plied to certain low-resource scenarios (Garrette and
Baldridge, 2013) by combining model minimization
with supervised training.

In this work, we propose a new scalable algorithm
for performing model minimization for this task. By
making an assumption on the structure of the solu-
tion, we prove that a variant of the greedy set cover
algorithm always finds an approximately optimal la-
bel set. This is in contrast to previous methods that
employ heuristic approaches with no guarantee on
the quality of the solution. In addition, we do not
have to rely on ad hoc tie-breaking procedures or
careful initializations for unknown words. Finally,
not only is the proposed method approximately op-
timal, it is also easy to distribute, allowing it to eas-
ily scale to very large datasets. We show empirically
that our method, combined with an EM training step

outperforms existing state of the art systems.

1.1 Our Contributions

• We present a new method, DISTRIBUTED

MINIMUM LABEL COVER, DMLC, for model
minimization that uses a fast, greedy algorithm
with formal approximation guarantees to the
quality of the solution.

• We show how to efficiently parallelize the al-
gorithm while preserving approximation guar-
antees. In contrast, existing minimization ap-
proaches cannot match the new distributed al-
gorithm when scaling from thousands to mil-
lions or even billions of tokens.

• We show that our method easily scales to both
large data and grammar sizes, and does not re-
quire the corpus or label set to fit into memory.
This allows us to tackle complex tagging tasks,
where the tagset consists of several thousand
labels, which results in more than one million
entries in the grammar.

• We demonstrate the power of the new
method by evaluating under several differ-
ent scenarios—POS tagging for multiple lan-
guages (including low-resource languages),
with complete and incomplete dictionaries, as
well as a complex sequence labeling task of su-
pertagging. Our results show that for all these
settings, our method achieves state-of-the-art
performance yielding high quality taggings.

2 Related Work

Recently, there has been an increasing amount of
research tackling this problem from multiple di-
rections. Some efforts have focused on inducing
POS tag clusters without any tags (Christodoulopou-
los et al., 2010; Reichart et al., 2010; Moon et
al., 2010), but evaluating such systems proves dif-
ficult since it is not straightforward to map the clus-
ter labels onto gold standard tags. A more pop-
ular approach is to learn from POS-tag dictionar-
ies (Merialdo, 1994; Ravi and Knight, 2009), incom-
plete dictionaries (Hasan and Ng, 2009; Garrette and
Baldridge, 2012) and human-constructed dictionar-
ies (Goldberg et al., 2008).

106

Another direction that has been explored in the
past includes bootstrapping taggers for a new lan-
guage based on information acquired from other lan-
guages (Das and Petrov, 2011) or limited annota-
tion resources (Garrette and Baldridge, 2013). Ad-
ditional work focused on building supervised tag-
gers for noisy domains such as Twitter (Gimpel et
al., 2011). While most of the relevant work in this
area centers on POS tagging, there has been some
work done for building taggers for more complex
sequence labeling tasks such as supertagging (Ravi
et al., 2010a).

Other related work include alternative methods
for learning sparse models via priors in Bayesian in-
ference (Goldwater and Griffiths, 2007) and poste-
rior regularization (Ganchev et al., 2010). But these
methods only encourage sparsity and do not explic-
itly seek to minimize the model size, which is the ob-
jective function used in this work. Moreover, taggers
learned using model minimization have been shown
to produce state-of-the-art results for the problems
discussed here.

3 Model

Following Ravi and Knight (2009), we formulate the
problem as that of label selection on the sentence
graph. Formally, we are given a set of sequences,
S = {S1, S2, . . . , Sn} where each Si is a sequence
of words, Si = wi1, wi2, . . . , wi,|Si|. With each
word wij we associate a set of possible tags Tij . We
will denote by m the total number of (possibly du-
plicate) words (tokens) in the corpus.

Additionally, we define two special words w0 and
w∞ with special tags start and end, and consider
the modified sequences S′i = w0, Si, w∞. To sim-
plify notation, we will refer to w∞ = w|Si|+1. The
sequence label problem asks us to select a valid tag
tij ∈ Tij for each word wij in the input to minimize
a specific objective function.

We will refer to a tag pair (ti,j−1, tij) as a label.
Our aim is to minimize the number of distinct labels
used to cover the full input. Formally, given a se-
quence S′i and a tag tij for each word wij in S′i, let
the induced set of labels for sequence S′i be

Li =

|S′i|⋃

j=1

{(ti,j−1, tij)}.

The total number of distinct labels used over all se-
quences is then

φ =
∣∣ ∪i Li| =

∣∣⋃

i

|Si|+1⋃

j=1

{(ti,j−1, tij)}|.

Note that the order of the tokens in the label makes
a difference as {(NN, VP)} and {(VP, NN)} are two
distinct labels.

Now we can define the problem formally, follow-
ing (Ravi and Knight, 2009).
Problem 1 (Minimum Label Cover). Given a set S
of sequences of words, where each word wij has a
set of valid tags Tij , the problem is to find a valid tag
assignment tij ∈ Tij for each word that minimizes
the number of distinct labels or tag pairs over all
sequences, φ =

∣∣⋃
i

⋃|Si|+1
j=1 {(ti,j−1, tij)}| .

The problem is closely related to the classical Set
Cover problem and is also NP-complete. To reduce
Set Cover to the label selection problem, map each
element i of the Set Cover instance to a single word
sentence Si = wi1, and let the valid tags Ti1 con-
tain the names of the sets that contain element i.
Consider a solution to the label selection problem;
every sentence Si is covered by two labels (w0, ki)
and (ki, w∞), for some ki ∈ Ti1, which corresponds
to an element i being covered by set ki in the Set
Cover instance. Thus any valid solution to the label
selection problem leads to a feasible solution to the
Set Cover problem ({k1, k2, . . .}) of exactly half the
size.

Finally, we will use {{. . .}} notation to denote a
multiset of elements, i.e. a set where an element may
appear multiple times.

4 Algorithm

In this Section, we describe the DISTRIBUTED-
MINIMUM-LABEL-COVER, DMLC, algorithm for
approximately solving the minimum label cover
problem. We describe the algorithm in a central-
ized setting, and defer the distributed implementa-
tion to Section 5. Before describing the algorithm,
we briefly explain the relationship of the minimum
label cover problem to set cover.

4.1 Modification of Set Cover
As we pointed out earlier, the minimum label cover
problem is at least as hard as the Set Cover prob-

107

1: Input: A set of sequences S with each
words wij having possible tags Tij .

2: Output: A tag assignment tij ∈ Tij for
each word wij approximately minimizing
labels.

3: LetM be the multi set of all possible labels
generated by choosing each possible tag t ∈
Tij .

M =
⋃

i

|Si|+1⋃

j=1

⋃

t′∈Ti,j−1

t∈Tij

{{(t′, t)}}

(1)
4: Let L = ∅ be the set of selected labels.
5: repeat
6: Select the most frequent label not yet se-

lected: (t′, t) = arg max(s′,s)/∈L |M ∩
(s′, s)|.

7: For each bigram (wi,j−1, wij) where t′ ∈
Ti,j−1 and t ∈ Tij tentatively assign t′ to
wi,j−1 and t to wij . Add (t′, t) to L.

8: If a word gets two assignments, select
one at random with equal probability.

9: If a bigram (wi,j−1, wij) is consistent
with assignments in (t′, t), fix the tenta-
tive assignments, and set Ti,j−1 = {t′}
and Tij = {t}. RecomputeM, the multi-
set of possible labels, with the updated
Ti,j−1 and Tij .

10: until there are no unassigned words

Algorithm 1: MLC Algorithm

1: Input: A set of sequences S with each words wij

having possible tags Tij .
2: Output: A tag assignment tij ∈ Tij for each word
wij approximately minimizing labels.

3: (Graph Creation) Initialize each vertex vij with the
set of possible tags Tij and its neighbors vi,j+1 and
vi,j−1.

4: repeat
5: (Message Passing) Each vertex vij sends its pos-

sibly tags Tij to its forward neighbor vij+1.
6: (Counter Update) Each vertex receives the

the tags Ti,j−1 and adds all possible labels
{(s, s′)|s ∈ Ti,j−1, s′ ∈ Tij} to a global counter
(M).

7: (MaxLabel Selection) Each vertex queries the
global counter M to find the maximum label
(t, t′).

8: (Tentative Assignment) Each vertex vij selects a
tag tentatively as follows: If one of the tags t, t′

is in the feasible set Tij , it tentatively selects the
tag.

9: (Random Assignment) If both are feasible it se-
lects one at random. The vertex communicates
its assignment to its neighbors.

10: (Confirmed Assignment) Each vertex receives
the tentative assignment from its neighbors. If
together with its neighbors it can match the se-
lected label, the assignment is finalized. If the
assigned tag is T , then the vertex vij sets the
valid tag set Tij to {t}.

11: until no unassigned vertices exist.

Algorithm 2: DMLC Implementation

lem. An additional challenge comes from the fact
that labels are tags for a pair of words, and hence
are related. For example, if we label a word pair
(wi,j−1, wij) as (NN, VP), then the label for the next
word pair (wij , wi,j+1) has to be of the form (VP, *),
i.e., it has to start with VP.

Previous work (Ravi et al., 2010a; Ravi et al.,
2010b) recognized this challenge and employed two
phase heuristic approaches. Eschewing heuristics,
we will show that with one natural assumption, even
with this extra set of constraints, the standard greedy
algorithm for this problem results in a solution with
a provable approximation ratio of O(logm). In

practice, however, the algorithm performs far better
than the worst case ratio, and similar to the work
of (Gomes et al., 2006), we find that the greedy
approach selects a cover approximately 11% worse
than the optimum solution.

4.2 MLC Algorithm

We present in Algorithm 1 our MINIMUM LABEL

COVER algorithm to approximately solve the mini-
mum label cover problem. The algorithm is simple,
efficient, and easy to distribute.

The algorithm chooses labels one at a time, select-
ing a label that covers as many words as possible in

108

every iteration. For this, it generates and maintains
a multi-set of all possible labels M (Step 3). The
multi-set contains an occurrence of each valid label,
for example, if wi,j−1 has two possible valid tags
NN and VP, and wij has one possible valid tag VP,
then M will contain two labels, namely (NN, VP)
and (VP, VP). Since M is a multi-set it will contain
duplicates, e.g. the label (NN, VP) will appear for
each adjacent pair of words that have NN and VP as
valid tags, respectively.

In each iteration, the algorithm picks a label with
the most number of occurrences inM and adds it to
the set of chosen labels (Step 6). Intuitively, this is
a greedy step to select a label that covers the most
number of word pairs.

Once the algorithm picks a label (t′, t), it tries to
assign as many words to tags t or t′ as possible (Step
7). A word can be assigned t′ if t′ is a valid tag for
it, and t a valid tag for the next word in sequence.
Similarly, a word can be assigned t, if t is a valid
tag for it, and t′ a valid tag for the previous word.
Some words can get both assignments, in which case
we choose one tentatively at random (Step 8). If
a word’s tentative random tag, say t, is consistent
with the choices of its adjacent words (say t′ from
the previous word), then the tentative choice is fixed
as a permanent one. Whenever a tag is selected, the
set of valid tags Tij for the word is reduced to a sin-
gleton {t}. Once the set of valid tags Tij changes,
the multi-setM of all possible labels also changes,
as seen from Eq 1. The multi-set is then recom-
puted (Step 9) and the iterations repeated until all
of words have been tagged.

We can show that under a natural assumption this
simple algorithm is approximately optimal.

Assumption 1 (c-feasibility). Let c ≥ 1 be any num-
ber, and k be the size of the optimal solution to the
original problem. In each iteration, the MLC algo-
rithm fixes the tags for some words. We say that the
algorithm is c-feasible, if after each iteration there
exists some solution to the remaining problem, con-
sistent with the chosen tags, with size at most ck .

The assumption encodes the fact that a single bad
greedy choice is not going to destroy the overall
structure of the solution, and a nearly optimal so-
lution remains. We note that this assumption of c-
feasibility is not only sufficient, as we will formally

show, but is also necessary. Indeed, without any as-
sumptions, once the algorithm fixes the tag for some
words, an optimal label may no longer be consis-
tent with the chosen tags, and it is not hard to find
contrived examples where the size of the optimal so-
lution doubles after each iteration of MLC.

Since the underlying problem is NP-complete, it
is computationally hard to give direct evidence ver-
ifying the assumption on natural language inputs.
However, on small examples we are able to show
that the greedy algorithm is within a small constant
factor of the optimum, specifically it is within 11%
of the optimum model size for the POS tagging
problem using the standard 24k dataset (Ravi and
Knight, 2009). Combined with the fact that the final
method outperforms state of the art approaches, this
leads us to conclude that the structural assumption is
well justified.

Lemma 1. Under the assumption of c-feasibility,
the MLC algorithm achieves a O(c logm) approx-
imation to the minimum label cover problem, where
m =

∑
i |Si| is the total number of tokens.

Proof. To prove the Lemma we will define an objec-
tive function φ̄, counting the number of unlabeled
word pairs, as a function of possible labels, and
show that φ̄ decreases by a factor of (1−O(1/ck)) at
every iteration.

To define φ̄, we first define φ, the number of la-
beled word pairs. Consider a particular set of la-
bels, L = {L1, L2, . . . , Lk} where each label is a
pair (ti, tj). Call {tij} a valid assignment of to-
kens if for each wij , we have tij ∈ Tij . Then the
score of L under an assignment t, which we denote
by φt, is the number of bigram labels that appear in
L. Formally, φt(L) = | ∪i,j {{(ti,j−1, tij) ∩ L}}|.
Finally, we define φ(L) to be the best such assign-
ment, φ(L) = maxt φt(L), and φ̄(L) = m − φ(L)
the number of uncovered labels.

Consider the label selected by the algorithm in ev-
ery step. By the c-feasibility assumption, there ex-
ists some solution having ck labels. Thus, some la-
bel from that solution covers at least a 1/ck fraction
of the remaining words. The selected label (t, t′)
maximizes the intersection with the remaining fea-
sible labels. The conflict resolution step ensures that
in expectation the realized benefit is at least a half
of the maximum, thereby reducing φ̄ by at least a

109

(1 − 1/2ck) fraction. Therefore, after O(kc logm)
operations all of the labels are covered.

4.3 Fitting the Model Using EM

Once the greedy algorithm terminates and returns a
minimized grammar of tag bigrams, we follow the
approach of Ravi and Knight (2009) and fit the min-
imized model to the data using the alternating EM
strategy.

In this step, we run an alternating optimization
procedure iteratively in phases. In each phase,
we initialize (and prune away) parameters within
the two HMM components (transition or emission
model) using the output from the previous phase.
We initialize this procedure by restricting the tran-
sition parameters to only those tag bigrams selected
in the model minimization step. We train in con-
junction with the original emission model using EM
algorithm which prunes away some of the emission
parameters. In the next phase, we alternate the ini-
tialization by choosing the pruned emission model
along with the original transition model (with full
set of tag bigrams) and retrain using EM. The alter-
nating EM iterations are terminated when the change
in the size of the observed grammar (i.e., the number
of unique bigrams in the tagging output) is ≤ 5%.1

We refer to our entire approach using greedy mini-
mization followed by EM training as DMLC + EM.

5 Distributed Implementation

The DMLC algorithm is directly suited towards
parallelization across many machines. We turn to
Pregel (Malewicz et al., 2010), and its open source
version Giraph (Apa, 2013). In these systems the
computation proceeds in rounds. In every round, ev-
ery machine does some local processing and then
sends arbitrary messages to other machines. Se-
mantically, we think of the communication graph as
fixed, and in each round each vertex performs some
local computation and then sends messages to its
neighbors. This mode of parallel programming di-
rects the programmers to “Think like a vertex.”

The specific systems like Pregel and Giraph build
infrastructure that ensures that the overall system

1For more details on the alternating EM strategy and how
initialization with minimized models improve EM performance
in alternating iterations, refer to (Ravi and Knight, 2009).

is fault tolerant, efficient, and fast. In addition,
they provide implementation of commonly used dis-
tributed data structures, such as, for example global
counters. The programmer’s job is simply to specify
the code that each vertex will run at every round.

We implemented the DMLC algorithm in Pregel.
The implementation is straightforward and given in
Algorithm 2. The multi-set M of Algorithm 1 is
represented as a global counter in Algorithm 2. The
message passing (Step 3) and counter update (Step
4) steps update this global counter and hence per-
form the role of Step 3 of Algorithm 1. Step 5 se-
lects the label with largest count, which is equivalent
to the greedy label picking step 6 of Algorithm 1. Fi-
nally steps 6, 7, and 8 update the tag assignment of
each vertex performing the roles of steps 7, 8, and 9,
respectively, of Algorithm 1.

5.1 Speeding up the Algorithm

The implementation described above directly copies
the sequential algorithm. Here we describe addi-
tional steps we took to further improve the parallel
running times.

Singleton Sets: As the parallel algorithm pro-
ceeds, the set of feasible sets associated with a node
slowly decreases. At some point there is only one
tag that a node can take on, however this tag is rare,
and so it takes a while for it to be selected using the
greedy strategy. Nevertheless, if a node and one of
its neighbors have only a single tag left, then it is
safe to assign the unique label 2.

Modifying the Graph: As is often the case, the
bottleneck in parallel computations is the commu-
nication. To reduce the amount of communication
we reduce the graph on the fly, removing nodes and
edges once they no longer play a role in the compu-
tation. This simple modification decreases the com-
munication time in later rounds as the total size of
the problem shrinks.

6 Experiments and Results

In this Section, we describe the experimental setup
for various tasks, settings and compare empirical
performance of our method against several existing

2We must judiciously initialize the global counter to take
care of this assignment, but this is easily accomplished.

110

baselines. The performance results for all systems
(on all tasks) are measured in terms of tagging accu-
racy, i.e. % of tokens from the test corpus that were
labeled correctly by the system.

6.1 Part-of-Speech Tagging Task
6.1.1 Tagging Using a Complete Dictionary
Data: We use a standard test set (consisting of
24,115 word tokens from the Penn Treebank) for
the POS tagging task. The tagset consists of 45 dis-
tinct tag labels and the dictionary contains 57,388
word/tag pairs derived from the entire Penn Tree-
bank. Per-token ambiguity for the test data is about
1.5 tags/token. In addition to the standard 24k
dataset, we also train and test on larger data sets—
973k tokens from the Penn Treebank, 3M tokens
from PTB+Europarl (Koehn, 2005) data.

Methods: We evaluate and compare performance
for POS tagging using four different methods that
employ the model minimization idea combined with
EM training:

• EM: Training a bigram HMM model using EM
algorithm (Merialdo, 1994).

• ILP + EM: Minimizing grammar size using
integer linear programming, followed by EM
training (Ravi and Knight, 2009).

• MIN-GREEDY + EM: Minimizing grammar
size using the two-step greedy method (Ravi et
al., 2010b).

• DMLC + EM: This work.

Results: Table 1 shows the results for POS tag-
ging on English Penn Treebank data. On the smaller
test datasets, all of the model minimization strate-
gies (methods 2, 3, 4) tend to perform equally well,
yielding state-of-the-art results and large improve-
ment over standard EM. When training (and testing)
on larger corpora sizes, DMLC yields the best re-
ported performance on this task to date. A major
advantage of the new method is that it can easily
scale to large corpora sizes and the distributed na-
ture of the algorithm still permits fast, efficient op-
timization of the global objective function. So, un-
like the earlier methods (such as MIN-GREEDY) it
is fast enough to run on several millions of tokens
to yield additional performance gains (shown in last
column).

Speedups: We also observe a significant speedup
when using the parallelized version of the DMLC
algorithm. Performing model minimization on the
24k tokens dataset takes 55 seconds on a single ma-
chine, whereas parallelization permits model mini-
mization to be feasible even on large datasets. Fig 1
shows the running time for DMLC when run on a
cluster of 100 machines. We vary the input data
size from 1M word tokens to about 8M word tokens,
while holding the resources constant. Both the algo-
rithm and its distributed implementation in DMLC
are linear time operations as evident by the plot.
In fact, for comparison, we also plot a straight line
passing through the first two runtimes. The straight
line essentially plots runtimes corresponding to a
linear speedup. DMLC clearly achieves better run-
times showing even better than linear speedup. The
reason for this is that distributed version has a con-
stant overhead for initialization, independent of the
data size. While the running time for rest of the im-
plementation is linear in data size. Thus, as the data
size becomes larger, the constant overhead becomes
less significant, and the distributed implementation
appears to complete slightly faster as data size in-
creases.

Figure 1: Runtime vs. data size (measured in # of word
tokens) on 100 machines. For comparison, we also plot a
straight line passing through the first two runtimes. The
straight line essentially plots runtimes corresponding to a
linear speedup. DMLC clearly achieves better runtimes
showing a better than linear speedup.

6.1.2 Tagging Using Incomplete Dictionaries
We also evaluate our approach for POS tagging

under other resource-constrained scenarios. Obtain-

111

Method Tagging accuracy (%)
te=24k te=973k
tr=24k tr=973k tr=3.7M

1. EM 81.7 82.3
2. ILP + EM (Ravi and Knight, 2009) 91.6
3. MIN-GREEDY + EM (Ravi et al., 2010b) 91.6 87.1
4. DMLC + EM (this work) 91.4 87.5 87.8

Table 1: Results for unsupervised part-of-speech tagging on English Penn Treebank dataset. Tagging accuracies for
different methods are shown on multiple datasets. te shows the size (number of tokens) in the test data, tr represents
the size of the raw text used to perform model minimization.

ing a complete dictionary is often difficult, espe-
cially for new domains. To verify the utility of our
method when the input dictionary is incomplete, we
evaluate against standard datasets used in previous
work (Garrette and Baldridge, 2012) and compare
against the previous best reported performance for
the same task. In all the experiments (described
here and in subsequent sections), we use the fol-
lowing terminology—raw data refers to unlabeled
text used by different methods (for model minimiza-
tion or other unsupervised training procedures such
as EM), dictionary consists of word/tag entries that
are legal, and test refers to data over which tagging
evaluation is performed.

English Data: For English POS tagging with in-
complete dictionary, we evaluate on the Penn Tree-
bank (Marcus et al., 1993) data. Following (Garrette
and Baldridge, 2012), we extracted a word-tag dic-
tionary from sections 00-15 (751,059 tokens) con-
sisting of 39,087 word types, 45,331 word/tag en-
tries, a per-type ambiguity of 1.16 yielding a per-
token ambiguity of 2.21 on the raw corpus (treating
unknown words as having all 45 possible tags). As
in their setup, we then use the first 47,996 tokens
of section 16 as raw data and perform final evalua-
tion on the sections 22-24. We use the raw corpus
along with the unlabeled test data to perform model
minimization and EM training. Unknown words are
allowed to have all possible tags in both these pro-
cedures.

Italian Data: The minimization strategy pre-
sented here is a general-purpose method that does
not require any specific tuning and works for other
languages as well. To demonstrate this, we also per-
form evaluation on a different language (Italian) us-

ing the TUT corpus (Bosco et al., 2000). Follow-
ing (Garrette and Baldridge, 2012), we use the same
data splits as their setting. We take the first half of
each of the five sections to build the word-tag dic-
tionary, the next quarter as raw data and the last
quarter as test data. The dictionary was constructed
from 41,000 tokens comprised of 7,814 word types,
8,370 word/tag pairs, per-type ambiguity of 1.07 and
a per-token ambiguity of 1.41 on the raw data. The
raw data consisted of 18,574 tokens and the test con-
tained 18,763 tokens. We use the unlabeled corpus
from the raw and test data to perform model mini-
mization followed by unsupervised EM training.

Other Languages: In order to test the effective-
ness of our method in other non-English settings, we
also report the performance of our method on sev-
eral other Indo-European languages using treebank
data from CoNLL-X and CoNLL-2007 shared tasks
on dependency parsing (Buchholz and Marsi, 2006;
Nivre et al., 2007). The corpus statistics for the five
languages (Danish, Greek, Italian, Portuguese and
Spanish) are listed below. For each language, we
construct a dictionary from the raw training data.
The unlabeled corpus from the raw training and test
data is used to perform model minimization fol-
lowed by unsupervised EM training. As before, un-
known words are allowed to have all possible tags.
We report the final tagging performance on the test
data and compare it to baseline EM.

Garrette and Baldridge (2012) treat unknown
words (words that appear in the raw text but are
missing from the dictionary) in a special manner and
use several heuristics to perform better initialization
for such words (for example, the probability that an
unknown word is associated with a particular tag is

112

conditioned on the openness of the tag). They also
use an auto-supervision technique to smooth counts
learnt from EM onto new words encountered dur-
ing testing. In contrast, we do not apply any such
technique for unknown words and allow them to be
mapped uniformly to all possible tags in the dictio-
nary. For this particular set of experiments, the only
difference from the Garrette and Baldridge (2012)
setup is that we include unlabeled text from the test
data (but without any dictionary tag labels or special
heuristics) to our existing word tokens from raw text
for performing model minimization. This is a stan-
dard practice used in unsupervised training scenar-
ios (for example, Bayesian inference methods) and
in general for scalable techniques where the goal is
to perform inference on the same data for which one
wishes to produce some structured prediction.

Language Train Dict Test
(tokens) (entries) (tokens)

DANISH 94386 18797 5852
GREEK 65419 12894 4804
ITALIAN 71199 14934 5096
PORTUGUESE 206678 30053 5867
SPANISH 89334 17176 5694

Results: Table 2 (column 2) compares previously
reported results against our approach for English.
We observe that our method obtains a huge improve-
ment over standard EM and gets comparable results
to the previous best reported scores for the same task
from (Garrette and Baldridge, 2012). It is encourag-
ing to note that the new system achieves this per-
formance without using any of the carefully-chosen
heuristics employed by the previous method. How-
ever, we do note that some of these techniques can
be easily combined with our method to produce fur-
ther improvements.

Table 2 (column 3) also shows results on Ital-
ian POS tagging. We observe that our method
achieves significant improvements in tagging accu-
racy over all the baseline systems including the pre-
vious best system (+2.9%). This demonstrates that
the method generalizes well to other languages and
produces consistent tagging improvements over ex-
isting methods for the same task.

Results for POS tagging on CoNLL data in five
different languages are displayed in Figure 2. Note
that the proportion of raw data in test versus train

50

60

70

80

90

DANISH GREEK ITALIAN PORTUGUESE SPANISH

79.4

66.3

84.6

80.1
83.1

77.8

65.6

82
78.5

81.3

EM DMLC+EM

��
		

�
	�
��
�
��
��
���
�

Figure 2: Part-of-Speech tagging accuracy for different
languages on CoNLL data using incomplete dictionaries.

(from the standard CoNLL shared tasks) is much
smaller compared to the earlier experimental set-
tings. In general, we observe that adding more raw
data for EM training improves the tagging quality
(same trend observed earlier in Table 1: column 2
versus column 3). Despite this, DMLC + EM still
achieves significant improvements over the baseline
EM system on multiple languages (as shown in Fig-
ure 2). An additional advantage of the new method
is that it can easily scale to larger corpora and it pro-
duces a much more compact grammar that can be
efficiently incorporated for EM training.

6.1.3 Tagging for Low-Resource Languages
Learning part-of-speech taggers for severely low-

resource languages (e.g., Malagasy) is very chal-
lenging. In addition to scarce (token-supervised)
labeled resources, the tag dictionaries avail-
able for training taggers are tiny compared to
other languages such as English. Garrette and
Baldridge (2013) combine various supervised and
semi-supervised learning algorithms into a common
POS tagger training pipeline to address some of
these challenges. They also report tagging accuracy
improvements on low-resource languages when us-
ing the combined system over any single algorithm.
Their system has four main parts, in order: (1) Tag
dictionary expansion using label propagation algo-
rithm, (2) Weighted model minimization, (3) Ex-
pectation maximization (EM) training of HMMs us-
ing auto-supervision, (4) MaxEnt Markov Model
(MEMM) training. The entire procedure results in
a trained tagger model that can then be applied to
tag any raw data.3 Step 2 in this procedure involves

3For more details, refer (Garrette and Baldridge, 2013).

113

Method Tagging accuracy (%)
English (PTB 00-15) Italian (TUT)

1. Random 63.53 62.81
2. EM 69.20 60.70
3. Type-supervision + HMM initialization (Garrette and Baldridge, 2012) 88.52 72.86
4. DMLC + EM (this work) 88.11 75.79

Table 2: Part-of-Speech tagging accuracy using PTB sections 00-15 and TUT to build the tag dictionary. For compar-
ison, we also include the results for the previously reported state-of-the-art system (method 3) for the same task.

Method Tagging accuracy (%)
Total Known Unknown

Low-resource tagging using (Garrette and Baldridge, 2013) 80.7 (70.2) 87.6 (90.3) 66.1 (45.1)
Low-resource tagging using DMLC + EM (this work) 81.1 (70.8) 87.9 (90.3) 66.7 (46.5)

Table 3: Part-of-Speech tagging accuracy for a low-resource language (Malagasy) on All/Known/Unknown tokens in
the test data. Tagging performance is shown for multiple experiments using different (incomplete) dictionary sizes:
(a) small, (b) tiny (shown in parentheses). The new method (row 2) significantly outperforms the existing method with
p < 0.01 for small dictionary and p < 0.05 for tiny dictionary.

a weighted version of model minimization which
uses the multi-step greedy approach from Ravi et
al. (2010b) enhanced with additional heuristics that
uses tag weights learnt via label propagation (in Step
1) within the minimization process.

We replace the model minimization procedure in
their Step 2 with our method (DMLC + EM) and di-
rectly compare this new system with their approach
in terms of tagging accuracy. Note for all other steps
in the pipeline we follow the same procedure (and
run the same code) as Garrette and Baldridge (2013),
including the same smoothing procedure for EM ini-
tialization in Step 3.

Data: We use the exact same setup as Garrette
and Baldridge (2013) and run experiments on Mala-
gasy, an Austronesian language spoken in Madagas-
car. We use the publicly available data4: 100k raw
tokens for training, a word-tag dictionary acquired
with 4 hours of human annotation effort (used for
type-supervision), and a held-out test dataset (5341
tokens). We provide the unlabeled corpus from the
raw training data along with the word-tag dictionary
as input to model minimization and evaluate on the
test corpus. We run multiple experiments for dif-
ferent (incomplete) dictionary scenarios: (a) small =
2773 word/tag pairs, (b) tiny = 329 word/tag pairs.

Results: Table 3 shows results on Malagasy
data comparing a system that employs (unweighted)

4github.com/ dhgarrette/low-resource-pos-tagging-2013

DMLC against the existing state-of-the-art system
that incorporates a multi-step weighted model min-
imization combined with additional heuristics. We
observe that switching to the new model minimiza-
tion procedure alone yields significant improvement
in tagging accuracy under both dictionary scenarios.
It is encouraging that a better minimization proce-
dure also leads to higher tagging quality on the un-
known word tokens (column 4 in the table), even
when the input dictionary is tiny.

6.2 Supertagging

Compared to POS tagging, a more challenging task
is learning supertaggers for lexicalized grammar
formalisms such as Combinatory Categorial Gram-
mar (CCG) (Steedman, 2000). For example, CCG-
bank (Hockenmaier and Steedman, 2007) contains
1241 distinct supertags (lexical categories) and the
most ambiguous word has 126 supertags. This pro-
vides a much more challenging starting point for
the semi-supervised methods typically applied to
the task. Yet, this is an important task since cre-
ating grammars and resources for CCG parsers for
new domains and languages is highly labor- and
knowledge-intensive.

As described earlier, our approach scales easily to
large datasets as well as label sizes. To evaluate it on
the supertagging task, we use the same dataset from
(Ravi et al., 2010a) and compare against their base-
line method that uses an modified (two-step) version

114

Method Supertagging accuracy (%)
Ambiguous Total

1. EM 38.7 45.6
2. ILP∗ + EM (Ravi et al., 2010a) 52.1 57.3
3. DMLC + EM (this work) 55.9 59.3

Table 4: Results for unsupervised supertagging with a dictionary. Here, we report the total accuracy as well as
accuracy on just the ambiguous tokens (i.e., tokens which have more than one tagging possibility). ∗The baseline
method 2 requires several pre-processing steps in order to run feasibly for this task (described in Section 6.2). In
contrast, the new approach (DMLC) runs fast and also permits efficient parallelization.

of the ILP formulation for model minimization.

Data: We use the CCGbank data for this ex-
periment. This data was created by semi- auto-
matically converting the Penn Treebank to CCG
derivations (Hockenmaier and Steedman, 2007). We
use the standard splits of the data used in semi-
supervised tagging experiments (Banko and Moore,
2004)—sections 0-18 for training (i.e., to construct
the word-tag dictionary), and sections 22-24 for test.

Results: Table 4 compares the results for two
baseline systems—standard EM (method 1), and a
previously reported system using model minimiza-
tion (method 2) for the same task. We observe
that DMLC produces better taggings than either of
these and yields significant improvement in accu-
racy (+2% overall, +3.8% on ambiguous tokens).

Note that it is not feasible to run the ILP-based
baseline (method 2 in the table) directly since it is
very slow in practice, so Ravi et al. (2010a) use
a set of pre-processing steps to prune the original
grammar size (unique tag pairs) from >1M to sev-
eral thousand entries followed by a modified two-
step ILP minimization strategy. This is required to
permit their model minimization step to be run in
a feasible manner. On the other hand, the new ap-
proach DMLC (method 3) scales better even when
the data/label sizes are large, hence it can be run with
the full data using the original model minimization
formulation (rather than a two-step heuristic).

Ravi et al. (2010a) also report further improve-
ments using an alternative approach involving an
ILP-based weighted minimization procedure. In
Section 7 we briefly discuss how the DMLC method
can be extended to this setting and combined with
other similar methods.

7 Discussion and Conclusion

We present a fast, efficient model minimization
algorithm for unsupervised tagging that improves
upon previous two-step heuristics. We show that un-
der a fairly natural assumption of c-feasibility the
solution obtained by our minimization algorithm is
O(c logm)-approximate to the optimal. Although
in the case of two-step heuristics, the first step guar-
antees an O(logm)-approximation, the second step,
which is required to get a consistent solution, can
introduce many additional labels resulting in a so-
lution arbitrarily away from the optimal. Our one
step approach ensures consistency at each step of the
algorithm, while the c-feasibility assumption means
that the solution does not diverge too much from the
optimal in each iteration.

In addition to proving approximation guarantees
for the new algorithm, we show that it is paralleliz-
able, allowing us to easily scale to larger datasets
than previously explored. Our results show that
the algorithm achieves state-of-the-art performance,
outperforming existing methods on several differ-
ent tasks (both POS tagging and supertagging) and
works well even with incomplete dictionaries and
extremely low-resource languages like Malagasy.

For future work, it would be interesting to apply a
weighted version of the DMLC algorithm where la-
bels (i.e., tag pairs) can have different weight distri-
butions instead of uniform weights. Our algorithm
can be extended to allow an input weight distribu-
tion to be specified for minimization. In order to
initialize the weights we could use existing strate-
gies such as grammar-informed initialization (Ravi
et al., 2010a) or output distributions learnt via other
methods such as label propagation (Garrette and
Baldridge, 2013).

115

References
2013. Apache giraph. http://giraph.apache.
org/.

Michele Banko and Robert C. Moore. 2004. Part-of-
speech tagging in context. In Proceedings of COLING,
pages 556–561.

Andrew R Barron, Jorma Rissanen, and Bin Yu. 1998.
The Minimum Description Length Principle in Cod-
ing and Modeling. IEEE Transactions of Information
Theory, 44(6):2743–2760.

Cristina Bosco, Vincenzo Lombardo, Daniela Vassallo,
and Leonardo Lesmo. 2000. Building a Treebank for
Italian: a data-driven annotation schema. In Proceed-
ings of the Second International Conference on Lan-
guage Resources and Evaluation LREC-2000, pages
99–105.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x shared
task on multilingual dependency parsing. In Proceed-
ings of CoNLL, pages 149–164.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two decades of unsupervised
POS induction: How far have we come? In Proceed-
ings of the Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 575–584.

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-
of-speech tagging with bilingual graph-based projec-
tions. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies - Volume 1, pages 600–
609.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Se-
ries B, 39(1):1–38.

Kuzman Ganchev, João Graça, Jennifer Gillenwater, and
Ben Taskar. 2010. Posterior regularization for struc-
tured latent variable models. Journal of Machine
Learning Research, 11:2001–2049.

Dan Garrette and Jason Baldridge. 2012. Type-
supervised Hidden Markov Models for part-of-speech
tagging with incomplete tag dictionaries. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), pages 821–
831.

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation. In
Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 138–147.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael

Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A. Smith. 2011. Part-of-speech tagging for
Twitter: annotation, features, and experiments. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies: short papers - Volume 2, pages 42–47.

Yoav Goldberg, Meni Adler, and Michael Elhadad. 2008.
EM can find pretty good HMM POS-taggers (when
given a good start). In Proceedings of ACL, pages
746–754.

Sharon Goldwater and Thomas L. Griffiths. 2007.
A fully Bayesian approach to unsupervised part-of-
speech tagging. In ACL.

Fernando C. Gomes, Cludio N. Meneses, Panos M.
Pardalos, and Gerardo Valdisio R. Viana. 2006. Ex-
perimental analysis of approximation algorithms for
the vertex cover and set covering problems.

Kazi Saidul Hasan and Vincent Ng. 2009. Weakly super-
vised part-of-speech tagging for morphologically-rich,
resource-scarce languages. In Proceedings of the 12th
Conference on the European Chapter of the Associa-
tion for Computational Linguistics, pages 363–371.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Compu-
tational Linguistics, 33(3):355–396.

Mark Johnson. 2007. Why doesn’t EM find good HMM
POS-taggers? In Proceedings of the Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 296–305.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Machine Transla-
tion Summit X, pages 79–86.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grze-
gorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Manage-
ment of data, pages 135–146.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Bernard Merialdo. 1994. Tagging English text with
a probabilistic model. Computational Linguistics,
20(2):155–171.

Taesun Moon, Katrin Erk, and Jason Baldridge. 2010.
Crouching Dirichlet, Hidden Markov Model: Unsu-
pervised POS tagging with context local tag genera-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 196–
206.

116

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL, pages 915–932.

Sujith Ravi and Kevin Knight. 2009. Minimized models
for unsupervised part-of-speech tagging. In Proceed-
ings of the Joint Conferenceof the 47th Annual Meet-
ing of the Association for Computational Linguistics
and the 4th International Joint Conference on Natural
Language Processing of the Asian Federation of Natu-
ral Language Processing (ACL-IJCNLP), pages 504–
512.

Sujith Ravi, Jason Baldridge, and Kevin Knight. 2010a.
Minimized models and grammar-informed initializa-
tion for supertagging with highly ambiguous lexicons.
In Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages

495–503.
Sujith Ravi, Ashish Vaswani, Kevin Knight, and David

Chiang. 2010b. Fast, greedy model minimization for
unsupervised tagging. In Proceedings of the 23rd In-
ternational Conference on Computational Linguistics
(COLING), pages 940–948.

Roi Reichart, Raanan Fattal, and Ari Rappoport. 2010.
Improved unsupervised POS induction using intrinsic
clustering quality and a Zipfian constraint. In Proceed-
ings of the Fourteenth Conference on Computational
Natural Language Learning, pages 57–66.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

Kristina Toutanova and Mark Johnson. 2008. A
Bayesian LDA-based model for semi-supervised part-
of-speech tagging. In Advances in Neural Information
Processing Systems (NIPS), pages 1521–1528.

117

118

Heterogeneous Networks and Their Applications: Scientometrics, Name
Disambiguation, and Topic Modeling

Ben King, Rahul Jha
Department of EECS

University of Michigan
Ann Arbor, MI

{benking,rahuljha}@umich.edu

Dragomir R. Radev
Department of EECS
School of Information
University of Michigan

Ann Arbor, MI
radev@umich.edu

Abstract

We present heterogeneous networks as a way to
unify lexical networks with relational data. We
build a unified ACL Anthology network, tying
together the citation, author collaboration, and
term-cooccurence networks with affiliation and
venue relations. This representation proves to
be convenient and allows problems such as name
disambiguation, topic modeling, and the mea-
surement of scientific impact to be easily solved
using only this network and off-the-shelf graph
algorithms.

1 Introduction

Graph-based methods have been used to great ef-
fect in NLP, on problems such as word sense disam-
biguation (Mihalcea, 2005), summarization (Erkan
and Radev, 2004), and dependency parsing (McDon-
ald et al., 2005). Most previous studies of networks
consider networks with only a single type of node,
and in some cases using a network with a single type
of node can be an oversimplified view if it ignores
other types of relationships.

In this paper we will demonstrate heterogeneous
networks, networks with multiple different types of
nodes and edges, along with several applications of
them. The applications in this paper are not pre-
sented so much as robust attempts to out-perform the
current state-of-the-art, but rather attempts at being
competitive against top methods with little effort be-
yond the construction of the heterogeneous network.

Throughout this paper, we will use the data from
the ACL Anthology Network (AAN) (Bird et al.,
2008; Radev et al., 2013), which contains additional
metadata relationships not found in the ACL Anthol-
ogy, as a typical heterogeneous network. The results

in this paper should be generally applicable to other
heterogeneous networks.

1.1 Heterogeneous AAN schema
We build a heterogeneous graph G(V,E) from
AAN, where V is the set of vertices and E is the
set of edges connecting vertices. A vertex can be
one of five semantic types: {paper, author, venue,
institution, term}. An edge can also be one of five
types, each connecting different types of vertices:

• author — [writes] — paper
• paper — [cites] — paper
• paper — [published in] — venue1

• author — [affiliated with] — institution2

• paper — [contains] — term

All of this data, except for the terms, is available
for all papers in the 2009 release of AAN. Terms are
extracted from titles by running TextRank (Mihal-
cea and Tarau, 2004) on NP-chunks from titles and
manually filtering out bad terms.

We show the usefulness of this representation
in several applications: the measurement of scien-
tific impact (Section 2), name disambiguation (Sec-
tion 3), and topic modeling (Section 4). The hetero-
geneous network representation provides a simple
framework for combining lexical networks (like the
term co-occurence network) with metadata relations
from a source like AAN and allows us to begin to
develop NLP-aware methods for problems like sci-
entometrics and name disambiguation, which are not
usually framed in an NLP perspective.

1For a joint meeting of venues A and B publishing a paper
x, two edges (x,A) and (x,B) are created.

2Author-affiliation edges are weighted according to the
number of papers an author has published from an institution.

1

Transactions of the Association for Computational Linguistics, 2 (2014) 1–14. Action Editor: Lillian Lee.
Submitted 3/2013; Revised 6/2013; Published 2/2014. c©2014 Association for Computational Linguistics.

2 Scientific Impact Measurement

The study of scientometrics, which attempts to
quantify the scientific impact of papers, authors, etc.
has received much attention recently, even within
the NLP community. In the past few years, there
have been many proposed measures of scientific im-
pact based on relationships between entities. Intu-
itively, a model that can take into account many dif-
ferent types of relationships between entities should
be able to measure scientific impact more accu-
rately than simpler measures like citation counts or
h-index.

We propose using Pagerank on the heterogeneous
AAN (Page et al., 1999) to measure scientific impact.
Since changes in the network schema can affect the
relative rankings between different types of entities,
this method is probably not appropriate for compar-
ing entities of two different types against each other.
But between nodes of the same type, this measure is
an appropriate (and as we will show, accurate) way
to compare impacts.

We see this method as a first logical step in the
direction of heterogeneous network-based sciento-
metrics. This method could easily be extended to
use a directed schema (Kurland and Lee, 2005) or a
schema that is aware of the lexical content of citation
sentences, such as sentiment-based signed networks
(Hassan et al., 2012).

Determining the intrinsic quality of scientific im-
pact measures can be difficult since there is no
way to collect gold standard measurements for real-
world entities. Previous studies have attempted to
show that their measures give high scores to a few
known high-impact entities, e.g. Nobel prize win-
ners (Hirsch, 2005), or have performed a statistical
component analysis to find the most important mea-
sures in a group of related statistics (Bollen et al.,
2009). Our approach, instead, is to generate real-
istic data from synthetic entities whose impacts are
known.

We had considered alternative formulations that
did not rely on synthetic data, but each of them
presented problems. When we attempted manual
prominence annotation for AAN data, the inter-
judge agreement (measured by Spearman correla-
tion) in our experiments ranged from decent (0.9
in the case of institutions) to poor (0.3 for authors)

to nearly random (0.03 for terms), far too low to
use in most cases. We also considered evaluating
prominence measures by their ability to predict fu-
ture citations to an entity. Citations are often used
as a proxy for impact, but our measurements have
found that correlation between past citations and fu-
ture citations is too high for citation prediction to be
a meaningful evaluation3.

2.1 Creating a synthetic AAN

In network theory, a common technique for testing
network algorithms when judgments of real-world
data are expensive or impossible to obtain is to test
the algorithm on a synthetic network. To create such
a synthetic network, the authors define a simple, but
realistic generative process by which the real-world
networks of interest may arise. The properties of
the network are measured to ensure that it replicates
certain observable behaviors of the real-world net-
work. They can then test network algorithms to see
how well they are able to recover the hidden param-
eters that generated the synthetic network. (Pastor-
Satorras and Vespignani, 2001; Clauset et al., 2009;
Karrer and Newman, 2011)

We take a two-step approach to generating this
synthetic data, first generating entities with known
impacts, and second, linking these entities together
according to their latent impacts. Our heuristic is
that high impact entities should be linked to other
high impact entities and vice-versa. As in the net-
work theory literature, we must show that this data
reflects important properties observed in the true
AAN.

One such property is that the number of citations
per paper follows a power law distribution (Redner,
1998). We observe this behavior in AAN along with
several other small-world behaviors, such as a small
diameter, a small average shortest path length, and a
high clustering coefficient in the coauthorship graph.
We strive to replicate these properties in our syn-
thetic data.

3Most existing impact measurements require access to at
least one year’s worth of citation information. The Spearman
correlation between the number of citations received after one
year and after five years is 0.79 with correlation between suc-
cessive years as high as 0.99. Practically this means that the
measures that best correlate with citations after five years are
exactly those that best correlate with citations after one year.

2

Since scientific impact measures attempt to quan-
tify the true impact of entities, we can use these mea-
sures to help understand how the true impact mea-
sures are distributed across different entities. In fact,
citation counts, being a good estimate of impact, can
be used to generate these latent impact variables for
each entity. For each type of entity (papers, authors,
institutions, venues, and terms), we create a latent
impact by sampling from the appropriate citation
count distribution. After sampling, all the impacts
are normalized to fall in the [0, 1] interval, with the
highest-impact entity of each type having a latent
impact of 1. Additive smoothing is used to avoid
having an impact of 0.

Once we have created the entities, our method
for placing edges is most similar to the Erdős-
Réyni method for creating random graphs (Erdős
and Rényi, 1960), in which edges are distributed
uniformly at random between pairs of vertices. In-
stead of distributing links uniformly, links between
entities are sampled proportionally to I(a)I(b)(1 −
(I(a) − I(b))2), where I(x) is the latent impact of
entity x.

We tried several other formulae that failed to
replicate the properties of the real AAN. The
I(a)I(b) part of the formula above reflects a pref-
erence for nodes of any type to connect with high-
impact entities (e.g., major conferences receive
many submissions even though most submissions
will be rejected), but the 1 − (I(a) − I(b))2 part
also reflects the reality that entities of similar promi-
nence are most likely to attach to each other (e.g.,
well-known authors publish in major conferences,
while less well-known authors may publish mostly
in lesser-known workshops).

Using this distribution, we randomly sample links
between papers and authors; authors and institu-
tions; papers and venues; and papers and terms. The
only exception to this was paper-to-paper citation
links, for which we did not expect this same be-
havior to apply, as low-impact papers regularly cite
high-impact papers, but not vice-versa. To model ci-
tations, we selected citing papers uniformly at ran-
dom and cited papers in proportion to their impacts.
(Albert and Barabási, 2002)

Finally, we generated a network equal in size to
AAN, that is, with the exact same numbers of pa-
pers, authors, etc. and the exact same number of

Relationship True value Synth. value
Paper-citations power
law coeff.

1.82 2.12

Diameter 9 8
Avg. shortest path 4.27 4.05
Collaboration network
clustering coeff.

0.34 0.26

Table 1: Network properties of the synthetic AAN
compared with the true AAN.

paper-author links, paper-venue links, etc. Table 1
compares the observed properties of the true AAN
with the observed properties of this synthetic version
of AAN. None of the statistics are exact matches, but
when building random graphs, it is not uncommon
for measures to differ by many orders of magnitude,
so a model that has measures that are on the same
order of magnitude as the observed data is generally
considered to be a decent model (Newman and Park,
2003).

2.2 Measuring impact on the synthetic AAN

This random network is, of course, still imperfect
in some regards. First of all, it has no time aspect,
so it is not possible for impact to change over time,
which means we cannot test against some impact
measures that have a time component like CiteR-
ank (Maslov and Redner, 2008). Second, there are
some constraints present in the real world that are
not enforced here. Because the edges are randomly
selected, some papers have no venues, while others
have multiple venues. There is also nothing to en-
force certain consistencies, such as authors publish-
ing many papers from relatively few institutions, or
repeatedly collaborating with the same authors.

We had also considered using existing random
graph models such as the Barabási-Albert model
(Barabási and Albert, 1999), which are known to
produce graphs that exhibit power law behavior.
These models, however, do not provide a way to re-
spect the latent impacts of the entities, as they add
links in proportion only to the number of existing
links a node has.

We measure the quality of impact measures by
comparing ranked lists: the ordering of the entities

3

Paper measure Agreement
Heterogeneous network Pagerank 0.773
Citation network Pagerank 0.558
Citation count 0.642

Author measure Agreement
Heterogeneous network Pagerank 0.461
Coauthorship network Pagerank 0.244
h-index (Hirsch, 2005) 0.292
Aggregated citation count 0.236
i10-index 0.235

Institution measure Agreement
Heterogeneous network Pagerank 0.373
h-index (Mitra, 2006) 0.334
Aggregated citation count 0.327

Venue measure Agreement
Heterogeneous network Pagerank 0.449
h-index (Braun et al., 2006) 0.425
Aggregated citation count 0.370
Impact factor 0.092
Venue citation network Pagerank (Bollen
et al., 2006)

0.366

Table 2: Agreement of various impact measures
with the true latent impact.

by their true (but hidden) impact against their order-
ing according to the impact measure. The agree-
ment between these lists is measured by Kendall’s
Tau. Table 2 compares several well-known impact
measures with our impact measure, Pagerank cen-
trality on the heterogeneous AAN network. We find
that some popular methods, such as h-index (Hirsch,
2005) are too coarse to accurately capture much
of the underlying variation. There is a version of
Kendall’s Tau that accounts for ties, and while this
metric slightly helps the coarser measures, Pagerank
on the heterogeneous network is still the clear win-
ner.

When comparing different ordering methods, it
is natural to wonder which of entities the orderings
disagree on. In general, non-heterogeneous mea-
sures like h-index or collaboration network Pager-
ank, which only focus on one type of relationship
can suffer when the entity in question has an impor-
tant relationship of another type. For example, if an
author is highly cited, but mostly works alone, his

1985 1990 1995 2000 2005 2010

20

40

60

80

100

120

R
el

at
iv

e
Pa

ge
ra

nk

ACL
EMNLP
COLING
NAACL

Figure 1: Evolution of conference impacts. The y-
axis measures relative Pagerank, the entity’s Pager-
ank relative to the average Pagerank in that year.

contribution would be undervalued in the collabo-
ration network, but would be more accurate in the
heterogeneous network.

The majority of the differences between the im-
pact measures, though, tend to be in how they han-
dle entities of low prominence. It seems that, for the
most part, there is relatively little disagreement in
the orderings of high-impact entities between differ-
ent impact measures. That is, most highly prominent
entities tend to be highly rated by most measures.
But when an author or a paper, for example, only has
one or two citations, it can be advantageous to look
at more types of relationships than just citations.
The paper may be written by an otherwise prominent
author, or published at a well-known venue, and hav-
ing many types of relations at its disposal can help a
method like heterogeneous network Pagerank better
distinguish between two low-prominence entities.

2.3 Top-ranked entities according to
heterogeneous network PageRank

Table 3 shows the papers, authors, institutions,
venues, and terms that received the highest Pager-
ank in the heterogeneous AAN. It is obvious that the
top-ranked entities in this network are not simply the
most highly cited entities.

This ranking also does not have any time bias
toward the entities that are currently prominent, as
some of the top authors were more prolific in previ-
ous decades than at the current time. We also see
this effect with COLING, which for many of the
early years, is the only venue in the ACL Anthology.

4

Top Papers Top Authors Top Institutions Top Venues Top
Terms

− Building A Large Annotated Corpus Of
English: The Penn Treebank

4 15 Jun’ichi Tsujii 4 8 Carnegie Mellon
University

4 1 COLING − translation

− The Mathematics Of Statistical Machine
Translation: Parameter Estimation

4 7 Aravind K.
Joshi

4 1 University of
Edinburgh

5 1 ACL 4 3 speech

− Attention, Intentions, And The Structure Of
Discourse

4 18 Ralph
Grishman

5 2 University of
Pennsylvania

4 2 HLT 5 1 parsing

− A Maximum Entropy Approach To Natural
Language Processing

4 75 Hitoshi Isahara 5 2
Massachusetts
Institute of
Technology

4 4 EACL 5 1 machine
translation

− BLEU: a Method for Automatic Evaluation
of Machine Translation

4 20 Yuji
Matsumoto

4 12 Saarland
University

4 7 LREC 4 3 generation

− A Maximum-Entropy-Inspired Parser 4 7 Kathleen R.
McKeown

5 2 IBM T.J. Watson
Research Center

− NAACL 4 3 evaluation

4 2 A Stochastic Parts Program And Noun
Phrase Parser For Unrestricted Text

4 13 Eduard Hovy 4 39 CNRS 5 3 EMNLP 4 6 grammar

5 1 A Systematic Comparison of Various
Statistical Alignment Models

4 10 Christopher D.
Manning

4 26 University of
Tokyo

5 5 Computational
Linguistics

4 16 dialogue

4 4
Transformation-Based Error-Driven
Learning and Natural Language Processing:
a Case Study in Part-of-Speech Tagging

4 93 Yorick Wilks 5 4 Stanford
University

4 4 IJCNLP 4 10 knowl-
edge

4 1 A Maximum Entropy Model for
Part-of-Speech Tagging

5 9 Hermann Ney 4 3 BBN Technologies 4 1

Workshop on
Speech and
Natural
Language

4 1 discourse

Table 3: The entities of each type receiving the highest scores from the heterogeneous network Pagerank
impact measure along with their respective changes in ranking when compared to a simple citation count
measure.

One possible way to address this is to use a narrower
time window when creating the graph, such as only
including edges from the previous five years. We
apply this technique in the following section.

2.4 Entity impact evolution

The heterogeneous graph formalism also provides a
natural way to study the evolution of impact over
time, as in (Hall et al., 2008), but at a much finer
granularity. Hall et al. measured the year-by-year
prominence of statistical topics, but we can measure
year-by-year prominence for any entity in the graph.

To measure the evolution of impacts over the
years, we iteratively create year-by-year versions of
the heterogeneous AAN. Each of these graphs con-
tains all entities along with all edges occurring in a
five year window. Due to space, we cannot com-
prehensively exhibit this technique and the data it
produces, but as a brief example, in Figure 1, we
show how the impacts of some major NLP confer-
ences changes over time.

The graph shows that NAACL and EMNLP have
been steadily gaining prominence since their intro-

ductions, but also shows that ACL has had to make
up a lot of ground since 1990 to surpass COLING.
We also notice that all the major conferences have
grown in impact since 2005, and believe that as the
field continues to grow, the major conferences will
continue to become more and more important.

3 Name Disambiguation

We frame network name disambiguation in a link
prediction setting (Taskar et al., 2003; Liben-Nowell
and Kleinberg, 2007). The problems of name dis-
ambiguation and link prediction share many char-
acteristics, and we have found that if two ambigu-
ous name nodes are close enough to be selected by a
link-prediction method, then they likely correspond
to the same real-world author.

We intend to show that the heterogeneous biblio-
graphic network can be used to better disambiguate
author names than the author collaboration network.
The heterogeneous network for this problem con-
tains papers, authors, terms, venues, and institutions.
We compare several well-known network similarity
measures from link prediction by transforming the

5

Network Distance Measure Precision Recall F1-score Rand index Purity NMI
Heterogeneous Truncated Commute Time 0.59 0.78 0.63 0.63 0.71 0.43
Heterogeneous Shortest Path 0.90 0.79 0.83 0.87 0.94 0.76
Heterogeneous PropFlow 0.89 0.83 0.84 0.87 0.93 0.77
Coauthorship Truncated Commute Time 0.47 0.80 0.54 0.47 0.60 0.18
Coauthorship Shortest Path 0.54 0.73 0.60 0.61 0.67 0.31
Coauthorship PropFlow 0.57 0.76 0.64 0.66 0.71 0.43
Coauthorship GHOST 0.89 0.60 0.69 0.81 0.94 0.63

Table 4: Performance of different networks and distance measures on the author name disambiguation task.
The performance measures are averaged over the sets of two, three, and four authors. Rand index is from
(Rand, 1971) and NMI is an abbreviation for normalized mutual information (Strehl and Ghosh, 2003)

similarities to distances and inducing clusters of au-
thors based on these distances.

We compare three distance measures: shortest
path, truncated commute time (Sarkar et al., 2008),
and PropFlow (Lichtenwalter et al., 2010). Short-
est path distance can be a useful metric for author
disambiguation because it is small when two am-
biguous nodes are neighbors in the graph or share
a neighbor. Its downside is that it only considers one
path between nodes, the shortest, and cannot take
advantage of the fact that there may be many short
paths between two nodes.

Truncated commute time is a variant of commute
time where all paths longer than some threshold are
truncated. The truncation threshold l should be set
such that no semantically meaningful path is trun-
cated. We use a value of ten for l in the heteroge-
neous graph and three in the coauthorship graph4.
The advantage of truncated commute time over or-
dinary commute time is simpler calculation, as no
paths longer than l need be considered. The down-
side of this method is that large branching factors
tend to lead to less agreement between commute
time and truncated commute time.

PropFlow is a quantity that measures the proba-
bility that a non-intersecting random walk starting at
node a reaches node b in l steps or fewer, where l is
again a threshold. As before, l should be a bound on
the length of semantically meaningful paths, so we
use the same values for l as with truncated commute
time. Of course, PropFlow is not a metric, which is

4This is a standard coauthorship graph with the edge weights
equal to the number of publications shared between authors.
The heterogeneous network does not have author-to-author
links, as authors are linked by paper nodes.

required for some clustering methods. We use the
following equation to transform PropFlow to a met-
ric: d(a, b) = 1

PropF low(a,b) − 1.
With each of the distance measures, we apply

the same clustering method: partitioning around
medoids, with the number of clusters automatically
determined using the gap statistic method (Tibshi-
rani et al., 2001). We create the null distribution
needed for the gap statistic method by many itera-
tions of randomly sampling distances from the com-
plete distance matrix between all nodes in the graph.
The gap statistic method automatically selects the
number of clusters from two, three, or four author
clusters.

We compare our methods against GHOST (Fan et
al., 2011), a high-performance author disambigua-
tion method based on the coauthorship graph.

3.1 Data

To generate name disambiguation data, we use the
pseudoword method of (Gale et al., 1992). Specif-
ically, we choose two or more completely random
authors and conflate them by giving all instances
of both authors the same name. We let each paper
written by this pseudoauthor be an instance to be
clustered. The clusters produced by any author dis-
ambiguation method can then be compared against
the papers actually written by each of the two au-
thors. This method, of course, relies on having all of
the underlying authors completely disambiguated,
which AAN provides.

This method is used to create 100 distambiguation
sets with two authors, 100 for three authors, and 100
for four authors.

6

3.2 Results

Table 4 shows the performance of author name dis-
ambiguation with different networks and distance
metrics. F1-score is the measure that is most of-
ten used to compare author disambiguation methods.
Both PropFlow and shortest path similarity on the
heterogeneous network perform quite well accord-
ing this measure, as well as the other reported mea-
sures. While comparable recall can be achieved us-
ing only the coauthorship graph, the heterogeneous
graph allows for much higher precision.

4 Random walk topic model

Here we present a topic model based entirely on
graph random walks. This method is not truly a
statistical model as there are no statistical parame-
ters being learned, but rather a topic-discovery and
-assignment method, attempting to solve the same
problem as statistical topic models such as proba-
bilistic latent semantic analysis (pLSA) (Hofmann,
1999) or latent Dirichlet allocation (LDA) (Blei et
al., 2003). In the absence of better terminology, we
use the name random walk topic model.

While this method does not have the robust math-
ematical foundation that statistical topic models pos-
sess, in its favor it has modularity, simplicity, and
interpretability. This language model is modular as
it completely separates the discovery of topics from
the association of topics with entities. It is sim-
ple because it requires only a clustering algorithm
and random walk algorithms, instead of complex in-
ference algorithms. The method also does not re-
quire any modification if the topology of the net-
work changes, whereas statistical models may need
an entirely different inference procedure if, e.g., au-
thor topics are desired in addition to paper topics.
Thirdly this method is easily interpretable with top-
ics provided by clustering in the word-relatedness
graph and topic association based on random walks
from entities to topics.

4.1 Topics from word graph clustering

From the set of ACL anthology titles, we create
two graphs: (1) a word relatedness graph by cre-
ating a weighted link between each pair of words
corresponding to the PropFlow (Lichtenwalter et al.,
2010) measure between them on the full heteroge-

neous graph and (2) a word co-occurence graph by
creating a weighted link between each pair of words
corresponding to the number of titles in which both
words occur.

Both of these graphs are then clustered using
Graph Factorization Clustering (GFC). GFC is a soft
clustering algorithm for graphs that models graph
edges as a mixture of latent node-cluster association
variables. (Yu et al., 2006)

Given a word graph G with vertices V and ad-
jacency matrix [w]ij , GFC attempts to fit a bipar-
tite graph K(V,U) with adjacency matrix [b]ij onto
this data, with the m nodes of U representing the
clusters. Whereas in G, similarity between two
words i and j can be measured with wij , we can
similarly measure their similarity in K with w′ij =
∑m

p=1
bipbjp
λp

where λp =
∑n

i=1 bip is the degree of
vertex p ∈ U .

Essentially the bipartite graph attempts to approx-
imate the transition probability between i and j inG
with the sum of transition probabilities from i to j
through any of the m nodes in U . Yu, et al. (2006)
present an algorithm for minimizing the divergence
distance `(X,Y) =

∑
ij(xijlog

xij
yij − xij + yij) be-

tween [w]ij and [w′]ij .
We run GFC with this distance metric and m =

100 clusters on the word graph until convergence
(change in log-likelihood < 0.1%). After conver-
gence, the nodes in U become the clusters and the
weights bip (constrained to sum to 1 for each clus-
ter) become the topic-word association scores.

Examples of some topics found by this method
are shown in Table 5. From manual inspection of
these topics, we found them to be very much like
topics created by statistical topic models. We find
instances of all the types of topics listed in (Mimno
et al., 2011): chained, intruded, random, and unbal-
anced. For an evaluation of these topics see Sec-
tion 4.3.1.

4.2 Entity-topic association

To associate entities with topics, we first create
the heterogeneous network as in previous sections,
adding links between papers and their title words,
along with links between words and the topics that
were discovered in the previous section. Word-topic
links are also weighted according to the weights

7

Word sense induction sense disambiguation word induction unsupervised clustering senses based similarity chinese
CRFs + their applications entity named recognition random conditional fields chinese entities biomedical segmentation
Dependency parsing parsing dependency projective probabilistic incremental deterministic algorithm data syntactic trees
Tagging models tagging model latent markov conditional random parsing unsupervised segmentation
Multi-doc summarization summarization multi document text topic based query extractive focused summaries
Chinese word segmentation word segmentation chinese based alignment character tagging bakeoff model crf
Lexical semantics lexical semantic distributional similarity wordnet resources lexicon acquistion semantics representation
Cross-lingual IR cross lingual retrieval document language linguistic multi person multilingual coreference
Generation for summar. sentence based compression text summarization ordering approach ranking generation
Spoken language speech recognition automatic prosodic tagging spontaneous news broadcast understanding conversational
French function words de la du des le automatique analyse une en pour
Question answering question answering system answer domain retrieval web based open systems
Unsupervised learning unsupervised discovery learning induction knowledge graph acquisition concept clustering pattern
SVMs for NLP support vector machines errors space classification correcting word parsing detecting
MaxEnt models entropy maximum approach based attachment model models phrase prepositional disambiguation
Dialogue systems dialogue spoken systems human conversational multi interaction dialogues utterances multimodal
Semantic role-labeling semantic role labeling parsing syntactic features ill dependency formed framenet
SMT based translation machine statistical phrase english approach learning reordering model
Coreference resolution resolution coreference anaphora reference pronoun ellipsis ambiguity resolving approach pronominal
Semi- and weak-supervision learning supervised semi classification active data clustering approach graph weakly
Information retrieval based retrieval similarity models semantic space model distance measures document
Discourse discourse relations structure rhetorical coherence temporal representation text connectives theory
CFG parsing context free grammars parsing linear probabilistic rewriting grammar systems optimal
Min. risk train. and decod. minimum efficient training error rate translation risk bayes decoding statistical
Phonology phoneme conversion letter phonological grapheme rules applying transliteration syllable sound
Sentiment sentiment opinion reviews classification mining polarity analysis predicting product features
Neural net speech recog. speech robust recognition real network time neural networks language environments
Finite state methods state finite transducers automata weighted translation parsing incremental minimal construction
Mechanical Turk mechanical turk automatic evaluation amazon techniques data articles image scientific

Table 5: Top 10 words for several topics created by the co-occurence random walk topic model. The left
column is a manual label.

Topic 59 Topic 82
translation 0.1953 parsing 0.1715
machine 0.1802 dependency 0.1192
statistical 0.0784 projective 0.0138

Machine Translation 0.0018 K-best Spanning Tree Parsing 0.0025
Better Hypothesis Testing for Statistical
Machine Translation: Controlling for
Optimizer Instability

0.0016 Pseudo-Projective Dependency Parsing 0.0024

Filtering Antonymous, Trend- Contrasting, and
Polarity-Dissimilar Distributional Paraphrases
for Improving Statistical Machine Translation

0.0015 Shift-Reduce Dependency DAG Parsing 0.0017

Knight, Kevin 0.0083 Nivre, Joakim 0.0120
Koehn, Philipp 0.0074 Johnson, Mark 0.0085
Ney, Hermann 0.0072 Nederhof, Mark-Jan 0.0064

RWTH Aachen University 0.0212 Vaxjo University 0.0113
Carnegie Mellon University 0.0183 Brown University 0.0107
University of Southern California 0.0177 University of Amsterdam 0.0094

Workshop on Statistical Machine Translation 0.0590 ACL 0.0512
EMNLP 0.0270 EMNLP 0.0259
COLING 0.0173 CoNLL 0.0223

Table 6: Examples of entities associated with selected topics.

8

determined by GCF. We then simply take random
walks from topics to entities and measure the pro-
portion at which the random walk arrives at each en-
tity of interest. These proportions become the entity-
topic association scores.

For example, if we wanted to find the authors
most associated with topic 12, we would take a num-
ber of random walks (say 50,000) starting at topic
12 and terminating as soon as the random walk first
reaches an author node. Measuring the proportion
at which random walks arrive at each allows us to
compute an association score between topic 12 and
each author.

A common problem in random walks on large
graphs is that the walk can easily get “lost” between
two nodes that should be very near by taking a just
a few steps in the wrong direction. To keep the ran-
dom walks from taking these wrong steps, we adjust
the topology of the network using directed links to
keep the random walks moving in the “right” direc-
tion. We design the graph such that if we desire a
random walk from nodes of type s to nodes of type t,
the random walk will never be able to follow an out-
going link that does not decrease its distance from
the nodes of t.

As shown in section 2.3, there are certain nodes at
which a random walk (like Pagerank) arrives at more
often than others simply because of their positions in
the graph. This suggests that there may be stationary
random walk distributions over entities, which we
would need to adjust for in order to find the most
significant entities for a topic.

Indeed this is what we do find. As an example, if
we sample topics uniformly and take random walks
to author nodes, by chance we end up at Jun’ichi
Tsujii on 0.3% of random walks, Eduard Hovy on
0.2% of walks, etc. These values are about 1000
times greater than would be expected at random.

To adjust for this effect, when we take a random
walk from a topic x to an entity type t, we subtract
out this stationary distribution for t, which corre-
sponds to the proportion of random walks that end
at any particular entity of type t by chance, and not
by virtue of the fact that the walk started at topic x.
The resulting distribution yields the entities of t that
are most significantly associated with topic x. Ta-
ble 6 gives examples of the most significant entities
for a couple of topics.

−200 −150 −100 −50

RW-cooc

RW-sim

RTM

LDA

Coherence

Figure 2: Distribution of topic coherences for the
four topic models.

4.3 Topic Model Evaluation
We provide two separate evaluations in this section,
one of the topics alone, and one extrinstic evaluation
of the entire paper-topic model. The variants of ran-
dom walk topic models are compared against LDA
and the relational topic model (RTM), each with 100
topics (Chang and Blei, 2010). As RTM allows only
a single type of relationship between documents, we
use citations as the inter-document relationships.

4.3.1 Topic Coherence
The coherence of a topic is evaluated using the co-

herence metric introduced in (Mimno et al., 2011).
Given the top M words V (t) = (v

(t)
1 , ..., v

(t)
M) for a

topic t, the coherence of that topic can be calculated
with the following formula:

C(t;V (t)) =

M∑

m=2

m−1∑

l=1

log

(
D(v

(t)
m , v

(t)
l) + 1

D(v
(t)
l)

)
,

where D(v) is the number of documents contain-
ing v and D(v, v′) is the number of documents con-
taining both v and v′.

This measure of coherence is highly correlated
with manual annotations of topic quality, with a
higher coherence score corresponding to a more co-
herent, higher quality topic. After calculating the co-
herence for each of the 100 topics for RTM and the
random-walk topic model, the average coherence for
RTM topics was -135.2 and the average coherence
for word-similarity random walk topics was -122.2,
with statistical significance at p < 0.01. Figure 2
demonstrates this, showing that the word similarity-
based random walk method generates several highly
coherent topics. The average coherence for the LDA
and the co-occurence random walk model were sig-
nificantly lower.

9

4.3.2 Extrinsic Evaluation
One difficulty in evaluating this random-walk

topic model intrinsically against a statistical topic
model like RTM is that existing evaluation measures
assume certain statistical properties of the topic, for
example, that the topics are generated according to a
Dirichlet prior. Because of this, we choose instead to
evaluate this topic model extrinsically with a down-
stream application. We choose an information re-
trieval application, returning a ranked list of similar
documents, given a reference document.

We evaluate five different methods: citation-
RTM, LDA, the two versions of the random-walk
topic model, and a simple word vector similarity
baseline. Similarity between documents with the
topic models are determined by cosine similarity be-
tween the topic vectors of the two documents. Word
vector similarity determines the similarity between
documents by taking the cosine similarity of their
word vectors. From these similarity scores, a ranked
list is produced.

The document set for this task is the set of all pa-
pers appearing at ACL between 2000 and 2011. The
top 10 results returned by each method are pooled
and manually evaluated with a relevance score be-
tween 1 and 10. Thirty such result sets were manu-
ally annotated. We then evaluate each method ac-
cording to its discounted cumulative gain (DCG)
(Järvelin and Kekäläinen, 2000).

Performance of these methods is summarized in
Table 7. The co-occurence-based random walk topic
model performed comparably with the best per-
former at this task, LDA, and there was no signifi-
cant difference between the two at p < 0.05.

Going forward, an important problem is to rec-
oncile the co-occurence- and word-similarity-based
formulations of this topic model, as the two formu-
lations perform very differently in our two evalua-
tions. Heuristically, the co-occurence model seems
to create good human-readable topics, while the
word-similarity model creates topics that are more
mathematically-coherent, but less human-readable.

5 Related Work

Heterogeneous networks have been studied in a
number of different fields, such as biology (Sio-
son, 2005), transportation networks (Lozano and

Method DCG
Word vector 1.345 ± 0.007
LDA 3.302 ± 0.008
RTM 3.058 ± 0.011
Random-walk (cooc) 3.295 ± 0.006
Random-walk (sim) 2.761 ± 0.007

Table 7: DCG Performance of the various topic
models and baselines on the related document find-
ing task. A 95% confidence interval is provided.

Storchi, 2002), social networks (Lambiotte and Aus-
loos, 2006), and bibliographic networks (Sun et al.,
2011). These networks are also sometimes known
by the name complex networks or multimodal net-
works, but both these terms have other connotations.
We prefer “heterogeneous networks” as used by Sun
et al. (2009).

There has also been some study of these networks
in general, in community detection (Murata, 2010),
clustering (Long et al., 2008; Sun et al., 2012), and
data mining (Muthukrishnan et al., 2010), but there
has not yet been any comprehensive study. Recently,
NLP has seen several uses of heterogeneous net-
works (though not by that name) for use with label
propagation algorithms (Das and Petrov, 2011; Spe-
riosu et al., 2011) and random walks (Toutanova et
al., 2004; Kok and Brockett, 2010).

Several authors have proposed the idea of using
network centrality measures to rank the impacts of
journals, authors, papers, etc. (Bollen et al., 2006;
Bergstrom et al., 2008; Chen et al., 2007; Liu et al.,
2005), and it has even been proposed that central-
ity can be applicable in bipartite networks (Zhou et
al., 2007). We propose that Pagerank on any gen-
eral heterogeneous network is appropriate for creat-
ing ranked lists for each type of entity. Most previ-
ous papers also lack a robust evaluation, demonstrat-
ing agreement with previous methods or with some
external awards or recognitions. We use a random
graph that replicates the properties of the real-world
network to show that Pagerank on the heterogeneous
network outperforms other methods.

Name disambiguation has been studied in a num-
ber of different settings, including graph-based set-
tings. It is common to use the coauthorship graph
(Kang et al., 2009; Fan et al., 2011), but authors

10

have also used lexical similarity graphs (On and Lee,
2007), citation graphs (McRae-Spencer and Shad-
bolt, 2006), or social networks (Malin, 2005). Al-
most all graph methods are unsupervised.

There have been some topic models developed
specifically for relational data (Wang et al., 2006;
Airoldi et al., 2008), but both of these models have
limitations in the types of relational data they are
able to model. The group topic model described in
(Wang et al., 2006) is able to create stronger topics
by considering associations between words, events,
and entities, but is very coarse in the way it han-
dles the behavior of entities, and does not generalize
to multiple different types of entities. The stochas-
tic blockmodel of (Airoldi et al., 2008) can create
blocks of similar entities in a graph and is general
in the types of graphs it can handle, but produces
less meaningful results on graphs that have specific
schemas.

6 Conclusion and Future Directions

In this paper, we present a heterogeneous net-
work treatment of the ACL Anthology Network and
demonstrate several applications of it. Using only
off-the-shelf graph algorithms with a single data rep-
resentation, the heterogeneous AAN, we are able to
very easily build a scientific impact measure that is
more accurate than existing measures, an author dis-
ambiguation system better than existing graph-based
author disambiguation systems, and a random-walk-
based topic model that is competitive with statistical
topic models.

While there are many other tasks, such as citation-
based summarization, that could likely be ap-
proached using this framework with the appropri-
ate addition of new types of nodes into the hetero-
geneous AAN network, there are even some poten-
tial synergies between the tasks described in this pa-
per that have yet to be explored. For example, we
may consider that the methods of the author disam-
biguation or topic modeling tasks could be to find
the highest-impact papers associated with a term (for
survey generation, perhaps) or high-impact authors
associated with a workshop’s topic (to select good
reviewers for it). We believe that heterogeneous
graphs are a flexible framework that will allow re-

searchers to find simple, flexible solutions for a va-
riety of problems.

Acknowledgments
This research is supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of
Interior National Business Center (DoI/NBC) contract
number D11PC20153. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of
IARPA, DoI/NBC, or the U.S. Government.

References
Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg,

and Eric P. Xing. 2008. Mixed membership stochastic
blockmodels. The Journal of Machine Learning Re-
search, 9:1981–2014.

Réka Albert and Albert-László Barabási. 2002. Statisti-
cal mechanics of complex networks. Reviews of mod-
ern physics, 74(1):47.

A.L. Barabási and R. Albert. 1999. Emergence of scal-
ing in random networks. Science, 286(5439):509–512.

Carl T. Bergstrom, Jevin D. West, and Marc A. Wiseman.
2008. The eigenfactor metrics. The Journal of Neuro-
science, 28(45):11433–11434.

Steven Bird, Robert Dale, Bonnie J Dorr, Bryan Gib-
son, Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett
Powley, Dragomir R Radev, and Yee Fan Tan. 2008.
The ACL anthology reference corpus: A reference
dataset for bibliographic research in computational lin-
guistics. In Proc. of the 6th International Conference
on Language Resources and Evaluation Conference
(LREC08), pages 1755–1759.

D.M. Blei, A.Y. Ng, and M.I. Jordan. 2003. Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022.

Johan Bollen, Marko A. Rodriguez, and Herbert Van
de Sompel. 2006. Journal status. CoRR,
abs/cs/0601030.

Johan Bollen, Herbert Van de Sompel, Aric Hagberg, and
Ryan Chute. 2009. A principal component analysis of
39 scientific impact measures. PloS one, 4(6):e6022.

Tibor Braun, Wolfgang Glänzel, and András Schubert.
2006. A hirsch-type index for journals. Scientomet-
rics, 69(1):169–173.

Jonathan Chang and David M Blei. 2010. Hierarchical
relational models for document networks. The Annals
of Applied Statistics, 4(1):124–150.

11

Peng Chen, Huafeng Xie, Sergei Maslov, and Sid Redner.
2007. Finding scientific gems with googles pagerank
algorithm. Journal of Informetrics, 1(1):8–15.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ
Newman. 2009. Power-law distributions in empirical
data. SIAM review, 51(4):661–703.

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-
of-speech tagging with bilingual graph-based projec-
tions. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 600–609.

Paul Erdős and Alfréd Rényi. 1960. On the evolution of
random graphs. Magyar Tud. Akad. Mat. Kutató Int.
Közl, 5:17–61.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. J. Artif. Intell. Res. (JAIR), 22:457–479.

Xiaoming Fan, Jianyong Wang, Xu Pu, Lizhu Zhou, and
Bing Lv. 2011. On graph-based name disambigua-
tion. J. Data and Information Quality, 2(2):10:1–
10:23, February.

William A. Gale, Kenneth W. Church, and David
Yarowsky. 1992. Work on statistical methods for word
sense disambiguation. In Working Notes of the AAAI
Fall Symposium on Probabilistic Approaches to Natu-
ral Language, volume 54, page 60.

David Hall, Daniel Jurafsky, and Christopher D. Man-
ning. 2008. Studying the history of ideas using topic
models. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
363–371. ACL.

Ahmed Hassan, Amjad Abu-Jbara, and Dragomir Radev.
2012. Extracting signed social networks from text.
TextGraphs-7, page 6.

Jorge E. Hirsch. 2005. An index to quantify an indi-
vidual’s scientific research output. Proceedings of the
National Academy of Sciences of the United states of
America, 102(46):16569.

Thomas Hofmann. 1999. Probabilistic latent semantic
indexing. In Proceedings of the 22nd annual interna-
tional ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 50–57. ACM.

Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evalua-
tion methods for retrieving highly relevant documents.
In Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in in-
formation retrieval, pages 41–48. ACM.

In-Su Kang, Seung-Hoon Na, Seungwoo Lee, Hanmin
Jung, Pyung Kim, Won-Kyung Sung, and Jong-Hyeok
Lee. 2009. On co-authorship for author disam-
biguation. Information Processing & Management,
45(1):84–97.

Brian Karrer and Mark EJ Newman. 2011. Stochas-
tic blockmodels and community structure in networks.
Physical Review E, 83(1):016107.

Stanley Kok and Chris Brockett. 2010. Hitting the right
paraphrases in good time. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 145–153. ACL.

Oren Kurland and Lillian Lee. 2005. Pagerank without
hyperlinks: Structural reranking using links induced
by language models. In SIGIR ’05.

Renaud Lambiotte and Marcel Ausloos. 2006. Collabo-
rative tagging as a tripartite network. Computational
Science–ICCS 2006, pages 1114–1117.

David Liben-Nowell and Jon Kleinberg. 2007. The link-
prediction problem for social networks. Journal of the
American society for information science and technol-
ogy, 58(7):1019–1031.

R.N. Lichtenwalter, J.T. Lussier, and N.V. Chawla. 2010.
New perspectives and methods in link prediction. In
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 243–252. ACM.

Xiaoming Liu, Johan Bollen, Michael L. Nelson, and
Herbert Van de Sompel. 2005. Co-authorship net-
works in the digital library research community. Infor-
mation processing & management, 41(6):1462–1480.

Bo Long, Zhongfei Zhang, and Tianbing Xu. 2008.
Clustering on complex graphs. In Proc. the 23rd Conf.
AAAI 2008.

Angelica Lozano and Giovanni Storchi. 2002. Shortest
viable hyperpath in multimodal networks. Transporta-
tion Research Part B: Methodological, 36(10):853–
874.

Bradley Malin. 2005. Unsupervised name disambigua-
tion via social network similarity. In Workshop on
Link Analysis, Counterterrorism, and Security, vol-
ume 1401, pages 93–102.

Sergei Maslov and Sidney Redner. 2008. Promise
and pitfalls of extending google’s pagerank algorithm
to citation networks. The Journal of Neuroscience,
28(44):11103–11105.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings of
the conference on Human Language Technology and
Empirical Methods in Natural Language Processing,
pages 523–530. ACL.

Duncan M. McRae-Spencer and Nigel R. Shadbolt.
2006. Also by the same author: Aktiveauthor, a cita-
tion graph approach to name disambiguation. In Pro-
ceedings of the 6th ACM/IEEE-CS joint conference on
Digital libraries, pages 53–54. ACM.

12

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into texts. In Proceedings of EMNLP, vol-
ume 4, pages 404–411. Barcelona, Spain.

Rada Mihalcea. 2005. Unsupervised large-vocabulary
word sense disambiguation with graph-based algo-
rithms for sequence data labeling. In Proceedings of
HLT-EMNLP, pages 411–418. ACL.

David Mimno, Hanna M. Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011. Op-
timizing semantic coherence in topic models. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 262–272. ACL.

Panchanan Mitra. 2006. Hirsch-type indices for rank-
ing institutions scientific research output. Current Sci-
ence, 91(11):1439.

Tsuyoshi Murata. 2010. Detecting communities from
tripartite networks. In Proceedings of the 19th inter-
national conference on World wide web, pages 1159–
1160. ACM.

Pradeep Muthukrishnan, Dragomir Radev, and Qiaozhu
Mei. 2010. Edge weight regularization over mul-
tiple graphs for similarity learning. In Data Mining
(ICDM), 2010 IEEE 10th International Conference on,
pages 374–383. IEEE.

Mark E.J. Newman and Juyong Park. 2003. Why social
networks are different from other types of networks.
Physical Review E, 68(3):036122.

Byung-Won On and Dongwon Lee. 2007. Scalable name
disambiguation using multi-level graph partition. In
Proceedings of the 7th SIAM international conference
on data mining, pages 575–580.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. 1999. The pagerank citation ranking:
bringing order to the web.

Romualdo Pastor-Satorras and Alessandro Vespignani.
2001. Epidemic spreading in scale-free networks.
Physical review letters, 86(14):3200–3203.

Dragomir R. Radev, Pradeep Muthukrishnan, Vahed
Qazvinian, and Amjad Abu-Jbara. 2013. The ACL
anthology network corpus. Language Resources and
Evaluation, pages 1–26.

William M. Rand. 1971. Objective criteria for the eval-
uation of clustering methods. Journal of the American
Statistical association, 66(336):846–850.

S. Redner. 1998. How popular is your paper? an empir-
ical study of the citation distribution. The European
Physical Journal B-Condensed Matter and Complex
Systems, 4(2):131–134.

P. Sarkar, A.W. Moore, and A. Prakash. 2008. Fast incre-
mental proximity search in large graphs. In Proceed-
ings of the 25th international conference on Machine
learning, pages 896–903. ACM.

Allan A. Sioson. 2005. Multimodal networks in biology.
Ph.D. thesis, Virginia Polytechnic Institute and State
University.

Michael Speriosu, Nikita Sudan, Sid Upadhyay, and Ja-
son Baldridge. 2011. Twitter polarity classification
with label propagation over lexical links and the fol-
lower graph. In Proceedings of the First workshop on
Unsupervised Learning in NLP, pages 53–63, Edin-
burgh, Scotland, July. ACL.

Alexander Strehl and Joydeep Ghosh. 2003. Cluster
ensembles—a knowledge reuse framework for com-
bining multiple partitions. The Journal of Machine
Learning Research, 3:583–617.

Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin,
Hong Cheng, and Tianyi Wu. 2009. Rankclus: inte-
grating clustering with ranking for heterogeneous in-
formation network analysis. In Proceedings of the
12th International Conference on Extending Database
Technology: Advances in Database Technology, pages
565–576. ACM.

Yizhou Sun, Rick Barber, Manish Gupta, and Jiawei Han.
2011. Co-author relationship prediction in heteroge-
neous bibliographic networks.

Yizhou Sun, Charu C. Aggarwal, and Jiawei Han. 2012.
Relation strength-aware clustering of heterogeneous
information networks with incomplete attributes. Pro-
ceedings of the VLDB Endowment, 5(5):394–405.

Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne
Koller. 2003. Link prediction in relational data. In
Neural Information Processing Systems, volume 15.

Robert Tibshirani, Guenther Walther, and Trevor Hastie.
2001. Estimating the number of clusters in a data
set via the gap statistic. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology),
63(2):411–423.

Kristina Toutanova, Christopher D Manning, and An-
drew Y Ng. 2004. Learning random walk models
for inducing word dependency distributions. In Pro-
ceedings of the twenty-first international conference
on Machine learning, page 103. ACM.

Xuerui Wang, Natasha Mohanty, and Andrew McCallum.
2006. Group and topic discovery from relations and
their attributes. Technical report, DTIC Document.

Kai Yu, Shipeng Yu, and Volker Tresp. 2006. Soft
clustering on graphs. Advances in Neural Information
Processing Systems, 18:1553.

Ding Zhou, Sergey A. Orshanskiy, Hongyuan Zha, and
C. Lee Giles. 2007. Co-ranking authors and docu-
ments in a heterogeneous network. In Data Mining,
2007. ICDM 2007. Seventh IEEE International Con-
ference on, pages 739–744. IEEE.

13

14

Discriminative Lexical Semantic Segmentation with Gaps:
Running the MWE Gamut

Nathan Schneider Emily Danchik Chris Dyer Noah A. Smith
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{nschneid,emilydan,cdyer,nasmith}@cs.cmu.edu

Abstract

We present a novel representation, evaluation
measure, and supervised models for the task of
identifying the multiword expressions (MWEs)
in a sentence, resulting in a lexical seman-
tic segmentation. Our approach generalizes
a standard chunking representation to encode
MWEs containing gaps, thereby enabling effi-
cient sequence tagging algorithms for feature-
rich discriminative models. Experiments on a
new dataset of English web text offer the first
linguistically-driven evaluation of MWE iden-
tification with truly heterogeneous expression
types. Our statistical sequence model greatly
outperforms a lookup-based segmentation pro-
cedure, achieving nearly 60% F1 for MWE
identification.

1 Introduction

Language has a knack for defying expectations when
put under the microscope. For example, there is the
notion—sometimes referred to as compositionality—
that words will behave in predictable ways, with indi-
vidual meanings that combine to form complex mean-
ings according to general grammatical principles. Yet
language is awash with examples to the contrary:
in particular, idiomatic expressions such as awash
with NP, have a knack for VP-ing, to the contrary, and
defy expectations. Thanks to processes like metaphor
and grammaticalization, these are (to various degrees)
semantically opaque, structurally fossilized, and/or
statistically idiosyncratic. In other words, idiomatic
expressions may be exceptional in form, function,
or distribution. They are so diverse, so unruly, so

1. MW named entities: Prime Minister Tony Blair
2. MW compounds: hot air balloon, skinny dip
3. conventionally SW compounds: somewhere
4. verb-particle: pick up, dry out, take over, cut short
5. verb-preposition: refer to, depend on, look for
6. verb-noun(-preposition): pay attention (to)
7. support verb: make decisions, take pictures
8. other phrasal verb: put up with, get rid of
9. PP modifier: above board, at all, from time to time

10. coordinated phrase: cut and dry, more or less
11. connective: as well as, let alone, in spite of
12. semi-fixed VP: pick up where <one> left off
13. fixed phrase: scared to death, leave of absence
14. phatic: You’re welcome. Me neither!
15. proverb: Beggars can’t be choosers.

Figure 1: Some of the classes of idioms in English.
The examples included here contain multiple lexicalized
words—with the exception of those in (3), if the conven-
tional single-word (SW) spelling is used.

difficult to circumscribe, that entire theories of syn-
tax are predicated on the notion that constructions
with idiosyncratic form-meaning mappings (Fillmore
et al., 1988; Goldberg, 1995) or statistical properties
(Goldberg, 2006) offer crucial evidence about the
grammatical organization of language.

Here we focus on multiword expressions
(MWEs): lexicalized combinations of two or more
words that are exceptional enough to be considered
as single units in the lexicon. As figure 1 illus-
trates, MWEs occupy diverse syntactic and semantic
functions. Within MWEs, we distinguish (a) proper
names and (b) lexical idioms. The latter have proved
themselves a “pain in the neck for NLP” (Sag et al.,
2002). Automatic and efficient detection of MWEs,
though far from solved, would have diverse appli-

193

Transactions of the Association for Computational Linguistics, 2 (2014) 193–206. Action Editor: Joakim Nivre.
Submitted 12/2013; Revised 1/2014; Published 4/2014. c©2014 Association for Computational Linguistics.

cations including machine translation (Carpuat and
Diab, 2010), information retrieval (Newman et al.,
2012), opinion mining (Berend, 2011), and second
language learning (Ellis et al., 2008).

It is difficult to establish any comprehensive tax-
onomy of multiword idioms, let alone develop lin-
guistic criteria and corpus resources that cut across
these types. Consequently, the voluminous litera-
ture on MWEs in computational linguistics—see §7,
Baldwin and Kim (2010), and Ramisch (2012) for
surveys—has been fragmented, looking (for exam-
ple) at subclasses of phrasal verbs or nominal com-
pounds in isolation. To the extent that MWEs have
been annotated in existing corpora, it has usually
been as a secondary aspect of some other scheme.
Traditionally, such resources have prioritized certain
kinds of MWEs to the exclusion of others, so they
are not appropriate for evaluating general-purpose
identification systems.

In this article, we briefly review a shallow form
of analysis for MWEs that is neutral to expression
type, and that facilitates free text annotation with-
out requiring a prespecified MWE lexicon (§2). The
scheme applies to gappy (discontinuous) as well as
contiguous expressions, and allows for a qualitative
distinction of association strengths. In Schneider
et al. (2014) we have applied this scheme to fully an-
notate a 55,000-word corpus of English web reviews
(Bies et al., 2012a), a conversational genre in which
colloquial idioms are highly salient. This article’s
main contribution is to show that the representation—
constrained according to linguistically motivated as-
sumptions (§3)—can be transformed into a sequence
tagging scheme that resembles standard approaches
in named entity recognition and other text chunking
tasks (§4). Along these lines, we develop a discrim-
inative, structured model of MWEs in context (§5)
and train, evaluate, and examine it on the annotated
corpus (§6). Finally, in §7 and §8 we comment on
related work and future directions.

2 Annotated Corpus

To build and evaluate a multiword expression ana-
lyzer, we use the MWE-annotated corpus of Schnei-
der et al. (2014). It consists of informal English web
text that has been specifically and completely anno-
tated for MWEs, without reference to any particular

lexicon. To the best of our knowledge, this corpus
is the first to be freely annotated for many kinds of
MWEs (without reference to a lexicon), and is also
the first dataset of social media text with MWE an-
notations beyond named entities. This section gives
a synopsis of the annotation conventions used to de-
velop that resource, as they are important to under-
standing our models and evaluation.

Rationale. The multiword expressions community
has lacked a canonical corpus resource comparable
to benchmark datasets used for problems such as
NER and parsing. Consequently, the MWE litera-
ture has been driven by lexicography: typically, the
goal is to acquire an MWE lexicon with little or no
supervision, or to apply such a lexicon to corpus
data. Studies of MWEs in context have focused on
various subclasses of constructions in isolation, ne-
cessitating special-purpose datasets and evaluation
schemes. By contrast, Schneider et al.’s (2014) cor-
pus creates an opportunity to tackle general-purpose
MWE identification, such as would be desirable for
use by high-coverage downstream NLP systems. It is
used to train and evaluate our models below. The cor-
pus is publicly available as a benchmark for further
research.1

Data. The documents in the corpus are online user
reviews of restaurants, medical providers, retailers,
automotive services, pet care services, etc. Marked
by conversational and opinionated language, this
genre is fertile ground for colloquial idioms (Nunberg
et al., 1994; Moon, 1998). The 723 reviews (55,000
words, 3,800 sentences) in the English Web Tree-
bank (WTB; Bies et al., 2012b) were collected by
Google, tokenized, and annotated with phrase struc-
ture trees in the style of the Penn Treebank (Marcus
et al., 1993). MWE annotators used the sentence and
word tokenizations supplied by the treebank.2

Annotation scheme. The annotation scheme itself
was designed to be as simple as possible. It consists
of grouping together the tokens in each sentence that
belong to the same MWE instance. While annotation
guidelines provide examples of MWE groupings in
a wide range of constructions, the annotator is not

1http://www.ark.cs.cmu.edu/LexSem/
2Because we use treebank data, syntactic parses are available

to assist in post hoc analysis. Syntactic information was not
shown to annotators.

194

of constituent tokens
2 3 ≥4 total

strong 2257 595 172 3024
weak 269 121 69 459

2526 716 241 3483

of gaps
0 1 2

2626 394 4
322 135 2

2948 529 6

Table 1: Counts in the MWE corpus.

tied to any particular taxonomy or syntactic structure.
This simplifies the number of decisions that have to
be made for each sentence, even if some are difficult.

Further instructions to annotators included:
• Groups should include only the lexically fixed parts

of an expression (modulo inflectional morphology);
this generally excludes determiners and pronouns:
made the mistake, pride themselves on.

• Multiword proper names count as MWEs.
• Misspelled or unconventionally spelled tokens are

interpreted according to the intended word if clear.
• Overtokenized words (spelled as two tokens, but

conventionally one word) are joined as multiwords.
Clitics separated by the tokenization in the corpus—
negative n’t, possessive ’s, etc.—are joined if func-
tioning as a fixed part of a multiword (e.g., T ’s
Cafe), but not if used productively.
Gaps. There are, broadly speaking, three reasons

to group together tokens that are not fully contigu-
ous. Most commonly, gaps contain internal modifiers,
such as good in make good decisions. Syntactic con-
structions such as the passive can result in gaps that
might not otherwise be present: in good decisions
were made, there is instead a gap filled by the pas-
sive auxiliary. Finally, some MWEs may take internal
arguments: they gave me a break. Figure 1 has addi-
tional examples. Multiple gaps can occur even within
the same expression, though it is rare: they agreed to
give Bob a well-deserved break.

Strength. The annotation scheme has two
“strength” levels for MWEs. Clearly idiomatic ex-
pressions are marked as strong MWEs, while mostly
compositional but especially frequent collocations/
phrases (e.g., abundantly clear and patently obvious)
are marked as weak MWEs. Weak multiword groups
are allowed to include strong MWEs as constituents
(but not vice versa). Strong groups are required to
cohere when used inside weak groups: that is, a weak
group cannot include only part of a strong group.
For purposes of annotation, there were no constraints

hinging on the ordering of tokens in the sentence.

Process. MWE annotation proceeded one sentence
at a time. The 6 annotators referred to and improved
the guidelines document on an ongoing basis. Every
sentence was seen independently by at least 2 an-
notators, and differences of opinion were discussed
and resolved (often by marking a weak MWE as a
compromise). See Schneider et al. (2014) for details.

Statistics. The annotated corpus consists of 723
documents (3,812 sentences). MWEs are frequent
in this domain: 57% of sentences (72% of sentences
over 10 words long) and 88% of documents contain
at least one MWE. 8,060/55,579=15% of tokens
belong to an MWE; in total, there are 3,483 MWE
instances. 544 (16%) are strong MWEs containing a
gold-tagged proper noun—most are proper names. A
breakdown appears in table 1.

3 Representation and Task Definition

We define a lexical segmentation of a sentence as a
partitioning of its tokens into segments such that each
segment represents a single unit of lexical meaning.
A multiword lexical expression may contain gaps,
i.e. interruptions by other segments. We impose two
restrictions on gaps that appear to be well-motivated
linguistically:
• Projectivity: Every expression filling a gap must

be completely contained within that gap; gappy
expressions may not interleave.

• No nested gaps: A gap in an expression may be
filled by other single- or multiword expressions, so
long as those do not themselves contain gaps.

Formal grammar. Our scheme corresponds to the
following extended CFG (Thatcher, 1967), where S
is the full sentence and terminals w are word tokens:

S → X+
X → w+ (Y+ w+)∗
Y → w+

Each expression X or Y is lexicalized by the words in
one or more underlined variables on the right-hand
side. An X constituent may optionally contain one or
more gaps filled by Y constituents, which must not
contain gaps themselves.3

3MWEs with multiple gaps are rare but attested in data: e.g.,
putting me at my ease. We encountered one violation of the gap
nesting constraint in the reviews data: I have2

1 nothing2
1 but21

fantastic things2 to2
1 say2

1 . Additionally, the interrupted phrase

195

Denoting multiword groupings with subscripts, My
wife had taken1 her ’072 Ford2 Fusion2 in1 for a
routine oil3 change3 contains 3 multiword groups—{taken, in}, {’07, Ford, Fusion}, {oil, change}—and
7 single-word groups. The first MWE is gappy (ac-
centuated by the box); a single word and a contiguous
multiword group fall within the gap. The projectivity
constraint forbids an analysis like taken1 her ’072
Ford1 Fusion2, while the gap nesting constraint for-

bids taken1 her2 ’07 Ford2 Fusion2 in1.

3.1 Two-level Scheme: Strong vs. Weak MWEs

Our annotated data distinguish two strengths of
MWEs as discussed in §2. Augmenting the gram-
mar of the previous section, we therefore designate
nonterminals as strong (X , Y) or weak (X̃ , Ỹ):

S → X̃+
X̃ → X

+ (Ỹ+ X
+)∗

X → w+ (Ỹ+ w+)∗
Ỹ → Y

+
Y → w+

A weak MWE may be lexicalized by single words
and/or strong multiwords. Strong multiwords cannot
contain weak multiwords except in gaps. Further, the
contents of a gap cannot be part of any multiword
that extends outside the gap.4

For example, consider the segmentation: he was
willing to budge1 a2 little2 on1 the price which
means4 a4

3 lot43 to4 me4. Subscripts denote strong
MW groups and superscripts weak MW groups; un-
marked tokens serve as single-word expressions. The
MW groups are thus {budge, on}, {a, little}, {a, lot},
and {means, {a, lot}, to, me}. As should be evident
from the grammar, the projectivity and gap-nesting
constraints apply here just as in the 1-level scheme.

3.2 Evaluation

Matching criteria. Given that most tokens do not
belong to an MWE, to evaluate MWE identification
we adopt a precision/recall-based measure from the
coreference resolution literature. The MUC criterion
(Vilain et al., 1995) measures precision and recall

great gateways never1 before1 , so2
3 far2

3 as2
3 Hudson knew2 ,

seen1 by Europeans was annotated in another corpus.
4This was violated 6 times in our annotated data: modifiers

within gaps are sometimes collocated with the gappy expression,
as in on1

2 a1
2 tight1 budget12 and have1

2 little1 doubt12.

of links in terms of groups (units) implied by the
transitive closure over those links.5 It can be defined
as follows:

Let a Ð b denote a link between two elements
in the gold standard, and aÐ̂b denote a link in the
system prediction. Let the ∗ operator denote the tran-
sitive closure over all links, such that ⟦aÐ∗b⟧ is 1 if
a and b belong to the same (gold) set, and 0 other-
wise. Assuming there are no redundant6 links within
any annotation (which in our case is guaranteed by
linking consecutive words in each MWE), we can
write the MUC precision and recall measures as:

P = ∑a,b∶aÐ̂b ⟦aÐ∗b⟧
∑a,b∶aÐ̂b 1

R = ∑a,b∶aÐb ⟦aÐ̂∗b⟧
∑a,b∶aÐb 1

This awards partial credit when predicted and gold
expressions overlap in part. Requiring full MWEs to
match exactly would arguably be too stringent, over-
penalizing larger MWEs for minor disagreements.
We combine precision and recall using the standard
F1 measure of their harmonic mean. This is the link-
based evaluation used for most of our experiments.
For comparison, we also report some results with
a more stringent exact match evaluation where the
span of the predicted MWE must be identical to the
span of the gold MWE for it to count as correct.
Strength averaging. Recall that the 2-level
scheme (§3.1) distinguishes strong vs. weak links/
groups, where the latter category applies to reason-
ably compositional collocations as well as ambigu-
ous or difficult cases. If where one annotation uses
a weak link the other has a strong link or no link at
all, we want to penalize the disagreement less than
if one had a strong link and the other had no link.
To accommodate the 2-level scheme, we therefore
average F↑1 , in which all weak links have been con-
verted to strong links, and F↓1 , in which they have
been removed: F1 = 1

2(F↑1 +F↓1).7 If neither annota-
tion contains any weak links, this equals the MUC

5As a criterion for coreference resolution, the MUC measure
has perceived shortcomings which have prompted several other
measures (see Recasens and Hovy, 2011 for a review). It is not
clear, however, whether any of these criticisms are relevant to
MWE identification.

6A link between a and b is redundant if the other links already
imply that a and b belong to the same set. A set of N elements is
expressed non-redundantly with exactly N −1 links.

7Overall precision and recall are likewise computed by aver-
aging “strengthened” and “weakened” measurements.

196

no gaps,
1-level

he
O

was
O

willing
O

to
O

budge
O

a
B

little
I

on
O

the
O

price
O

which
O

means
B

a
I

lot
I

to
I

me
I

.
O

(O∣BI+)+
no gaps,
2-level

he
O

was
O

willing
O

to
O

budge
O

a
B

little
Ī

on
O

the
O

price
O

which
O

means
B

a
Ĩ

lot
Ī

to
Ĩ

me
Ĩ

.
O

(O∣B[ĪĨ]+)+

gappy,
1-level

he
O

was
O

willing
O

to
O

budge
B

a
b

little
i

on
I

the
O

price
O

which
O

means
B

a
I

lot
I

to
I

me
I

.
O

(O∣B(o∣bi+∣I)∗I+)+

gappy,
2-level

he
O

was
O

willing
O

to
O

budge
B

a
b

little
ı̄

on
Ī

the
O

price
O

which
O

means
B

a
Ĩ

lot
Ī

to
Ĩ

me
Ĩ

.
O

(O∣B(o∣b[ı̄ı̃]+∣[ĪĨ])∗[ĪĨ]+)+
Figure 2: Examples and regular expressions for the 4 tagging schemes. Strong links are depicted with solid arcs, and
weak links with dotted arcs. The bottom analysis was provided by an annotator; the ones above are simplifications.

score because F1 = F↑1 = F↓1 . This method applies
to both the link-based and exact match evaluation
criteria.

4 Tagging Schemes

Following (Ramshaw and Marcus, 1995), shallow an-
alysis is often modeled as a sequence-chunking task,
with tags containing chunk-positional information.
The BIO scheme and variants (e.g., BILOU; Ratinov
and Roth, 2009) are standard for tasks like named
entity recognition, supersense tagging, and shallow
parsing.

The language of derivations licensed by the gram-
mars in §3 allows for a tag-based encoding of MWE
analyses with only bigram constraints. We describe
4 tagging schemes for MWE identification, starting
with BIO and working up to more expressive variants.
They are depicted in figure 2.
No gaps, 1-level (3 tags). This is the standard con-
tiguous chunking representation from Ramshaw and
Marcus (1995) using the tags {O B I}. O is for to-
kens outside any chunk; B marks tokens beginning
a chunk; and I marks other tokens inside a chunk.
Multiword chunks will thus start with B and then I.
B must always be followed by I; I is not allowed at
the beginning of the sentence or following O.
No gaps, 2-level (4 tags). We can distinguish
strength levels by splitting I into two tags: Ī for
strong expressions and Ĩ for weak expressions. To
express strong and weak contiguous chunks requires
4 tags: {O B Ī Ĩ}. (Marking B with a strength as well
would be redundant because MWEs are never length-
one chunks.) The constraints on Ī and Ĩ are the same
as the constraints on I in previous schemes. If Ī and

Ĩ occur next to each other, the strong attachment will
receive higher precedence, resulting in analysis of
strong MWEs as nested within weak MWEs.

Gappy, 1-level (6 tags). Because gaps cannot
themselves contain gappy expressions (we do not
support full recursivity), a finite number of additional
tags are sufficient to encode gappy chunks. We there-
fore add lowercase tag variants representing tokens
within a gap: {O o B b I i}. In addition to the con-
straints stated above, no within-gap tag may occur at
the beginning or end of the sentence or immediately
following or preceding O. Within a gap, b, i, and o
behave like their out-of-gap counterparts.

Gappy, 2-level (8 tags). 8 tags are required to en-
code the 2-level scheme with gaps: {O o B b Ī ı̄ Ĩ ı̃}.
Variants of the inside tag are marked for strength of
the incoming link—this applies gap-externally (capi-
talized tags) and gap-internally (lowercase tags). If Ī
or Ĩ immediately follows a gap, its diacritic reflects
the strength of the gappy expression, not the gap’s
contents.

5 Model

With the above representations we model MWE iden-
tification as sequence tagging, one of the paradigms
that has been used previously for identifying con-
tiguous MWEs (Constant and Sigogne, 2011, see
§7).8 Constraints on legal tag bigrams are sufficient
to ensure the full tagging is well-formed subject to
the regular expressions in figure 2; we enforce these

8Hierarchical modeling based on our representations is left
to future work.

197

constraints in our experiments.9

In NLP, conditional random fields (Lafferty et al.,
2001) and the structured perceptron (Collins, 2002)
are popular techniques for discriminative sequence
modeling with a convex loss function. We choose
the second approach for its speed: learning and in-
ference depend mainly on the runtime of the Viterbi
algorithm, whose asymptotic complexity is linear in
the length of the input and (with a first-order Markov
assumption) quadratic in the number of tags. Below,
we review the structured perceptron and discuss our
cost function, features, and experimental setup.

5.1 Cost-Augmented Structured Perceptron
The structured perceptron’s (Collins, 2002) learn-
ing procedure, algorithm 1, generalizes the classic
perceptron algorithm (Freund and Schapire, 1999) to
incorporate a structured decoding step (for sequences,
the Viterbi algorithm) in the inner loop. Thus, train-
ing requires only max inference, which is fast with a
first-order Markov assumption. In training, features
are adjusted where a tagging error is made; the pro-
cedure can be viewed as optimizing the structured
hinge loss. The output of learning is a weight vector
that parametrizes a feature-rich scoring function over
candidate labelings of a sequence.

To better align the learning algorithm with our
F-score–based MWE evaluation (§3.2), we use a
cost-augmented version of the structured perceptron
that is sensitive to different kinds of errors during
training. When recall is the bigger obstacle, we can
adopt the following cost function: given a sentence
x, its gold labeling y∗, and a candidate labeling y′,

cost(y∗,y′,x) = ∣y∗∣∑
j=1

c(y∗j ,y′j) where

c(y∗,y′) = ⟦y∗ ≠ y′⟧+ρ⟦y∗ ∈ {B,b}∧y′ ∈ {O,o}⟧
A single nonnegative hyperparameter, ρ , controls
the tradeoff between recall and accuracy; higher ρ
biases the model in favor of recall (possibly hurt-
ing accuracy and precision). This is a slight variant
of the recall-oriented cost function of Mohit et al.
(2012). The difference is that we only penalize
beginning-of-expression recall errors. Preliminary

9The 8-tag scheme licenses 42 tag bigrams: sequences such
as B O and o ı̄ are prohibited. There are also constraints on the
allowed tags at the beginning and end of the sequence.

Input: data ⟨⟨x(n),y(n)⟩⟩N

n=1; number of iterations M
w← 0
w← 0
t ← 1
for m = 1 to M do

for n = 1 to N do⟨x,y⟩← ⟨x(n),y(n)⟩
ŷ← argmaxy′ (w⊺g(x,y′)+cost(y,y′,x))
if ŷ ≠ y then

w←w+g(x,y)−g(x, ŷ)
w←w+ tg(x,y)− tg(x, ŷ)

end
t ← t +1

end
end
Output: w−(w/t)

Algorithm 1: Training with the averaged perceptron.
(Adapted from Daumé, 2006, p. 19.)

experiments showed that a cost function penalizing
all recall errors—i.e., with ρ⟦y∗ ≠ O∧y′ = O⟧ as the
second term, as in Mohit et al.—tended to append
additional tokens to high-confidence MWEs (such
as proper names) rather than encourage new MWEs,
which would require positing at least two new non-
outside tags.

5.2 Features
Basic features. These are largely based on those
of Constant et al. (2012): they look at word unigrams
and bigrams, character prefixes and suffixes, and POS
tags, as well as lexicon entries that match lemmas10

of multiple words in the sentence. Appendix A lists
the basic features in detail.

Some of the basic features make use of lexicons.
We use or construct 10 lists of English MWEs: all
multiword entries in WordNet (Fellbaum, 1998); all
multiword chunks in SemCor (Miller et al., 1993);
all multiword entries in English Wiktionary;11 the
WikiMwe dataset mined from English Wikipedia
(Hartmann et al., 2012); the SAID database of
phrasal lexical idioms (Kuiper et al., 2003); the
named entities and other MWEs in the WSJ corpus
on the English side of the CEDT (Hajič et al., 2012);

10The WordNet API in NLTK (Bird et al., 2009) was used for
lemmatization.

11http://en.wiktionary.org; data obtained from
https://toolserver.org/~enwikt/definitions/
enwikt-defs-20130814-en.tsv.gz

198

LOOKUP SUPERVISED MODEL

preexising lexicons entries max gap
length

P R F1 σ P R F1 σ
none 0 74.39 44.43 55.57 2.19
WordNet + SemCor 71k 0 46.15 28.41 35.10 2.44 74.51 45.79 56.64 1.90
6 lexicons 420k 0 35.05 46.76 40.00 2.88 76.08 52.39 61.95 1.67
10 lexicons 437k 0 33.98 47.29 39.48 2.88 75.95 51.39 61.17 2.30

best configuration with
in-domain lexicon

1 46.66 47.90 47.18 2.31 76.64 51.91 61.84 1.65
2 lexicons + MWtypes(train)≥1 6 lexicons + MWtypes(train)≥2

Table 2: Use of lexicons for lookup-based vs. statistical segmentation. Supervised learning used only basic features
and the structured perceptron, with the 8-tag scheme. Results are with the link-based matching criterion for evaluation.
Top: Comparison of preexisting lexicons. “6 lexicons” refers to WordNet and SemCor plus SAID, WikiMwe, Phrases.net,
and English Wiktionary; “10 lexicons” adds MWEs from CEDT, VNC, LVC, and Oyz. (In these lookup-based
configurations, allowing gappy MWEs never helps performance.)
Bottom: Combining preexisting lexicons with a lexicon derived from MWEs annotated in the training portion of each
cross-validation fold at least once (lookup) or twice (model).
All precision, recall, and F1 percentages are averaged across 8 folds of cross-validation on train; standard deviations
are shown for the F1 score. In each column, the highest value using only preexisting lexicons is underlined, and the
highest overall value is bolded. The boxed row indicates the configuration used as the basis for subsequent experiments.

the verb-particle constructions (VPCs) dataset of
(Baldwin, 2008); a list of light verb constructions
(LVCs) provided by Claire Bonial; and two idioms
websites.12 After preprocessing, each lexical entry
consists of an ordered sequence of word lemmas,
some of which may be variables like <something>.

Given a sentence and one or more of the lexicons,
lookup proceeds as follows: we enumerate entries
whose lemma sequences match a sequence of lemma-
tized tokens, and build a lattice of possible analyses
over the sentence. We find the shortest path (i.e.,
using as few expressions as possible) with dynamic
programming, allowing gaps of up to length 2.13

Unsupervised word clusters. Distributional clus-
tering on large (unlabeled) corpora can produce lexi-
cal generalizations that are useful for syntactic and
semantic analysis tasks (e.g.: Miller et al., 2004; Koo
et al., 2008; Turian et al., 2010; Owoputi et al., 2013;
Grave et al., 2013). We were interested to see whether
a similar pattern would hold for MWE identification,
given that MWEs are concerned with what is lexi-
cally idiosyncratic—i.e., backing off from specific
lexemes to word classes may lose the MWE-relevant
information. Brown clustering14 (Brown et al., 1992)

12http://www.phrases.net/ and http://home.
postech.ac.kr/~oyz/doc/idiom.html

13Each top-level lexical expression (single- or multiword)
incurs a cost of 1; each expression within a gap has cost 1.25.

14With Liang’s (2005) implementation: https://github.
com/percyliang/brown-cluster. We obtain 1,000 clusters

on the 21-million-word Yelp Academic Dataset15

(which is similar in genre to the annotated web re-
views data) gives us a hard clustering of word types.
To our tagger, we add features mapping the previ-
ous, current, and next token to Brown cluster IDs.
The feature for the current token conjoins the word
lemma with the cluster ID.

Part-of-speech tags. We compared three PTB-
style POS taggers on the full REVIEWS subcor-
pus (train+test). The Stanford CoreNLP tagger16

(Toutanova et al., 2003) yields an accuracy of 90.4%.
The ARK TweetNLP tagger v. 0.3.2 (Owoputi et al.,
2013) achieves 90.1% with the model17 trained on the
Twitter corpus of Ritter et al. (2011), and 94.9% when
trained on the ANSWERS, EMAIL, NEWSGROUP, and
WEBLOG subcorpora of WTB. We use this third con-
figuration to produce automatic POS tags for training
and testing our MWE tagger. (A comparison condi-
tion in §6.3 uses oracle POS tags.)

5.3 Experimental Setup

The corpus of web reviews described in §2 is used
for training and evaluation. 101 arbitrarily chosen
documents (500 sentences, 7,171 words) were held

from words appearing at least 25 times.
15https://www.yelp.com/academic_dataset
16v. 3.2.0, with english-bidirectional-distsim
17http://www.ark.cs.cmu.edu/TweetNLP/model.

ritter_ptb_alldata_fixed.20130723

199

LINK-BASED EXACT MATCH

configuration M ρ ∣w∣ P R F1 P R F1

base model 5 — 1,765k 69.27 50.49 58.35 60.99 48.27 53.85+ recall cost 4 150 1,765k 61.09 57.94 59.41 53.09 55.38 54.17+ clusters 3 100 2,146k 63.98 55.51 59.39 56.34 53.24 54.70+ oracle POS 4 100 2,145k 66.19 59.35 62.53 58.51 57.00 57.71

Table 3: Comparison of supervised models on test (using the 8-tag scheme). The base model corresponds to the boxed
result in table table 2, but here evaluated on test. For each configuration, the number of training iterations M and (except
for the base model) the recall-oriented hyperparameter ρ were tuned by cross-validation on train.

out as a final test set. This left 3,312 sentences/
48,408 words for training/development (train). Fea-
ture engineering and hyperparameter tuning were
conducted with 8-fold cross-validation on train. The
8-tag scheme is used except where otherwise noted.

In learning with the structured perceptron (algo-
rithm 1), we employ two well-known techniques that
can both be viewed as regularization. First, we use
the average of parameters over all timesteps of learn-
ing. Second, within each cross-validation fold, we de-
termine the number of training iterations (epochs) M
by early stopping—that is, after each iteration, we use
the model to decode the held-out data, and when that
accuracy ceases to improve, use the previous model.
The two hyperparameters are the number of iterations
and the value of the recall cost hyperparameter (ρ).
Both are tuned via cross-validation on train; we use
the multiple of 50 that maximizes average link-based
F1. The chosen values are shown in table 3. Experi-
ments were managed with the ducttape tool.18

6 Results

We experimentally address the following questions
to probe and justify our modeling approach.

6.1 Is supervised learning necessary?

Previous MWE identification studies have found
benefit to statistical learning over heuristic lexicon
lookup (Constant and Sigogne, 2011; Green et al.,
2012). Our first experiment tests whether this holds
for comprehensive MWE identification: it compares
our supervised tagging approach with baselines of
heuristic lookup on preexisting lexicons. The base-
lines construct a lattice for each sentence using the
same method as lexicon-based model features (§5.2).
If multiple lexicons are used, the union of their en-

18https://github.com/jhclark/ducttape/

tries is used to construct the lattice. The resulting
segmentation—which does not encode a strength
distinction—is evaluated against the gold standard.

Table 2 shows the results. Even with just the la-
beled training set as input, the supervised approach
beats the strongest heuristic baseline (that incorpo-
rates in-domain lexicon entries extracted from the
training data) by 30 precision points, while achieving
comparable recall. For example, the baseline (but not
the statistical model) incorrectly predicts an MWE in
places to eat in Baltimore (because eat in, meaning
‘eat at home,’ is listed in WordNet). The supervised
approach has learned not to trust WordNet too much
due to this sort of ambiguity. Downstream applica-
tions that currently use lexicon matching for MWE
identification (e.g., Ghoneim and Diab, 2013) likely
stand to benefit from our statistical approach.

6.2 How best to exploit MWE lexicons
(type-level information)?

For statistical tagging (right portion of table 2), using
more preexisting (out-of-domain) lexicons generally
improves recall; precision also improves a bit.

A lexicon of MWEs occurring in the non-held-out
training data at least twice19 (table 2, bottom right) is
marginally worse (better precision/worse recall) than
the best result using only preexisting lexicons.

6.3 Variations on the base model

We experiment with some of the modeling alterna-
tives discussed in §5. Results appear in table 3 under
both the link-based and exact match evaluation cri-
teria. We note that the exact match scores are (as
expected) several points lower.

19If we train with access to the full lexicon of training
set MWEs, the learner credulously overfits to relying on that
lexicon—after all, it has perfect coverage of the training data!—
which proves fatal for the model at test time.

200

Recall-oriented cost. The recall-oriented cost
adds about 1 link-based F1 point, sacrificing precision
in favor of recall.
Unsupervised word clusters. When combined
with the recall-oriented cost, these produce a slight
improvement to precision/degradation to recall, im-
proving exact match F1 but not affecting link-based
F1. Only a few clusters receive high positive weight;
one of these consists of matter, joke, biggie, pun,
avail, clue, corkage, frills, worries, etc. These words
are diverse semantically, but all occur in collocations
with no, which is what makes the cluster coherent
and useful to the MWE model.
Oracle part-of-speech tags. Using human-
annotated rather than automatic POS tags improves
MWE identification by about 3 F1 points on test
(similar differences were observed in development).

6.4 What are the highest-weighted features?
An advantage of the linear modeling framework is
that we can examine learned feature weights to gain
some insight into the model’s behavior.

In general, the highest-weighted features are the
lexicon matching features and features indicative of
proper names (POS tag of proper noun, capitalized
word not at the beginning of the sentence, etc.).

Despite the occasional cluster capturing colloca-
tional or idiomatic groupings, as described in the
previous section, the clusters appear to be mostly
useful for identifying words that tend to belong (or
not) to proper names. For example, the cluster with
street, road, freeway, highway, airport, etc., as well
as words outside of the cluster vocabulary, weigh
in favor of an MWE. A cluster with everyday desti-
nations (neighborhood, doctor, hotel, bank, dentist)
prefers non-MWEs, presumably because these words
are not typically part of proper names in this corpus.
This was from the best model using non-oracle POS
tags, so the clusters are perhaps useful in correct-
ing for proper nouns that were mistakenly tagged
as common nouns. One caveat, though, is that it is
hard to discern the impact of these specific features
where others may be capturing essentially the same
information.

6.5 How heterogeneous are learned MWEs?
On test, the final model (with automatic POS tags)
predicts 365 MWE instances (31 are gappy; 23 are

POS pattern # examples (lowercased lemmas)

NOUN NOUN 53 customer service, oil change
VERB PREP 36 work with, deal with, yell at
PROPN PROPN 29 eagle transmission, comfort zone
ADJ NOUN 21 major award, top notch, mental health
VERB PART 20 move out, end up, pick up, pass up
VERB ADV 17 come back, come in, come by, stay away
PREP NOUN 12 on time, in fact, in cash, for instance
VERB NOUN 10 take care, make money, give crap
VERB PRON 10 thank you, get it
PREP PREP 8 out of, due to, out ta, in between
ADV ADV 6 no matter, up front, at all, early on
DET NOUN 6 a lot, a little, a bit, a deal
VERB DET NOUN 6 answer the phone, take a chance
NOUN PREP 5 kind of, care for, tip on, answer to

Table 4: Top predicted POS patterns and frequencies.

weak). There are 298 unique MWE types.
Organizing the predicted MWEs by their coarse

POS sequence reveals that the model is not too preju-
diced in the kinds of expressions it recognizes: the
298 types fall under 89 unique POS+strength patterns.
Table 4 shows the 14 POS sequences predicted 5 or
more times as strong MWEs. Some of the examples
(major award, a deal, tip on) are false positives, but
most are correct. Singleton patterns include PROPN
VERB (god forbid), PREP DET (at that), ADJ PRON

(worth it), and PREP VERB PREP (to die for).
True positive MWEs mostly consist of (a) named

entities, and (b) lexical idioms seen in training and/or
listed in one of the lexicons. Occasionally the sys-
tem correctly guesses an unseen and OOV idiom
based on features such as hyphenation (walk - in) and
capitalization/OOV words (Chili Relleno, BIG MIS-
TAKE). On test, 244 gold MWE types were unseen
in training; the system found 93 true positives (where
the type was predicted at least once), 109 false posi-
tives, and 151 false negatives—an unseen type recall
rate of 38%. Removing types that occurred in lexi-
cons leaves 35 true positives, 61 false positives, and
111 false negatives—a unseen and OOV type recall
rate of 24%.

6.6 What kinds of mismatches occur?

Inspection of the output turns up false positives due
to ambiguity (e.g., Spongy and sweet bread); false
negatives (top to bottom); and overlap (get high qual-
ity service, gold get high quality service; live up to,
gold live up to). A number of the mismatches turn

201

scheme ∣Y ∣ ρ M ∣w∣ P R F1

no gaps, 1-level 3 100 2.1 733k 73.33 55.72 63.20
no gaps, 2-level 4 150 3.3 977k 72.60 59.11 65.09
gappy, 1-level 6 200 1.6 1,466k 66.48 61.26 63.65
gappy, 2-level 8 100 3.5 1,954k 73.27 60.44 66.15

Table 5: Training with different tagging schemes. Results
are cross-validation averages on train. All schemes are
evaluated against the full gold standard (8 tags).

out to be problems with the gold standard, like hav-
ing our water shut off (gold having our water shut
off). This suggests that even noisy automatic taggers
might help identify annotation inconsistencies and
errors for manual correction.

6.7 Are gappiness and the strength distinction
learned in practice?

Three quarters of MWEs are strong and contain no
gaps. To see whether our model is actually sensi-
tive to the phenomena of gappiness and strength,
we train on data simplified to remove one or both
distinctions—as in the first 3 labelings in figure 2—
and evaluate against the full 8-tag scheme. For the
model with the recall cost, clusters, and oracle POS
tags, we evaluate each of these simplifications of
the training data in table 5. The gold standard for
evaluation remains the same across all conditions.

If the model was unable to recover gappy expres-
sions or the strong/weak distinction, we would expect
it to do no better when trained with the full tagset than
with the simplified tagset. However, there is some
loss in performance as the tagset for learning is sim-
plified, which suggests that gappiness and strength
are being learned to an extent.

7 Related Work

Our annotated corpus (Schneider et al., 2014) joins
several resources that indicate certain varieties of
MWEs: lexicons such as WordNet (Fellbaum, 1998),
SAID (Kuiper et al., 2003), and WikiMwe (Hartmann
et al., 2012); targeted lists (Baldwin, 2005, 2008;
Cook et al., 2008; Tu and Roth, 2011, 2012); web-
sites like Wiktionary and Phrases.net; and large-scale
corpora such as SemCor (Miller et al., 1993), the
French Treebank (Abeillé et al., 2003), the Szeged-
ParalellFX corpus (Vincze, 2012), and the Prague
Czech-English Dependency Treebank (Čmejrek et al.,

2005). The difference is that Schneider et al. (2014)
pursued a comprehensive annotation approach rather
than targeting specific varieties of MWEs or relying
on a preexisting lexical resource. The annotations
are shallow, not relying explicitly on syntax (though
in principle they could be mapped onto the parses in
the Web Treebank).

In terms of modeling, the use of machine learn-
ing classification (Hashimoto and Kawahara, 2008;
Shigeto et al., 2013) and specifically BIO sequence
tagging (Diab and Bhutada, 2009; Constant and Si-
gogne, 2011; Constant et al., 2012; Vincze et al.,
2013) for contextual recognition of MWEs is not
new. Lexical semantic classification tasks like named
entity recognition (e.g., Ratinov and Roth, 2009), su-
persense tagging (Ciaramita and Altun, 2006; Paaß
and Reichartz, 2009), and index term identification
(Newman et al., 2012) also involve chunking of cer-
tain MWEs. But our discriminative models, facili-
tated by the new corpus, broaden the scope of the
MWE identification task to include many varieties of
MWEs at once, including explicit marking of gaps
and a strength distinction. By contrast, the afore-
mentioned identification systems, as well as some
MWE-enhanced syntactic parsers (e.g., Green et al.,
2012), have been restricted to contiguous MWEs.
However, Green et al. (2011) allow gaps to be de-
scribed as constituents in a syntax tree. Gimpel and
Smith’s (2011) shallow, gappy language model al-
lows arbitrary token groupings within a sentence,
whereas our model imposes projectivity and nest-
ing constraints (§3). Blunsom and Baldwin (2006)
present a sequence model for HPSG supertagging,
and evaluate performance on discontinuous MWEs,
though the sequence model treats the non-adjacent
component supertags like other labels—it cannot en-
force that they mutually require one another, as we
do via the gappy tagging scheme (§3.1). The lexicon
lookup procedures of Bejček et al. (2013) can match
gappy MWEs, but are nonstatistical and extremely
error-prone when tuned for high oracle recall.

Another major thread of research has pursued un-
supervised discovery of multiword types from raw
corpora, such as with statistical association measures
(Church et al., 1991; Pecina, 2010; Ramisch et al.,
2012, inter alia), parallel corpora (Melamed, 1997;
Moirón and Tiedemann, 2006; Tsvetkov and Wint-
ner, 2010), or a combination thereof (Tsvetkov and

202

Wintner, 2011); this may be followed by a lookup-
and-classify approach to contextual identification
(Ramisch et al., 2010). Though preliminary experi-
ments with our models did not show benefit to incor-
porating such automatically constructed lexicons, we
hope these two perspectives can be brought together
in future work.

8 Conclusion

This article has presented the first supervised model
for identifying heterogeneous multiword expressions
in English text. Our feature-rich discriminative se-
quence tagger performs shallow chunking with a
novel scheme that allows for MWEs containing gaps,
and includes a strength distinction to separate highly
idiomatic expressions from collocations. It is trained
and evaluated on a corpus of English web reviews
that are comprehensively annotated for multiword
expressions. Beyond the training data, its features in-
corporate evidence from external resources—several
lexicons as well as unsupervised word clusters; we
show experimentally that this statistical approach is
far superior to identifying MWEs by heuristic lexicon
lookup alone. Future extensions might integrate addi-
tional features (e.g., exploiting statistical association
measures computed over large corpora), enhance the
lexical representation (e.g., by adding semantic tags),
improve the expressiveness of the model (e.g., with
higher-order features and inference), or integrate the
model with other tasks (such as parsing and transla-
tion).

Our data and open source software are released at
http://www.ark.cs.cmu.edu/LexSem/.

Acknowledgments

This research was supported in part by NSF CA-
REER grant IIS-1054319, Google through the Read-
ing is Believing project at CMU, and DARPA grant
FA8750-12-2-0342 funded under the DEFT program.
We are grateful to Kevin Knight, Martha Palmer,
Claire Bonial, Lori Levin, Ed Hovy, Tim Baldwin,
Omri Abend, members of JHU CLSP, the NLP group
at Berkeley, and the Noah’s ARK group at CMU, and
anonymous reviewers for valuable feedback.

A Basic Features

All are conjoined with the current label, yi.

Label Features
1. previous label (the only first-order feature)

Token Features
Original token

2. i = {1,2}
3. i = ∣w∣−{0,1}
4. capitalized ∧ ⟦i = 0⟧
5. word shape

Lowercased token
6. prefix: [wi]k

1 ∣4k=1

7. suffix: [wi]∣w∣j ∣∣w∣j=∣w∣−3
8. has digit
9. has non-alphanumeric c

10. context word: w j ∣i+2
j=i−2

11. context word bigram: w j+1
j ∣i+1

j=i−2

Lemma Features
12. lemma + context lemma if one of them is a verb and the other
is a noun, verb, adjective, adverb, preposition, or particle: λi ∧
λ j ∣i+2

j=i−2

Part-of-speech Features
13. context POS: pos j ∣i+2

j=i−2

14. context POS bigram: pos j+1
j ∣i+1

j=i−2
15. word + context POS: wi∧posi±1
16. context word + POS: wi±1∧posi

Lexicon Features (unlexicalized)
WordNet only

17. OOV: λi is not in WordNet as a unigram lemma ∧ posi
18. compound: non-punctuation lemma λi and the {previous,
next} lemma in the sentence (if it is non-punctuation; an inter-
vening hyphen is allowed) form an entry in WordNet, possibly
separated by a hyphen or space

19. compound-hyphen: posi = HYPH ∧ previous and next tokens
form an entry in WordNet, possibly separated by a hyphen or
space

20. ambiguity class: if content word unigram λi is in WordNet,
the set of POS categories it can belong to; else posi if not a
content POS ∧ the POS of the longest MW match to which λi
belongs (if any) ∧ the position in that match (B or I)

For each multiword lexicon
21. lexicon name ∧ status of token i in the shortest path segmen-
tation (O, B, or I) ∧ subcategory of lexical entry whose match
includes token i, if matched ∧ whether the match is gappy

22. the above ∧ POS tags of the first and last matched tokens in
the expression

Over all multiword lexicons
23. at least k lexicons contain a match that includes this token (if
n ≥ 1 matches, n active features)

24. at least k lexicons contain a match that includes this token,
starts with a given POS, and ends with a given POS

203

References

Anne Abeillé, Lionel Clément, and François Toussenel.
2003. Building a treebank for French. In Anne Abeillé
and Nancy Ide, editors, Treebanks, volume 20 of Text,
Speech and Language Technology, pages 165–187.
Kluwer Academic Publishers, Dordrecht, The Nether-
lands.

Timothy Baldwin. 2005. Looking for prepositional verbs
in corpus data. In Proc. of the Second ACL-SIGSEM
Workshop on the Linguistic Dimensions of Prepositions
and their Use in Computational Linguistics Formalisms
and Applications, pages 115–126. Colchester, UK.

Timothy Baldwin. 2008. A resource for evaluating the
deep lexical acquisition of English verb-particle con-
structions. In Proc. of MWE, pages 1–2. Marrakech,
Morocco.

Timothy Baldwin and Su Nam Kim. 2010. Multiword
expressions. In Nitin Indurkhya and Fred J. Damerau,
editors, Handbook of Natural Language Processing,
Second Edition. CRC Press, Taylor and Francis Group,
Boca Raton, Florida, USA.

Eduard Bejček, Pavel Straňák, and Pavel Pecina. 2013.
Syntactic identification of occurrences of multiword
expressions in text using a lexicon with dependency
structures. In Proc. of the 9th Workshop on Multiword
Expressions, pages 106–115. Atlanta, Georgia, USA.

Gábor Berend. 2011. Opinion expression mining by ex-
ploiting keyphrase extraction. In Proc. of 5th Interna-
tional Joint Conference on Natural Language Process-
ing, pages 1162–1170. Chiang Mai, Thailand.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012a. English Web Treebank. Technical Report
LDC2012T13, Linguistic Data Consortium, Philadel-
phia, Pennsylvania, USA.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012b. English Web Treebank. Technical Report
LDC2012T13, Linguistic Data Consortium, Philadel-
phia, Pennsylvania, USA.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natu-
ral Language Processing with Python: Analyzing Text
with the Natural Language Toolkit. O’Reilly Media,
Inc., Sebastopol, California, USA.

Phil Blunsom and Timothy Baldwin. 2006. Multilingual
deep lexical acquisition for HPSGs via supertagging.
In Proc. of EMNLP, pages 164–171. Sydney, Australia.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18(4):467–479.

Marine Carpuat and Mona Diab. 2010. Task-based eval-
uation of multiword expressions: a pilot study in sta-

tistical machine translation. In Proc. of NAACL-HLT,
pages 242–245. Los Angeles, California, USA.

Kenneth Church, William Gale, Patrick Hanks, and Don-
ald Hindle. 1991. Using statistics in lexical analysis.
In Uri Zernik, editor, Lexical acquisition: exploiting
on-line resources to build a lexicon, pages 115–164.
Lawrence Erlbaum Associates, Hillsdale, New Jersey,
USA.

Massimiliano Ciaramita and Yasemin Altun. 2006. Broad-
coverage sense disambiguation and information extrac-
tion with a supersense sequence tagger. In Proc. of
EMNLP, pages 594–602. Sydney, Australia.

Michael Collins. 2002. Discriminative training methods
for Hidden Markov Models: theory and experiments
with perceptron algorithms. In Proc. of EMNLP, pages
1–8. Philadelphia, Pennsylvania, USA.

Matthieu Constant and Anthony Sigogne. 2011. MWU-
aware part-of-speech tagging with a CRF model and
lexical resources. In Proc. of the Workshop on Multi-
word Expressions: from Parsing and Generation to the
Real World, pages 49–56. Portland, Oregon, USA.

Matthieu Constant, Anthony Sigogne, and Patrick Watrin.
2012. Discriminative strategies to integrate multiword
expression recognition and parsing. In Proc. of ACL,
pages 204–212. Jeju Island, Korea.

Paul Cook, Afsaneh Fazly, and Suzanne Stevenson. 2008.
The VNC-Tokens dataset. In Proc. of MWE, pages
19–22. Marrakech, Morocco.

Hal Daumé, III. 2006. Practical structured learning tech-
niques for natural language processing. Ph.D. disserta-
tion, University of Southern California, Los Angeles,
California, USA. URL http://hal3.name/docs/
daume06thesis.pdf.

Mona Diab and Pravin Bhutada. 2009. Verb noun con-
struction MWE token classification. In Proc. of MWE,
pages 17–22. Suntec, Singapore.

Nick C. Ellis, Rita Simpson-Vlach, and Carson Maynard.
2008. Formulaic language in native and second lan-
guage speakers: psycholinguistics, corpus linguistics,
and TESOL. TESOL Quarterly, 42(3):375–396.

Christiane Fellbaum, editor. 1998. WordNet: an elec-
tronic lexical database. MIT Press, Cambridge, Mas-
sachusetts, USA.

Charles J. Fillmore, Paul Kay, and Mary Catherine
O’Connor. 1988. Regularity and idiomaticity in gram-
matical constructions: the case of ‘let alone’. Language,
64(3):501–538.

Yoav Freund and Robert E. Schapire. 1999. Large margin
classification using the perceptron algorithm. Machine
Learning, 37(3):277–296.

Mahmoud Ghoneim and Mona Diab. 2013. Multiword
expressions in the context of statistical machine trans-

204

lation. In Proc. of IJCNLP, pages 1181–1187. Nagoya,
Japan.

Kevin Gimpel and Noah A. Smith. 2011. Generative
models of monolingual and bilingual gappy patterns.
In Proc. of WMT, pages 512–522. Edinburgh, Scotland,
UK.

Adele E. Goldberg. 1995. Constructions: a construction
grammar approach to argument structure. University
of Chicago Press, Chicago, Illinois, USA.

Adele E. Goldberg. 2006. Constructions at work: the
nature of generalization in language. Oxford University
Press, Oxford, UK.

Edouard Grave, Guillaume Obozinski, and Francis Bach.
2013. Hidden Markov tree models for semantic class
induction. In Proc. of CoNLL, pages 94–103. Sofia,
Bulgaria.

Spence Green, Marie-Catherine de Marneffe, John Bauer,
and Christopher D. Manning. 2011. Multiword expres-
sion identification with tree substitution grammars: a
parsing tour de force with French. In Proc. of EMNLP,
pages 725–735. Edinburgh, Scotland, UK.

Spence Green, Marie-Catherine de Marneffe, and Christo-
pher D. Manning. 2012. Parsing models for identify-
ing multiword expressions. Computational Linguistics,
39(1):195–227.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Silvie Cinková, Eva Fučíková, Marie Mikulová, Petr
Pajas, Jan Popelka, Jiří Semecký, Jana Šindlerová, Jan
Štěpánek, Josef Toman, Zdeňka Urešová, and Zdeněk
Žabokrtský. 2012. Prague Czech-English Dependency
Treebank 2.0. Technical Report LDC2012T08, Linguis-
tic Data Consortium, Philadelphia, Pennsylvania, USA.
URL http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2003T10.

Silvana Hartmann, György Szarvas, and Iryna Gurevych.
2012. Mining multiword terms from Wikipedia. In
Maria Teresa Pazienza and Armando Stellato, editors,
Semi-Automatic Ontology Development. IGI Global,
Hershey, Pennsylvania, USA.

Chikara Hashimoto and Daisuke Kawahara. 2008. Con-
struction of an idiom corpus and its application to id-
iom identification based on WSD incorporating idiom-
specific features. In Proc. of EMNLP, pages 992–1001.
Honolulu, Hawaii, USA.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In Proc.
of ACL-08: HLT, pages 595–603. Columbus, Ohio.

Koenraad Kuiper, Heather McCann, Heidi Quinn,
Therese Aitchison, and Kees van der Veer. 2003.
SAID. Technical Report LDC2003T10, Linguistic
Data Consortium, Philadelphia, Pennsylvania, USA.
URL http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC2003T10.
John D. Lafferty, Andrew McCallum, and Fernando C. N.

Pereira. 2001. Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In
Proc. of ICML, pages 282–289.

Percy Liang. 2005. Semi-supervised learning for nat-
ural language. Master’s thesis, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts,
USA. URL http://people.csail.mit.edu/
pliang/papers/meng-thesis.pdf.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330.

I. Dan Melamed. 1997. Automatic discovery of non-
compositional compounds in parallel data. In Proc.
of EMNLP, pages 97–108. Providence, Rhode Island,
USA.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A semantic concordance. In
Proc. of HLT, pages 303–308. Plainsboro, New Jersey,
USA.

Scott Miller, Jethran Guinness, and Alex Zamanian. 2004.
Name tagging with word clusters and discriminative
training. In Proc. of HLT-NAACL, pages 337–342.
Boston, Massachusetts, USA.

Behrang Mohit, Nathan Schneider, Rishav Bhowmick, Ke-
mal Oflazer, and Noah A. Smith. 2012. Recall-oriented
learning of named entities in Arabic Wikipedia. In
Proc. of EACL, pages 162–173. Avignon, France.

Begona Villada Moirón and Jörg Tiedemann. 2006. Iden-
tifying idiomatic expressions using automatic word-
alignment. In Proc. of the EACL 2006 Workshop
on Multi-word Expressions in a Multilingual Context,
pages 33–40. Trento, Italy.

Rosamund Moon. 1998. Fixed expressions and idioms
in English: a corpus-based approach. Oxford Stud-
ies in Lexicography and Lexicology. Clarendon Press,
Oxford, UK.

David Newman, Nagendra Koilada, Jey Han Lau, and
Timothy Baldwin. 2012. Bayesian text segmentation
for index term identification and keyphrase extraction.
In Proc. of COLING 2012, pages 2077–2092. Mumbai,
India.

Geoffrey Nunberg, Ivan A. Sag, and Thomas Wasow. 1994.
Idioms. Language, 70(3):491–538.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A. Smith. 2013.
Improved part-of-speech tagging for online conversa-
tional text with word clusters. In Proc. of NAACL-HLT,
pages 380–390. Atlanta, Georgia, USA.

Gerhard Paaß and Frank Reichartz. 2009. Exploiting

205

semantic constraints for estimating supersenses with
CRFs. In Proc. of the Ninth SIAM International Confer-
ence on Data Mining, pages 485–496. Sparks, Nevada,
USA.

Pavel Pecina. 2010. Lexical association measures and
collocation extraction. Language Resources and Evalu-
ation, 44(1):137–158.

Carlos Ramisch. 2012. A generic and open
framework for multiword expressions treatment:
from acquisition to applications. Ph.D. disser-
tation, University of Grenoble and Federal Uni-
versity of Rio Grande do Sul, Grenoble, France.
URL http://www.inf.ufrgs.br/~ceramisch/
download_files/thesis-getalp.pdf.

Carlos Ramisch, Vitor De Araujo, and Aline Villavicencio.
2012. A broad evaluation of techniques for automatic
acquisition of multiword expressions. In Proc. of ACL
2012 Student Research Workshop, pages 1–6. Jeju Is-
land, Korea.

Carlos Ramisch, Aline Villavicencio, and Christian Boitet.
2010. mwetoolkit: a framework for multiword expres-
sion identification. In Proc. of LREC, pages 662–669.
Valletta, Malta.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text
chunking using transformation-based learning. In Proc.
of the Third ACL Workshop on Very Large Corpora,
pages 82–94. Cambridge, Massachusetts, USA.

Lev Ratinov and Dan Roth. 2009. Design challenges and
misconceptions in named entity recognition. In Proc.
of CoNLL, pages 147–155. Boulder, Colorado, USA.

Marta Recasens and Eduard Hovy. 2011. BLANC: Im-
plementing the Rand index for coreference evaluation.
Natural Language Engineering, 17(04):485–510.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni. 2011.
Named entity recognition in tweets: an experimental
study. In Proc. of EMNLP, pages 1524–1534. Edin-
burgh, Scotland, UK.

Ivan Sag, Timothy Baldwin, Francis Bond, Ann Copes-
take, and Dan Flickinger. 2002. Multiword expressions:
a pain in the neck for NLP. In Alexander Gelbukh,
editor, Computational Linguistics and Intelligent Text
Processing, volume 2276 of Lecture Notes in Computer
Science, pages 189–206. Springer, Berlin, Germany.

Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily
Danchik, Michael T. Mordowanec, Henrietta Conrad,
and Noah A. Smith. 2014. Comprehensive annotation
of multiword expressions in a social web corpus. In
Proc. of LREC. Reykjavík, Iceland.

Yutaro Shigeto, Ai Azuma, Sorami Hisamoto, Shuhei
Kondo, Tomoya Kouse, Keisuke Sakaguchi, Akifumi
Yoshimoto, Frances Yung, and Yuji Matsumoto. 2013.
Construction of English MWE dictionary and its appli-

cation to POS tagging. In Proc. of the 9th Workshop
on Multiword Expressions, pages 139–144. Atlanta,
Georgia, USA.

James W. Thatcher. 1967. Characterizing derivation trees
of context-free grammars through a generalization of
finite automata theory. Journal of Computer and System
Sciences, 1(4):317–322.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proc.
of HLT-NAACL, pages 173–180. Edmonton, Alberta,
Canada.

Yulia Tsvetkov and Shuly Wintner. 2010. Extraction of
multi-word expressions from small parallel corpora.
In Coling 2010: Posters, pages 1256–1264. Beijing,
China.

Yulia Tsvetkov and Shuly Wintner. 2011. Identification
of multi-word expressions by combining multiple lin-
guistic information sources. In Proc. of EMNLP, pages
836–845. Edinburgh, Scotland, UK.

Yuancheng Tu and Dan Roth. 2011. Learning English
light verb constructions: contextual or statistical. In
Proc. of the Workshop on Multiword Expressions: from
Parsing and Generation to the Real World, pages 31–39.
Portland, Oregon, USA.

Yuancheng Tu and Dan Roth. 2012. Sorting out the most
confusing English phrasal verbs. In Proc. of *SEM,
pages 65–69. Montréal, Quebec, Canada.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: a simple and general
method for semi-supervised learning. In Proc. of ACL,
pages 384–394. Uppsala, Sweden.

Martin Čmejrek, Jan Cuřín, Jan Hajič, and Jiří Havelka.
2005. Prague Czech-English Dependency Treebank:
resource for structure-based MT. In Proc. of EAMT,
pages 73–78. Budapest, Hungary.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-theoretic
coreference scoring scheme. In Proc. of MUC-6, pages
45–52. Columbia, Maryland, USA.

Veronika Vincze. 2012. Light verb constructions in the
SzegedParalellFX English-Hungarian parallel corpus.
In Proc. of LREC. Istanbul, Turkey.

Veronika Vincze, István Nagy T., and János Zsibrita. 2013.
Learning to detect English and Hungarian light verb
constructions. ACM Transactions on Speech and Lan-
guage Processing, 10(2):6:1–6:25.

206

Segmentation for Efficient Supervised Language Annotation with an
Explicit Cost-Utility Tradeoff

Matthias Sperber1, Mirjam Simantzik2, Graham Neubig3, Satoshi Nakamura3, Alex Waibel1
1Karlsruhe Institute of Technology, Institute for Anthropomatics, Germany

2Mobile Technologies GmbH, Germany
3Nara Institute of Science and Technology, AHC Laboratory, Japan

matthias.sperber@kit.edu, mirjam.simantzik@jibbigo.com, neubig@is.naist.jp

s-nakamura@is.naist.jp, waibel@kit.edu

Abstract

In this paper, we study the problem of manu-
ally correcting automatic annotations of natu-
ral language in as efficient a manner as pos-
sible. We introduce a method for automati-
cally segmenting a corpus into chunks such
that many uncertain labels are grouped into
the same chunk, while human supervision
can be omitted altogether for other segments.
A tradeoff must be found for segment sizes.
Choosing short segments allows us to reduce
the number of highly confident labels that are
supervised by the annotator, which is useful
because these labels are often already correct
and supervising correct labels is a waste of
effort. In contrast, long segments reduce the
cognitive effort due to context switches. Our
method helps find the segmentation that opti-
mizes supervision efficiency by defining user
models to predict the cost and utility of su-
pervising each segment and solving a con-
strained optimization problem balancing these
contradictory objectives. A user study demon-
strates noticeable gains over pre-segmented,
confidence-ordered baselines on two natural
language processing tasks: speech transcrip-
tion and word segmentation.

1 Introduction

Many natural language processing (NLP) tasks re-
quire human supervision to be useful in practice,
be it to collect suitable training material or to meet
some desired output quality. Given the high cost of
human intervention, how to minimize the supervi-
sion effort is an important research problem. Previ-
ous works in areas such as active learning, post edit-

(a) It was a bright cold (they) in (apron), and (a) clocks
were striking thirteen.

(b) It was a bright cold (they) in (apron), and (a) clocks
were striking thirteen.

(c) It was a bright cold (they) in (apron), and (a) clocks
were striking thirteen.

Figure 1: Three automatic transcripts of the sentence “It
was a bright cold day in April, and the clocks were strik-
ing thirteen”, with recognition errors in parentheses. The
underlined parts are to be corrected by a human for (a)
sentences, (b) words, or (c) the proposed segmentation.

ing, and interactive pattern recognition have inves-
tigated this question with notable success (Settles,
2008; Specia, 2011; González-Rubio et al., 2010).

The most common framework for efficient anno-
tation in the NLP context consists of training an NLP
system on a small amount of baseline data, and then
running the system on unannotated data to estimate
confidence scores of the system’s predictions (Set-
tles, 2008). Sentences with the lowest confidence
are then used as the data to be annotated (Figure 1
(a)). However, it has been noted that when the NLP
system in question already has relatively high accu-
racy, annotating entire sentences can be wasteful, as
most words will already be correct (Tomanek and
Hahn, 2009; Neubig et al., 2011). In these cases, it
is possible to achieve much higher benefit per anno-
tated word by annotating sub-sentential units (Fig-
ure 1 (b)).

However, as Settles et al. (2008) point out, sim-
ply maximizing the benefit per annotated instance
is not enough, as the real supervision effort varies

169

Transactions of the Association for Computational Linguistics, 2 (2014) 169–180. Action Editor: Eric Fosler-Lussier.
Submitted 11/2013; Revised 2/2014; Published 4/2014. c©2014 Association for Computational Linguistics.

1 3 5 7 9 11 13 15 17 19
0

2

4

6

Segment length

A
vg

. t
im

e
/ i

ns
ta

nc
e

[s
ec

]

Transcription task
Word segmentation task

Figure 2: Average annotation time per instance, plotted
over different segment lengths. For both tasks, the effort
clearly increases for short segments.

greatly across instances. This is particularly impor-
tant in the context of choosing segments to annotate,
as human annotators heavily rely on semantics and
context information to process language, and intu-
itively, a consecutive sequence of words can be su-
pervised faster and more accurately than the same
number of words spread out over several locations in
a text. This intuition can also be seen in our empiri-
cal data in Figure 2, which shows that for the speech
transcription and word segmentation tasks described
later in Section 5, short segments had a longer anno-
tation time per word. Based on this fact, we argue
it would be desirable to present the annotator with
a segmentation of the data into easily supervisable
chunks that are both large enough to reduce the num-
ber of context switches, and small enough to prevent
unnecessary annotation (Figure 1 (c)).

In this paper, we introduce a new strategy for nat-
ural language supervision tasks that attempts to op-
timize supervision efficiency by choosing an appro-
priate segmentation. It relies on a user model that,
given a specific segment, predicts the cost and the
utility of supervising that segment. Given this user
model, the goal is to find a segmentation that mini-
mizes the total predicted cost while maximizing the
utility. We balance these two criteria by defining a
constrained optimization problem in which one cri-
terion is the optimization objective, while the other
criterion is used as a constraint. Doing so allows
specifying practical optimization goals such as “re-
move as many errors as possible given a limited time
budget,” or “annotate data to obtain some required
classifier accuracy in as little time as possible.”

Solving this optimization task is computationally

difficult, an NP-hard problem. Nevertheless, we
demonstrate that by making realistic assumptions
about the segment length, an optimal solution can
be found using an integer linear programming for-
mulation for mid-sized corpora, as are common for
supervised annotation tasks. For larger corpora, we
provide simple heuristics to obtain an approximate
solution in a reasonable amount of time.

Experiments over two example scenarios demon-
strate the usefulness of our method: Post editing
for speech transcription, and active learning for
Japanese word segmentation. Our model predicts
noticeable efficiency gains, which are confirmed in
experiments with human annotators.

2 Problem Definition

The goal of our method is to find a segmentation
over a corpus of word tokens wN

1 that optimizes
supervision efficiency according to some predictive
user model. The user model is denoted as a set of
functions ul,k(w

b
a) that evaluate any possible sub-

sequence wb
a of tokens in the corpus according to

criteria l2L, and supervision modes k2K.
Let us illustrate this with an example. Sperber et

al. (2013) defined a framework for speech transcrip-
tion in which an initial, erroneous transcript is cre-
ated using automatic speech recognition (ASR), and
an annotator corrects the transcript either by correct-
ing the words by keyboard, by respeaking the con-
tent, or by leaving the words as is. In this case,
we could define K={TYPE, RESPEAK, SKIP}, each
constant representing one of these three supervision
modes. Our method will automatically determine
the appropriate supervision mode for each segment.

The user model in this example might evaluate ev-
ery segment according to two criteria L, a cost crite-
rion (in terms of supervision time) and a utility cri-
terion (in terms of number of removed errors), when
using each mode. Intuitively, respeaking should be
assigned both lower cost (because speaking is faster
than typing), but also lower utility than typing on a
keyboard (because respeaking recognition errors can
occur). The SKIP mode denotes the special, unsuper-
vised mode that always returns 0 cost and 0 utility.

Other possible supervision modes include mul-
tiple input modalities (Suhm et al., 2001), several
human annotators with different expertise and cost

170

(Donmez and Carbonell, 2008), and correction vs.
translation from scratch in machine translation (Spe-
cia, 2011). Similarly, cost could instead be ex-
pressed in monetary terms, or the utility function
could predict the improvement of a classifier when
the resulting annotation is not intended for direct hu-
man consumption, but as training data for a classifier
in an active learning framework.

3 Optimization Framework

Given this setting, we are interested in simulta-
neously finding optimal locations and supervision
modes for all segments, according to the given cri-
teria. Each resulting segment will be assigned ex-
actly one of these supervision modes. We de-
note a segmentation of the N tokens of corpus wN

1

into MN segments by specifying segment bound-
ary markers sM+1

1 =(s1=1, s2, . . . , sM+1=N+1).
Setting a boundary marker si=a means that we
put a segment boundary before the a-th word to-
ken (or the end-of-corpus marker for a=N+1).
Thus our corpus is segmented into token sequences
[(wsj , . . . , wsj+1�1)]

M
j=1. The supervision modes

assigned to each segment are denoted by mj . We
favor those segmentations that minimize the cumu-
lative value

PM
j=1[ul,mj

(w
sj+1
sj)] for each criterion l.

For any criterion where larger values are intuitively
better, we flip the sign before defining ul,mj

(w
sj+1
sj)

to maintain consistency (e.g. negative number of er-
rors removed).

3.1 Multiple Criteria Optimization

In the case of a single criterion (|L|=1), we obtain
a simple, single-objective unconstrained linear opti-
mization problem, efficiently solvable via dynamic
programming (Terzi and Tsaparas, 2006). However,
in practice one usually encounters several compet-
ing criteria, such as cost and utility, and here we
will focus on this more realistic setting. We balance
competing criteria by using one as an optimization
objective, and the others as constraints.1 Let crite-

1This approach is known as the bounded objective function
method in multi-objective optimization literature (Marler and
Arora, 2004). The very popular weighted sum method merges
criteria into a single efficiency measure, but is problematic in
our case because the number of supervised tokens is unspec-
ified. Unless the weights are carefully chosen, the algorithm
might find, e.g., the completely unsupervised or completely su-

(at)% (what’s)% a% bright% …%

[RESPEAK:1.5/2]/

[SKIP:0/0]/

1/ cold%2/ 3/ 4/ 5/ 6/

[TYPE:2/5]/
[TYPE:1/4]/ [TYPE:1/4]/

[RESPEAK:0/3]/[SKIP:0/0]/

Figure 3: Excerpt of a segmentation graph for an ex-
ample transcription task similar to Figure 1 (some edges
are omitted for readability). Edges are labeled with their
mode, predicted number of errors that can be removed,
and necessary supervision time. A segmentation scheme
might prefer solid edges over dashed ones in this exam-
ple.

rion l0 be the optimization objective criterion, and
let Cl denote the constraining constants for the cri-
teria l 2 L�l0 = L \ {l0}. We state the optimization
problem:

min
M ;sM+1

1 ;mM
1

MX

j=1

⇥
ul0,mj

�
w

sj+1
sj

�⇤

s.t.
MX

j=1

⇥
ul,mj

�
w

sj+1
sj

�⇤
 Cl (8l 2 L�l0)

This constrained optimization problem is difficult
to solve. In fact, the NP-hard multiple-choice knap-
sack problem (Pisinger, 1994) corresponds to a spe-
cial case of our problem in which the number of seg-
ments is equal to the number of tokens, implying
that our more general problem is NP-hard as well.

In order to overcome this problem, we refor-
mulate search for the optimal segmentation as a
resource-constrained shortest path problem in a di-
rected, acyclic multigraph. While still not efficiently
solvable in theory, this problem is well studied in
domains such as vehicle routing and crew schedul-
ing (Irnich and Desaulniers, 2005), and it is known
that in many practical situations the problem can
be solved reasonably efficiently using integer linear
programming relaxations (Toth and Vigo, 2001).

In our formalism, the set of nodes V represents
the spaces between neighboring tokens, at which the
algorithm may insert segment boundaries. A node
with index i represents a segment break before the
i-th token, and thus the sequence of the indices in
a path directly corresponds to sM+1

1 . Edges E de-
note the grouping of tokens between the respective

pervised segmentation to be most “efficient.”

171

nodes into one segment. Edges are always directed
from left to right, and labeled with a supervision
mode. In addition, each edge between nodes i and j
is assigned ul,k(w

j�1
i), the corresponding predicted

value for each criterion l 2 L and supervision mode
k 2 K, indicating that the supervision mode of the
j-th segment in a path directly corresponds to mj .

Figure 3 shows an example of what the result-
ing graph may look like. Our original optimization
problem is now equivalent to finding the shortest
path between the first and last nodes according to
criterion l0, while obeying the given resource con-
straints. According to a widely used formulation for
the resource constrained shortest path problem, we
can define Eij as the set of competing edges between
i and j, and express this optimization problem with
the following integer linear program (ILP):

min
x

X

i,j2V

X

k2Eij

xijkul0,k(s
j�1
i) (1)

s.t.
X

i,j2V

X

k2Eij

xijkul,k(s
j�1
i) Cl

(8l 2 L�l0)

(2)

X

i2V
k2Eij

xijk =
X

i2V
k2Eij

xjik

(8j 2 V \{1, n})

(3)

X

j2V
k2E1j

x1jk = 1 (4)

X

i2V
k2Ein

xink = 1 (5)

xijk 2 {0, 1} (8xijk 2 x) (6)

The variables x={xijk|i, j 2 V , k 2 Eij} denote
the activation of the k’th edge between nodes i and
j. The shortest path according to the minimization
objective (1), that still meets the resource constraints
for the specified criteria (2), is to be computed. The
degree constraints (3,4,5) specify that all but the first
and last nodes must have as many incoming as out-
going edges, while the first node must have exactly
one outgoing, and the last node exactly one incom-
ing edge. Finally, the integrality condition (6) forces
all edges to be either fully activated or fully deacti-
vated. The outlined problem formulation can solved

directly by using off-the-shelf ILP solvers, here we
employ GUROBI (Gurobi Optimization, 2012).

3.2 Heuristics for Approximation

In general, edges are inserted for every supervision
mode between every combination of two nodes. The
search space can be constrained by removing some
of these edges to increase efficiency. In this study,
we only consider edges spanning at most 20 tokens.

For cases in which larger corpora are to be anno-
tated, or when the acceptable delay for delivering re-
sults is small, a suitable segmentation can be found
approximately. The easiest way would be to parti-
tion the corpus, e.g. according to its individual doc-
uments, divide the budget constraints evenly across
all partitions, and then segment each partition inde-
pendently. More sophisticated methods might ap-
proximate the Pareto front for each partition, and
distribute the budgets in an intelligent way.

4 User Modeling

While the proposed framework is able to optimize
the segmentation with respect to each criterion, it
also rests upon the assumption that we can provide
user models ul,k(w

j�1
i) that accurately evaluate ev-

ery segment according to the specified criteria and
supervision modes. In this section, we discuss our
strategies for estimating three conceivable criteria:
annotation cost, correction of errors, and improve-
ment of a classifier.

4.1 Annotation Cost Modeling

Modeling cost requires solving a regression prob-
lem from features of a candidate segment to annota-
tion cost, for example in terms of supervision time.
Appropriate input features depend on the task, but
should include notions of complexity (e.g. a confi-
dence measure) and length of the segment, as both
are expected to strongly influence supervision time.

We propose using Gaussian process (GP) regres-
sion for cost prediction, a start-of-the-art nonpara-
metric Bayesian regression technique (Rasmussen
and Williams, 2006)2. As reported on a similar
task by Cohn and Specia (2013), and confirmed by
our preliminary experiments, GP regression signifi-
cantly outperforms popular techniques such as sup-

2Code available at http://www.gaussianprocess.org/gpml/

172

port vector regression and least-squares linear re-
gression. We also follow their settings for GP, em-
ploying GP regression with a squared exponential
kernel with automatic relevance determination. De-
pending on the number of users and amount of train-
ing data available for each user, models may be
trained separately for each user (as we do here), or
in a combined fashion via multi-task learning as pro-
posed by Cohn and Specia (2013).

It is also crucial for the predictions to be reliable
throughout the whole relevant space of segments.
If the cost of certain types of segments is system-
atically underpredicted, the segmentation algorithm
might be misled to prefer these, possibly a large
number of times.3 An effective trick to prevent such
underpredictions is to predict the log time instead of
the actual time. In this way, errors in the critical low
end are penalized more strongly, and the time can
never become negative.

4.2 Error Correction Modeling

As one utility measure, we can use the number of
errors corrected, a useful measure for post editing
tasks over automatically produced annotations. In
order to measure how many errors can be removed
by supervising a particular segment, we must es-
timate both how many errors are in the automatic
annotation, and how reliably a human can remove
these for a given supervision mode.

Most machine learning techniques can estimate
confidence scores in the form of posterior probabil-
ities. To estimate the number of errors, we can sum
over one minus the posterior for all tokens, which
estimates the Hamming distance from the reference
annotation. This measure is appropriate for tasks in
which the number of tokens is fixed in advance (e.g.
a part-of-speech estimation task), and a reasonable
approximation for tasks in which the number of to-
kens is not known in advance (e.g. speech transcrip-
tion, cf. Section 5.1.1).

Predicting the particular tokens at which a human
will make a mistake is known to be a difficult task
(Olson and Olson, 1990), but a simplifying constant

3For instance, consider a model that predicts well for seg-
ments of medium size or longer, but underpredicts the supervi-
sion time of single-token segments. This may lead the segmen-
tation algorithm to put every token into its own segment, which
is clearly undesirable.

human error rate can still be useful. For example,
in the task from Section 2, we may suspect a certain
number of errors in a transcript segment, and predict,
say, 95% of those errors to be removed via typing,
but only 85% via respeaking.

4.3 Classifier Improvement Modeling
Another reasonable utility measure is accuracy of a
classifier trained on the data we choose to annotate
in an active learning framework. Confidence scores
have been found useful for ranking particular tokens
with regards to how much they will improve a clas-
sifier (Settles, 2008). Here, we may similarly score
segment utility as the sum of its token confidences,
although care must be taken to normalize and cali-
brate the token confidences to be linearly compara-
ble before doing so. While the resulting utility score
has no interpretation in absolute terms, it can still be
used as an optimization objective (cf. Section 5.2.1).

5 Experiments

In this section, we present experimental results ex-
amining the effectiveness of the proposed method
over two tasks: speech transcription and Japanese
word segmentation.4

5.1 Speech Transcription Experiments
Accurate speech transcripts are a much-demanded
NLP product, useful by themselves, as training ma-
terial for ASR, or as input for follow-up tasks like
speech translation. With recognition accuracies
plateauing, manually correcting (post editing) auto-
matic speech transcripts has become popular. Com-
mon approaches are to identify words (Sanchez-
Cortina et al., 2012) or (sub-)sentences (Sperber et
al., 2013) of low confidence, and have a human edi-
tor correct these.

5.1.1 Experimental Setup
We conduct a user study in which participants

post-edited speech transcripts, given a fixed goal
word error rate. The transcription setup was such
that the transcriber could see the ASR transcript of
parts before and after the segment that he was edit-
ing, providing context if needed. When imprecise
time alignment resulted in segment breaks that were

4Software and experimental data can be downloaded from
http://www.msperber.com/research/tacl-segmentation/

173

slightly “off,” as happened occasionally, that context
helped guess what was said. The segment itself was
transcribed from scratch, as opposed to editing the
ASR transcript; besides being arguably more effi-
cient when the ASR transcript contains many mis-
takes (Nanjo et al., 2006; Akita et al., 2009), prelim-
inary experiments also showed that supervision time
is far easier to predict this way. Figure 4 illustrates
what the setup looked like.

We used a self-developed transcription tool to
conduct experiments. It presents our computed seg-
ments one by one, allows convenient input and play-
back via keyboard shortcuts, and logs user interac-
tions with their time stamps. A selection of TED
talks5 (English talks on technology, entertainment,
and design) served as experimental data. While
some of these talks contain jargon such as medi-
cal terms, they are presented by skilled speakers,
making them comparably easy to understand. Initial
transcripts were created using the Janus recognition
toolkit (Soltau et al., 2001) with a standard, TED-
optimized setup. We used confusion networks for
decoding and obtaining confidence scores.

For reasons of simplicity, and better compara-
bility to our baseline, we restricted our experiment
to two supervision modes: TYPE and SKIP. We
conducted experiments with 3 participants, 1 with
several years of experience in transcription, 2 with
none. Each participant received an explanation on
the transcription guidelines, and a short hands-on
training to learn to use our tool. Next, they tran-
scribed a balanced selection of 200 segments of
varying length and quality in random order. This
data was used to train the user models.

Finally, each participant transcribed another 2
TED talks, with word error rate (WER) 19.96%
(predicted: 22.33%). We set a target (predicted)
WER of 15% as our optimization constraint,6 and
minimize the predicted supervision time as our ob-
jective function. Both TED talks were transcribed
once using the baseline strategy, and once using the
proposed strategy. The order of both strategies was
reversed between talks, to minimize learning bias
due to transcribing each talk twice.

The baseline strategy was adopted according to
5www.ted.com
6Depending on the level of accuracy required by our final

application, this target may be set lower or higher.

Sperber et al. (2013): We segmented the talk into
natural, subsentential units, using Matusov et al.
(2006)’s segmenter, which we tuned to reproduce
the TED subtitle segmentation, producing a mean
segment length of 8.6 words. Segments were added
in order of increasing average word confidence, until
the user model predicted a WER<15%. The second
segmentation strategy was the proposed method,
similarly with a resource constraint of WER<15%.

Supervision time was predicted via GP regres-
sion (cf. Section 4.1), using segment length, au-
dio duration, and mean confidence as input features.
The output variable was assumed subject to addi-
tive Gaussian noise with zero mean, a variance of
5 seconds was chosen empirically to minimize the
mean squared error. Utility prediction (cf. Section
4.2) was based on posterior scores obtained from
the confusion networks. We found it important to
calibrate them, as the posteriors were overconfident
especially in the upper range. To do so, we automat-
ically transcribed a development set of TED data,
grouped the recognized words into buckets accord-
ing to their posteriors, and determined the average
number of errors per word in each bucket from an
alignment with the reference transcript. The map-
ping from average posterior to average number of
errors was estimated via GP regression. The result
was summed over all tokens, and multiplied by a
constant human confidence, separately determined
for each participant.7

5.1.2 Simulation Results
To convey a better understanding of the poten-

tial gains afforded by our method, we first present a
simulated experiment. We assume a transcriber who
makes no mistakes, and needs exactly the amount of
time predicted by a user model trained on the data of
a randomly selected participant. We compare three
scenarios: A baseline simulation, in which the base-
line segments are transcribed in ascending order of
confidence; a simulation using the proposed method,
in which we change the WER constraint in small in-
crements; finally, an oracle simulation, which uses

7More elaborate methods for WER estimation exist, such as
by Ogawa et al. (2013), but if our method achieves improve-
ments using simple Hamming distance, incorporating more so-
phisticated measures will likely achieve similar, or even better
accuracy.

174

(3) SKIP: “nineteen forty six until today you see the green”

(4) TYPE: <annotator types: “is the traditional”>

(5) SKIP: “Interstate conflict”

(6) TYPE: <annotator types: “the ones we used to”>

(7) SKIP: . . .

Figure 4: Result of our segmentation method (excerpt).
TYPE segments are displayed empty and should be tran-
scribed from scratch. For SKIP segments, the ASR tran-
script is displayed to provide context. When annotating a
segment, the corresponding audio is played back.

0 10 20 30 40 50 60
0

5

10

15

20

25

Post editing time [min]

Re
su

lti
ng

 W
ER

 [%
]

Baseline
Proposed
Oracle

Figure 5: Simulation of post editing on example TED
talk. The proposed method reduces the WER consider-
ably faster than the baseline at first, later both converge.
The much superior oracle simulation indicates room for
further improvement.

the proposed method, but uses a utility model that
knows the actual number of errors in each segment.
For each supervised segment, we simply replace the
ASR output with the reference, and measure the re-
sulting WER.

Figure 5 shows the simulation on an example
TED talk, based on an initial transcript with 21.9%
WER. The proposed method is able to reduce the
WER faster than the baseline, up to a certain point
where they converge. The oracle simulation is even
faster, indicating room for improvement through
better confidence scores.

5.1.3 User Study Results
Table 1 shows the results of the user study. First,

we note that the WER estimation by our utility
model was off by about 2.5%: While the predicted
improvement in WER was from 22.33% to 15.0%,
the actual improvement was from 19.96% to about
12.5%. The actual resulting WER was consistent

Participant Baseline Proposed
WER Time WER Time

P1 12.26 44:05 12.18 33:01
P2 12.75 36:19 12.77 29:54
P3 12.70 52:42 12.50 37:57

AVG 12.57 44:22 12.48 33:37

Table 1: Transcription task results. For each user, the
resulting WER [%] after supervision is shown, along with
the time [min] they needed. The unsupervised WER was
19.96%.

across all users, and we observe strong, consistent
reductions in supervision time for all participants.
Prediction of the necessary supervision time was ac-
curate: Averaged over participants, 45:41 minutes
were predicted for the baseline, 44:22 minutes mea-
sured. For the proposed method, 32:11 minutes were
predicted, 33:37 minutes measured. On average,
participants removed 6.68 errors per minute using
the baseline, and 8.93 errors per minute using the
proposed method, a speed-up of 25.2%.

Note that predicted and measured values are not
strictly comparable: In the experiments, to provide
a fair comparison participants transcribed the same
talks twice (once using baseline, once the proposed
method, in alternating order), resulting in a notice-
able learning effect. The user model, on the other
hand, is trained to predict the case in which a tran-
scriber conducts only one transcription pass.

As an interesting finding, without being informed
about the order of baseline and proposed method,
participants reported that transcribing according to
the proposed segmentation seemed harder, as they
found the baseline segmentation more linguistically
reasonable. However, this perceived increase in dif-
ficulty did not show in efficiency numbers.

5.2 Japanese Word Segmentation Experiments

Word segmentation is the first step in NLP for lan-
guages that are commonly written without word
boundaries, such as Japanese and Chinese. We ap-
ply our method to a task in which we domain-adapt a
word segmentation classifier via active learning. In
this experiment, participants annotated whether or
not a word boundary occurred at certain positions in
a Japanese sentence. The tokens to be grouped into
segments are positions between adjacent characters.

175

5.2.1 Experimental Setup
Neubig et al. (2011) have proposed a pointwise

method for Japanese word segmentation that can be
trained using partially annotated sentences, which
makes it attractive in combination with active learn-
ing, as well as our segmentation method. The
authors released their method as a software pack-
age “KyTea” that we employed in this user study.
We used KyTea’s active learning domain adaptation
toolkit8 as a baseline.

For data, we used the Balanced Corpus of Con-
temporary Written Japanese (BCCWJ), created by
Maekawa (2008), with the internet Q&A subcor-
pus as in-domain data, and the whitepaper subcor-
pus as background data, a domain adaptation sce-
nario. Sentences were drawn from the in-domain
corpus, and the manually annotated data was then
used to train KyTea, along with the pre-annotated
background data. The goal (objective function) was
to improve KyTea’s classification accuracy on an in-
domain test set, given a constrained time budget of
30 minutes. There were again 2 supervision modes:
ANNOTATE and SKIP. Note that this is essentially a
batch active learning setup with only one iteration.

We conducted experiments with one expert with
several years of experience with Japanese word seg-
mentation annotation, and three non-expert native
speakers with no prior experience. Japanese word
segmentation is not a trivial task, so we provided
non-experts with training, including explanation of
the segmentation standard, a supervised test with
immediate feedback and explanations, and hands-on
training to get used to the annotation software.

Supervision time was predicted via GP regression
(cf. Section 4.1), using the segment length and mean
confidence as input features. As before, the output
variable was assumed subject to additive Gaussian
noise with zero mean and 5 seconds variance. To ob-
tain training data for these models, each participant
annotated about 500 example instances, drawn from
the adaptation corpus, grouped into segments and
balanced regarding segment length and difficulty.

For utility modeling (cf. Section 4.3), we first nor-
malized KyTea’s confidence scores, which are given
in terms of SVM margin, using a sigmoid function
(Platt, 1999). The normalization parameter was se-

8http://www.phontron.com/kytea/active.html

lected so that the mean confidence on a development
set corresponded to the actual classifier accuracy.
We derive our measure of classifier improvement for
correcting a segment by summing over one minus
the calibrated confidence for each of its tokens. To
analyze how well this measure describes the actual
training utility, we trained KyTea using the back-
ground data plus disjoint groups of 100 in-domain
instances with similar probabilities and measured
the achieved reduction of prediction errors. The cor-
relation between each group’s mean utility and the
achieved error reduction was 0.87. Note that we ig-
nore the decaying returns usually observed as more
data is added to the training set. Also, we did not
attempt to model user errors. Employing a con-
stant base error rate, as in the transcription scenario,
would change segment utilities only by a constant
factor, without changing the resulting segmentation.

After creating the user models, we conducted the
main experiment, in which each participant anno-
tated data that was selected from a pool of 1000
in-domain sentences using two strategies. The first,
baseline strategy was as proposed by Neubig et al.
(2011). Queries are those instances with the low-
est confidence scores. Each query is then extended
to the left and right, until a word boundary is pre-
dicted. This strategy follows similar reasoning as
was the premise to this paper: To decide whether or
not a position in a text corresponds to a word bound-
ary, the annotator has to acquire surrounding context
information. This context acquisition is relatively
time consuming, so he might as well label the sur-
rounding instances with little additional effort. The
second strategy was our proposed, more principled
approach. Queries of both methods were shuffled
to minimize bias due to learning effects. Finally, we
trained KyTea using the results of both methods, and
compared the achieved classifier improvement and
supervision times.

5.2.2 User Study Results
Table 2 summarizes the results of our experi-

ment. It shows that the annotations by each partic-
ipant resulted in a better classifier for the proposed
method than the baseline, but also took up consider-
ably more time, a less clear improvement than for
the transcription task. In fact, the total error for
time predictions was as high as 12.5% on average,

176

Participant Baseline Proposed
Time Acc. Time Acc.

Expert 25:50 96.17 32:45 96.55
NonExp1 22:05 95.79 26:44 95.98
NonExp2 23:37 96.15 31:28 96.21
NonExp3 25:23 96.38 33:36 96.45

Table 2: Word segmentation task results, for our ex-
pert and 3 non-expert participants. For each participant,
the resulting classifier accuracy [%] after supervision is
shown, along with the time [min] they needed. The unsu-
pervised accuracy was 95.14%.

where the baseline method tended take less time than
predicted, the proposed method more time. This is
in contrast to a much lower total error (within 1%)
when cross-validating our user model training data.
This is likely due to the fact that the data for train-
ing the user model was selected in a balanced man-
ner, as opposed to selecting difficult examples, as
our method is prone to do. Thus, we may expect
much better predictions when selecting user model
training data that is more similar to the test case.

Plotting classifier accuracy over annotation time
draws a clearer picture. Let us first analyze the re-
sults for the expert annotator. Figure 6 (E.1) shows
that the proposed method resulted in consistently
better results, indicating that time predictions were
still effective. Note that this comparison may put the
proposed method at a slight disadvantage by com-
paring intermediate results despite optimizing glob-
ally.

For the non-experts, the improvement over the
baseline is less consistent, as can be seen in Fig-
ure 6 (N.1) for one representative. According to
our analysis, this can be explained by two factors:
(1) The non-experts’ annotation error (6.5% on av-
erage) was much higher than the expert’s (2.7%),
resulting in a somewhat irregular classifier learn-
ing curve. (2) The variance in annotation time
per segment was consistently higher for the non-
experts than the expert, indicated by an average
per-segment prediction error of 71% vs. 58% rela-
tive to the mean actual value, respectively. Infor-
mally speaking, non-experts made more mistakes,
and were more strongly influenced by the difficulty
of a particular segment (which was higher on av-
erage with the proposed method, as indicated by a

0 10 20 30

0.955

0.965

0 10 20 30

0.955

0.965
0 10 20 30

0.955

0.965

0 10 20 30

0.955

0.965

0 10 20 30

0.955

0.965

0 10 20 30

0.955

0.965
0 10 20 30

0.955

0.965

0 10 20 30

0.955

0.965

Prop.
Basel

N.1E.1

N.2E.2

N.3E.3

N.4E.4

Annotation time [min.]

C
la

ss
ifi

er
 A

cc
ur

ac
y

.

Figure 6: Classifier improvement over time, depicted for
the expert (E) and a non-expert (N). The graphs show
numbers based on (1) actual annotations and user mod-
els as in Sections 4.1 and 4.3, (2) error-free annotations,
(3) measured times replaced by predicted times, and (4)
both reference annotations and replaced time predictions.

lower average confidence).9

In Figures 6 (2-4) we present a simulation experi-
ment in which we first pretend as if annotators made
no mistakes, then as if they needed exactly as much
time as predicted for each segment, and then both.
This cheating experiment works in favor of the pro-
posed method, especially for the non-expert. We
may conclude that our segmentation approach is ef-
fective for the word segmentation task, but requires
more accurate time predictions. Better user models
will certainly help, although for the presented sce-
nario our method may be most useful for an expert
annotator.

9Note that the non-expert in the figure annotated much faster
than the expert, which explains the comparable classification
result despite making more annotation errors. This is in contrast
to the other non-experts, who were slower.

177

5.3 Computational Efficiency

Since our segmentation algorithm does not guar-
antee polynomial runtime, computational efficiency
was a concern, but did not turn out problematic.
On a consumer laptop, the solver produced seg-
mentations within a few seconds for a single docu-
ment containing several thousand tokens, and within
hours for corpora consisting of several dozen doc-
uments. Runtime increased roughly quadratically
with respect to the number of segmented tokens. We
feel that this is acceptable, considering that the time
needed for human supervision will likely dominate
the computation time, and reasonable approxima-
tions can be made as noted in Section 3.2.

6 Relation to Prior Work

Efficient supervision strategies have been studied
across a variety of NLP-related research areas, and
received increasing attention in recent years. Ex-
amples include post editing for speech recogni-
tion (Sanchez-Cortina et al., 2012), interactive ma-
chine translation (González-Rubio et al., 2010), ac-
tive learning for machine translation (Haffari et al.,
2009; González-Rubio et al., 2011) and many other
NLP tasks (Olsson, 2009), to name but a few studies.

It has also been recognized by the active learn-
ing community that correcting the most useful parts
first is often not optimal in terms of efficiency, since
these parts tend to be the most difficult to manually
annotate (Settles et al., 2008). The authors advocate
the use of a user model to predict the supervision ef-
fort, and select the instances with best “bang-for-the-
buck.” This prediction of supervision effort was suc-
cessful, and was further refined in other NLP-related
studies (Tomanek et al., 2010; Specia, 2011; Cohn
and Specia, 2013). Our approach to user modeling
using GP regression is inspired by the latter.

Most studies on user models consider only super-
vision effort, while neglecting the accuracy of hu-
man annotations. The view on humans as a perfect
oracle has been criticized (Donmez and Carbonell,
2008), since human errors are common and can
negatively affect supervision utility. Research on
human-computer-interaction has identified the mod-
eling of human errors as very difficult (Olson and
Olson, 1990), depending on factors such as user ex-
perience, cognitive load, user interface design, and

fatigue. Nevertheless, even the simple error model
used in our post editing task was effective.

The active learning community has addressed the
problem of balancing utility and cost in some more
detail. The previously reported “bang-for-the-buck”
approach is a very simple, greedy approach to com-
bine both into one measure. A more theoretically
founded scalar optimization objective is the net ben-
efit (utility minus costs) as proposed by Vijaya-
narasimhan and Grauman (2009), but unfortunately
is restricted to applications where both can be ex-
pressed in terms of the same monetary unit. Vijaya-
narasimhan et al. (2010) and Donmez and Carbonell
(2008) use a more practical approach that specifies a
constrained optimization problem by allowing only
a limited time budget for supervision. Our approach
is a generalization thereof and allows either specify-
ing an upper bound on the predicted cost, or a lower
bound on the predicted utility.

The main novelty of our presented approach is
the explicit modeling and selection of segments of
various sizes, such that annotation efficiency is opti-
mized according to the specified constraints. While
some works (Sassano and Kurohashi, 2010; Neubig
et al., 2011) have proposed using subsentential seg-
ments, we are not aware of any previous work that
explicitly optimizes that segmentation.

7 Conclusion

We presented a method that can effectively choose
a segmentation of a language corpus that optimizes
supervision efficiency, considering not only the ac-
tual usefulness of each segment, but also the anno-
tation cost. We reported noticeable improvements
over strong baselines in two user studies. Future user
experiments with more participants would be desir-
able to verify our observations, and allow further
analysis of different factors such as annotator ex-
pertise. Also, future research may improve the user
modeling, which will be beneficial for our method.

Acknowledgments

The research leading to these results has received
funding from the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant
agreement n 287658 Bridges Across the Language
Divide (EU-BRIDGE).

178

References
Yuya Akita, Masato Mimura, and Tatsuya Kawahara.

2009. Automatic Transcription System for Meetings
of the Japanese National Congress. In Interspeech,
pages 84–87, Brighton, UK.

Trevor Cohn and Lucia Specia. 2013. Modelling Anno-
tator Bias with Multi-task Gaussian Processes: An Ap-
plication to Machine Translation Quality Estimation.
In Association for Computational Linguistics Confer-
ence (ACL), Sofia, Bulgaria.

Pinar Donmez and Jaime Carbonell. 2008. Proactive
Learning : Cost-Sensitive Active Learning with Mul-
tiple Imperfect Oracles. In Conference on Information
and Knowledge Management (CIKM), pages 619–628,
Napa Valley, CA, USA.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and Fran-
cisco Casacuberta. 2010. Balancing User Effort and
Translation Error in Interactive Machine Translation
Via Confidence Measures. In Association for Compu-
tational Linguistics Conference (ACL), Short Papers
Track, pages 173–177, Uppsala, Sweden.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and Fran-
cisco Casacuberta. 2011. An active learning scenario
for interactive machine translation. In International
Conference on Multimodal Interfaces (ICMI), pages
197–200, Alicante, Spain.

Gurobi Optimization. 2012. Gurobi Optimizer Refer-
ence Manual.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active Learning for Statistical Phrase-based
Machine Translation. In North American Chapter
of the Association for Computational Linguistics -
Human Language Technologies Conference (NAACL-
HLT), pages 415–423, Boulder, CO, USA.

Stefan Irnich and Guy Desaulniers. 2005. Shortest Path
Problems with Resource Constraints. In Column Gen-
eration, pages 33–65. Springer US.

Kikuo Maekawa. 2008. Balanced Corpus of Contem-
porary Written Japanese. In International Joint Con-
ference on Natural Language Processing (IJCNLP),
pages 101–102, Hyderabad, India.

R. Timothy Marler and Jasbir S. Arora. 2004. Survey
of multi-objective optimization methods for engineer-
ing. Structural and Multidisciplinary Optimization,
26(6):369–395, April.

Evgeny Matusov, Arne Mauser, and Hermann Ney. 2006.
Automatic Sentence Segmentation and Punctuation
Prediction for Spoken Language Translation. In Inter-
national Workshop on Spoken Language Translation
(IWSLT), pages 158–165, Kyoto, Japan.

Hiroaki Nanjo, Yuya Akita, and Tatsuya Kawahara.
2006. Computer Assisted Speech Transcription Sys-
tem for Efficient Speech Archive. In Western Pacific
Acoustics Conference (WESPAC), Seoul, Korea.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise Prediction for Robust , Adapt-
able Japanese Morphological Analysis. In Associa-
tion for Computational Linguistics: Human Language
Technologies Conference (ACL-HLT), pages 529–533,
Portland, OR, USA.

Atsunori Ogawa, Takaaki Hori, and Atsushi Naka-
mura. 2013. Discriminative Recognition Rate Esti-
mation For N-Best List and Its Application To N-Best
Rescoring. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 6832–
6836, Vancouver, Canada.

Judith Reitman Olson and Gary Olson. 1990. The
Growth of Cognitive Modeling in Human-Computer
Interaction Since GOMS. Human-Computer Interac-
tion, 5(2):221–265, June.

Fredrik Olsson. 2009. A literature survey of active ma-
chine learning in the context of natural language pro-
cessing. Technical report, SICS Sweden.

David Pisinger. 1994. A Minimal Algorithm for the
Multiple-Choice Knapsack Problem. European Jour-
nal of Operational Research, 83(2):394–410.

John C. Platt. 1999. Probabilistic Outputs for Sup-
port Vector Machines and Comparisons to Regularized
Likelihood Methods. In Advances in Large Margin
Classifiers, pages 61–74. MIT Press.

Carl E. Rasmussen and Christopher K.I. Williams. 2006.
Gaussian Processes for Machine Learning. MIT
Press, Cambridge, MA, USA.

Isaias Sanchez-Cortina, Nicolas Serrano, Alberto San-
chis, and Alfons Juan. 2012. A prototype for Inter-
active Speech Transcription Balancing Error and Su-
pervision Effort. In International Conference on Intel-
ligent User Interfaces (IUI), pages 325–326, Lisbon,
Portugal.

Manabu Sassano and Sadao Kurohashi. 2010. Using
Smaller Constituents Rather Than Sentences in Ac-
tive Learning for Japanese Dependency Parsing. In
Association for Computational Linguistics Conference
(ACL), pages 356–365, Uppsala, Sweden.

Burr Settles, Mark Craven, and Lewis Friedland. 2008.
Active Learning with Real Annotation Costs. In
Neural Information Processing Systems Conference
(NIPS) - Workshop on Cost-Sensitive Learning, Lake
Tahoe, NV, United States.

Burr Settles. 2008. An Analysis of Active Learning
Strategies for Sequence Labeling Tasks. In Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1070–1079, Honolulu, USA.

Hagen Soltau, Florian Metze, Christian Fügen, and Alex
Waibel. 2001. A One-Pass Decoder Based on Poly-
morphic Linguistic Context Assignment. In Auto-
matic Speech Recognition and Understanding Work-

179

shop (ASRU), pages 214–217, Madonna di Campiglio,
Italy.

Lucia Specia. 2011. Exploiting Objective Annota-
tions for Measuring Translation Post-editing Effort. In
Conference of the European Association for Machine
Translation (EAMT), pages 73–80, Nice, France.

Matthias Sperber, Graham Neubig, Christian Fügen,
Satoshi Nakamura, and Alex Waibel. 2013. Efficient
Speech Transcription Through Respeaking. In Inter-
speech, pages 1087–1091, Lyon, France.

Bernhard Suhm, Brad Myers, and Alex Waibel. 2001.
Multimodal error correction for speech user inter-
faces. Transactions on Computer-Human Interaction,
8(1):60–98.

Evimaria Terzi and Panayiotis Tsaparas. 2006. Efficient
algorithms for sequence segmentation. In SIAM Con-
ference on Data Mining (SDM), Bethesda, MD, USA.

Katrin Tomanek and Udo Hahn. 2009. Semi-Supervised
Active Learning for Sequence Labeling. In Interna-
tional Joint Conference on Natural Language Process-
ing (IJCNLP), pages 1039–1047, Singapore.

Katrin Tomanek, Udo Hahn, and Steffen Lohmann.
2010. A Cognitive Cost Model of Annotations Based
on Eye-Tracking Data. In Association for Compu-
tational Linguistics Conference (ACL), pages 1158–
1167, Uppsala, Sweden.

Paolo Toth and Daniele Vigo. 2001. The Vehicle Routing
Problem. Society for Industrial & Applied Mathemat-
ics (SIAM), Philadelphia.

Sudheendra Vijayanarasimhan and Kristen Grauman.
2009. Whats It Going to Cost You?: Predicting Ef-
fort vs. Informativeness for Multi-Label Image Anno-
tations. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2262–2269, Miami
Beach, FL, USA.

Sudheendra Vijayanarasimhan, Prateek Jain, and Kristen
Grauman. 2010. Far-sighted active learning on a bud-
get for image and video recognition. In Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 3035–3042, San Francisco, CA, USA, June.

180

The Language Demographics of Amazon Mechanical Turk

Ellie Pavlick1 Matt Post2 Ann Irvine2 Dmitry Kachaev2 Chris Callison-Burch1,2

1Computer and Information Science Department, University of Pennsylvania
2Human Language Technology Center of Excellence, Johns Hopkins University

Abstract

We present a large scale study of the languages
spoken by bilingual workers on Mechanical
Turk (MTurk). We establish a methodology
for determining the language skills of anony-
mous crowd workers that is more robust than
simple surveying. We validate workers’ self-
reported language skill claims by measuring
their ability to correctly translate words, and
by geolocating workers to see if they reside in
countries where the languages are likely to be
spoken. Rather than posting a one-off survey,
we posted paid tasks consisting of 1,000 as-
signments to translate a total of 10,000 words
in each of 100 languages. Our study ran
for several months, and was highly visible on
the MTurk crowdsourcing platform, increas-
ing the chances that bilingual workers would
complete it. Our study was useful both to cre-
ate bilingual dictionaries and to act as cen-
sus of the bilingual speakers on MTurk. We
use this data to recommend languages with the
largest speaker populations as good candidates
for other researchers who want to develop
crowdsourced, multilingual technologies. To
further demonstrate the value of creating data
via crowdsourcing, we hire workers to create
bilingual parallel corpora in six Indian lan-
guages, and use them to train statistical ma-
chine translation systems.

1 Overview

Crowdsourcing is a promising new mechanism for
collecting data for natural language processing re-
search. Access to a fast, cheap, and flexible work-
force allows us to collect new types of data, poten-
tially enabling new language technologies. Because
crowdsourcing platforms like Amazon Mechanical

Turk (MTurk) give researchers access to a world-
wide workforce, one obvious application of crowd-
sourcing is the creation of multilingual technologies.
With an increasing number of active crowd workers
located outside of the United States, there is even the
potential to reach fluent speakers of lower resource
languages. In this paper, we investigate the feasi-
bility of hiring language informants on MTurk by
conducting the first large-scale demographic study
of the languages spoken by workers on the platform.

There are several complicating factors when try-
ing to take a census of workers on MTurk. The
workers’ identities are anonymized, and Amazon
provides no information about their countries of ori-
gin or their language abilities. Posting a simple sur-
vey to have workers report this information may be
inadequate, since (a) many workers may never see
the survey, (b) many opt not to do one-off surveys
since potential payment is low, and (c) validating the
answers of respondents is not straightforward.

Our study establishes a methodology for deter-
mining the language demographics of anonymous
crowd workers that is more robust than simple sur-
veying. We ask workers what languages they speak
and what country they live in, and validate their
claims by measuring their ability to correctly trans-
late words and by recording their geolocation. To
increase the visibility and the desirability of our
tasks, we post 1,000 assignments in each of 100 lan-
guages. These tasks each consist of translating 10
foreign words into English. Two of the 10 words
have known translations, allowing us to validate that
the workers’ translations are accurate. We construct
bilingual dictionaries with up to 10,000 entries, with
the majority of entries being new.

Surveying thousands of workers allows us to ana-
lyze current speaker populations for 100 languages.

79

Transactions of the Association for Computational Linguistics, 2 (2014) 79–92. Action Editor: Mirella Lapata.
Submitted 12/2013; Published 2/2014. c©2014 Association for Computational Linguistics.

11/26/13 turkermap.html

file:///Users/ellie/Documents/Research/turker-demographics/code/src/20130905/paper-rewrite/turkermap.html 1/1

111 1,9981,9981,998
Figure 1: The number of workers per country. This map was generated based on geolocating the IP address
of 4,983 workers in our study. Omitted are 60 workers who were located in more than one country during
the study, and 238 workers who could not be geolocated. The size of the circles represents the number
of workers from each country. The two largest are India (1,998 workers) and the United States (866). To
calibrate the sizes: the Philippines has 142 workers, Egypt has 25, Russia has 10, and Sri Lanka has 4.

The data also allows us to answer questions like:
How quickly is work completed in a given language?
Are crowdsourced translations reliably good? How
often do workers misrepresent their language abili-
ties to obtain financial rewards?

2 Background and Related Work

Amazon’s Mechanical Turk (MTurk) is an on-
line marketplace for work that gives employers
and researchers access to a large, low-cost work-
force. MTurk allows employers to provide micro-
payments in return for workers completing micro-
tasks. The basic units of work on MTurk are called
‘Human Intelligence Tasks’ (HITs). MTurk was de-
signed to accommodate tasks that are difficult for
computers, but simple for people. This facilitates
research into human computation, where people can
be treated as a function call (von Ahn, 2005; Little et
al., 2009; Quinn and Bederson, 2011). It has appli-
cation to research areas like human-computer inter-
action (Bigham et al., 2010; Bernstein et al., 2010),
computer vision (Sorokin and Forsyth, 2008; Deng
et al., 2010; Rashtchian et al., 2010), speech pro-
cessing (Marge et al., 2010; Lane et al., 2010; Parent
and Eskenazi, 2011; Eskenazi et al., 2013), and natu-
ral language processing (Snow et al., 2008; Callison-

Burch and Dredze, 2010; Laws et al., 2011).
On MTurk, researchers who need work completed

are called ‘Requesters’, and workers are often re-
ferred to as ‘Turkers’. MTurk is a true market, mean-
ing that Turkers are free to choose to complete the
HITs which interest them, and Requesters can price
their tasks competitively to try to attract workers and
have their tasks done quickly (Faridani et al., 2011;
Singer and Mittal, 2011). Turkers remain anony-
mous to Requesters, and all payment occurs through
Amazon. Requesters are able to accept submitted
work or reject work that does not meet their stan-
dards. Turkers are only paid if a Requester accepts
their work.

Several reports examine Mechanical Turk as an
economic market (Ipeirotis, 2010a; Lehdonvirta and
Ernkvist, 2011). When Amazon introduced MTurk,
it first offered payment only in Amazon credits, and
later offered direct payment in US dollars. More re-
cently, it has expanded to include one foreign cur-
rency, the Indian rupee. Despite its payments be-
ing limited to two currencies or Amazon credits,
MTurk claims over half a million workers from 190
countries (Amazon, 2013). This suggests that its
worker population should represent a diverse set of
languages.

80

A demographic study by Ipeirotis (2010b) fo-
cused on age, gender, martial status, income lev-
els, motivation for working on MTurk, and whether
workers used it as a primary or supplemental form
of income. The study contrasted Indian and US
workers. Ross et al. (2010) completed a longitudi-
nal follow-on study. A number of other studies have
informally investigated Turkers’ language abilities.
Munro and Tily (2011) compiled survey responses
of 2,000 Turkers, revealing that four of the six most
represented languages come from India (the top six
being Hindi, Malayalam, Tamil, Spanish, French,
and Telugu). Irvine and Klementiev (2010) had
Turkers evaluate the accuracy of translations that
had been automatically inducted from monolingual
texts. They examined translations of 100 words in
42 low-resource languages, and reported geolocated
countries for their workers (India, the US, Romania,
Pakistan, Macedonia, Latvia, Bangladesh and the
Philippines). Irvine and Klementiev discussed the
difficulty of quality control and assessing the plausi-
bility of workers’ language skills for rare languages,
which we address in this paper.

Several researchers have investigated using
MTurk to build bilingual parallel corpora for ma-
chine translation, a task which stands to benefit
low cost, high volume translation on demand (Ger-
mann, 2001). Ambati et al. (2010) conducted a pilot
study by posting 25 sentences to MTurk for Span-
ish, Chinese, Hindi, Telugu, Urdu, and Haitian Cre-
ole. In a study of 2000 Urdu sentences, Zaidan
and Callison-Burch (2011) presented methods for
achieving professional-level translation quality from
Turkers by soliciting multiple English translations
of each foreign sentence. Zbib et al. (2012) used
crowdsourcing to construct a 1.5 million word par-
allel corpus of dialect Arabic and English, train-
ing a statistical machine translation system that pro-
duced higher quality translations of dialect Arabic
than a system a trained on 100 times more Mod-
ern Standard Arabic-English parallel data. Zbib et
al. (2013) conducted a systematic study that showed
that training an MT system on crowdsourced trans-
lations resulted in the same performance as training
on professional translations, at 1

5 the cost. Hu et
al. (2010; Hu et al. (2011) performed crowdsourced
translation by having monolingual speakers collab-
orate and iteratively improve MT output.

English 689 Tamil 253 Malayalam 219
Hindi 149 Spanish 131 Telugu 87
Chinese 86 Romanian 85 Portuguese 82
Arabic 74 Kannada 72 German 66
French 63 Polish 61 Urdu 56
Tagalog 54 Marathi 48 Russian 44
Italian 43 Bengali 41 Gujarati 39
Hebrew 38 Dutch 37 Turkish 35
Vietnamese 34 Macedonian 31 Cebuano 29
Swedish 26 Bulgarian 25 Swahili 23
Hungarian 23 Catalan 22 Thai 22
Lithuanian 21 Punjabi 21 Others ≤ 20

Table 1: Self-reported native language of 3,216
bilingual Turkers. Not shown are 49 languages with
≤20 speakers. We omit 1,801 Turkers who did not
report their native language, 243 who reported 2 na-
tive languages, and 83 with ≥3 native languages.

Several researchers have examined cost optimiza-
tion using active learning techniques to select the
most useful sentences or fragments to translate (Am-
bati and Vogel, 2010; Bloodgood and Callison-
Burch, 2010; Ambati, 2012).

To contrast our research with previous work, the
main contributions of this paper are: (1) a robust
methodology for assessing the bilingual skills of
anonymous workers, (2) the largest-scale census to
date of language skills of workers on MTurk, and (3)
a detailed analysis of the data gathered in our study.

3 Experimental Design

The central task in this study was to investigate Me-
chanical Turk’s bilingual population. We accom-
plished this through self-reported surveys combined
with a HIT to translate individual words for 100
languages. We evaluate the accuracy of the work-
ers’ translations against known translations. In cases
where these were not exact matches, we used a sec-
ond pass monolingual HIT, which asked English
speakers to evaluate if a worker-provided translation
was a synonym of the known translation.

Demographic questionnaire At the start of each
HIT, Turkers were asked to complete a brief survey
about their language abilities. The survey asked the
following questions:

• Is [language] your native language?

• How many years have you spoken [language]?

81

• Is English your native language?

• How many years have you spoken English?

• What country do you live in?

We automatically collected each worker’s current lo-
cation by geolocating their IP address. A total of
5,281 unique workers completed our HITs. Of these,
3,625 provided answers to our survey questions, and
we were able to geolocate 5,043. Figure 1 plots
the location of workers across 106 countries. Table
1 gives the most common self-reported native lan-
guages.

Selection of languages We drew our data from the
different language versions of Wikipedia. We se-
lected the 100 languages with the largest number of
articles 1 (Table 2). For each language, we chose
the 1,000 most viewed articles over a 1 year period,2

and extracted the 10,000 most frequent words from
them. The resulting vocabularies served as the input
to our translation HIT.

Translation HIT For the translation task, we
asked Turkers to translate individual words. We
showed each word in the context of three sentences
that were drawn from Wikipedia. Turkers were al-
lowed to mark that they were unable to translate a
word. Each task contained 10 words, 8 of which
were words with unknown translations, and 2 of
which were quality control words with known trans-
lations. We gave special instruction for translat-
ing names of people and places, giving examples
of how to handle ‘Barack Obama’ and ‘Australia’
using their interlanguage links. For languages with
non-Latin alphabets, names were transliterated.

The task paid $0.15 for the translation of 10
words. Each set of 10 words was independently
translated by three separate workers. 5,281 workers
completed 256,604 translation assignments, totaling
more than 3 million words, over a period of three
and a half months.

Gold standard translations A set of gold stan-
dard translations were automatically harvested from

1http://meta.wikimedia.org/wiki/List_of_
Wikipedias

2http://dumps.wikimedia.org/other/
pagecounts-raw/

500K+ ARTICLES: German (de), English (en), Spanish (es), French
(fr), Italian (it), Japanese (ja), Dutch (nl), Polish (pl), Portuguese
(pt), Russian (ru)
100K-500K ARTICLES: Arabic (ar), Bulgarian (bg), Catalan (ca),
Czech (cs), Danish (da), Esperanto (eo), Basque (eu), Persian (fa),
Finnish (fi), Hebrew (he), Hindi (hi), Croatian (hr), Hungarian (hu),
Indonesian (id), Korean (ko), Lithuanian (lt), Malay (ms), Norwe-
gian (Bokmal) (no), Romanian (ro), Slovak (sk), Slovenian (sl), Ser-
bian (sr), Swedish (sv), Turkish (tr), UKrainian (UK), Vietnamese
(vi), Waray-Waray (war), Chinese (zh)
10K-100K ARTICLES: Afrikaans (af) Amharic (am) Asturian (ast)
Azerbaijani (az) Belarusian (be) Bengali (bn) Bishnupriya Manipuri
(bpy) Breton (br) Bosnian (bs) Cebuano (ceb) Welsh (cy) Zazaki
(diq) Greek (el) West Frisian (fy) Irish (ga) Galician (gl) Gujarati
(gu) Haitian (ht) Armenian (hy) Icelandic (is) Javanese (jv) Geor-
gian (ka) Kannada (kn) Kurdish (ku) Luxembourgish (lb) Latvian
(lv) Malagasy (mg) Macedonian (mk) Malayalam (ml) Marathi
(mr) Neapolitan (nap) Low Saxon (nds) Nepali (ne) Newar / Nepal
Bhasa (new) Norwegian (Nynorsk) (nn) Piedmontese (pms) Sicil-
ian (scn) Serbo-Croatian (sh) Albanian (sq) Sundanese (su) Swahili
(sw) Tamil (ta) Telugu (te) Thai (th) Tagalog (tl) Urdu (ur) Yoruba
(yo)
<10K ARTICLES: Central Bicolano (bcl) Tibetan (bo) Ilokano (ilo)
Punjabi (pa) Kapampangan (pam) Pashto (ps) Sindhi (sd) Somali
(so) Uzbek (uz) Wolof (wo)

Table 2: A list of the languages that were used in our
study, grouped by the number of Wikipedia articles
in the language. Each language’s code is given in
parentheses. These language codes are used in other
figures throughout this paper.

Wikipedia for every language to use as embedded
controls. We used Wikipedia’s inter-language links
to pair titles of English articles with their corre-
sponding foreign article’s title. To get a more trans-
latable set of pairs, we excluded any pairs where: (1)
the English word was not present in the WordNet
ontology (Miller, 1995), (2) either article title was
longer than a single word, (3) the English Wikipedia
page was a subcategory of person or place, or (4)
the English and the foreign titles were identical or a
substring of the other.

Manual evaluation of non-identical translations
We counted all translations that exactly matched
the gold standard translation as correct. For non-
exact matches we created a second-pass quality as-
surance HIT. Turkers were shown a pair of En-
glish words, one of which was a Turker’s transla-
tion of the foreign word used for quality control,
and the other of which was the gold-standard trans-
lation of the foreign word. Evaluators were asked
whether the two words had the same meaning, and
chose between three answers: ‘Yes’, ‘No’, or ‘Re-

82

Figure 2: Days to complete the translation HITs for
40 of the languages. Tick marks represent the com-
pletion of individual assignments.

lated but not synonymous.’ Examples of mean-
ing equivalent pairs include: <petroglyphs, rock
paintings>, <demo, show> and <loam, loam: soil
rich in decaying matter>. Non-meaning equiva-
lents included: <assorted, minutes>, and <major,
URL of image>. Related items were things like
<sky, clouds>. Misspellings like <lactation, lac-
tiation > were judged to have same meaning, and
were marked as misspelled. Three separate Turkers
judged each pair, allowing majority votes for diffi-
cult cases.

We checked Turkers who were working on this
task by embedding pairs of words which were ei-

पा क$ %तान (भी + त$ कार %व.प २८ मई १९९८ 5 छह परमाण9 परी:ण कर डा<।
In retribution pakistan also did six nuclear tests on 28 may 1998.
On 28 May Pakistan also conducted six nuclear tests as an act
of redressal.
Retaliating on this ’Pakistan’ conducted Six(6) Nuclear Tests
on 28 May, 1998.
pakistan also did 6 nuclear test in retribution on 28 may, 1998

Figure 3: An example of the Turkers’ translations of
a Hindi sentence. The translations are unedited and
contain fixable spelling, capitalization and grammat-
ical errors.

ther known to be synonyms (drawn from Word-
Net) or unrelated (randomly chosen from a corpus).
Automating approval/rejections for the second-pass
evaluation allowed the whole pipeline to be run au-
tomatically. Caching judgments meant that we ulti-
mately needed only 20,952 synonym tasks to judge
all of the submitted translations (a total of 74,572
non-matching word pairs). These were completed
by an additional 1,005 workers. Each of these as-
signments included 10 word pairs and paid $0.10.

Full sentence translations To demonstrate the
feasibility of using crowdsourcing to create multi-
lingual technologies, we hire Turkers to construct
bilingual parallel corpora from scratch for six In-
dian languages. Germann (2001) attempted to build
a Tamil-English translation system from scratch by
hiring professional translators, but found the cost
prohibitive. We created parallel corpora by trans-
lating the 100 most viewed Wikipedia pages in Ben-
gali, Malyalam, Hindi, Tamil, Telugu, and Urdu into
English. We collected four translations from differ-
ent Turkers for each source sentence.

Workers were paid $0.70 per HIT to translate
10 sentences. We accepted or rejected translations
based on a manual review of each worker’s submis-
sions, which included a comparison of the transla-
tions to a monotonic gloss (produced with a dic-
tionary), and metadata such as the amount of time
the worker took to complete the HIT and their geo-
graphic location.

Figure 3 shows an example of the translations we
obtained. The lack of a professionally translated
reference sentences prevented us from doing a sys-
tematic comparison between the quality of profes-

83

p
t

b
s

sh tl it sr ro e
s

m
s

d
e a
f

te h
r id d
a n
l

tr g
u sk fi

h
e

m
l

fr ja p
a

b
g

m
k

n
o g
l

h
t

g
a sv cy lv h
u

kn a
z

b
e lt ko n
e

e
o a
r p
l

m
r

ca cs sw ta h
i

b
n

n
n ka so zh jv e
l

ce
b v
i

b
cl is su u
z lb

b
p
y

sc
n

n
e
w u
r

sd b
r

p
s ru

a
m w
o

b
o0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Translation quality for languages with at least 50 Turkers. The dark blue bars indicate the pro-
portion of translations which exactly matched gold standard translations, and light blue indicate translations
which were judged to be correct synonyms. Error bars show the 95% confidence intervals for each language.

sion and non-professional translations as Zaidan and
Callison-Burch (2011) did. Instead we evaluate the
quality of the data by using it to train SMT systems.
We present results in section 5.

4 Measuring Translation Quality

For single word translations, we calculate the qual-
ity of translations on the level of individual assign-
ments and aggregated over workers and languages.
We define an assignment’s quality as the proportion
of controls that are correct in a given assignment,
where correct means exactly correct or judged to be
synonymous.

Quality(ai) =
1

ki

ki∑

j=1

δ(trij ∈ syns[gj]) (1)

where ai is the ith assignment, ki is the number of
controls in ai, trij is the Turker’s provided transla-
tion of control word j in assignment i, gj is the gold
standard translation of control word j, syns[gj] is
the set of words judged to be synonymous with gj
and includes gj , and δ(x) is Kronecker’s delta and
takes value 1 when x is true. Most assignments had
two known words embedded, so most assignments
had scores of either 0, 0.5, or 1.

Since computing overall quality for a language as
the average assignment quality score is biased to-
wards a small number of highly active Turkers, we
instead report language quality scores as the aver-
age per-Turker quality, where a Turker’s quality is
the average quality of all the assignments that she
completed:

Quality(ti) =

∑
aj∈assigns[i] Quality(aj)

| assigns[i] | (2)

where assigns[i] is the assignments completed
by Turker i, and Quality(a) is as above.

Quality for a language is then given by

Quality(li) =

∑
tj∈turkers[i] Quality(tj)

| turkers[i] | (3)

When a Turker completed assignments in more than
one language, their quality was computed separately
for each language. Figure 4 shows the transla-
tion quality for languages with contributions from
at least 50 workers.

Cheating using machine translation One obvi-
ous way for workers to cheat is to use available
online translation tools. Although we followed
best practices to deter copying-and-pasting into on-
line MT systems by rendering words and sentences

84

as images (Zaidan and Callison-Burch, 2011), this
strategy does not prevent workers from typing the
words into an MT system if they are able to type in
the language’s script.

To identify and remove workers who appeared to
be cheating by using Google Translate, we calcu-
lated each worker’s overlap with the Google transla-
tions. We used Google to translate all 10,000 words
for the 51 foreign languages that Google Trans-
late covered at the time of the study. We mea-
sured the percent of workers’ translations that ex-
actly matched the translation returned from Google.

Figure 5a shows overlap between Turkers’s trans-
lations and Google Translate. When overlap is high,
it seems likely that those Turkers are cheating. It is
also reasonable to assume that honest workers will
overlap with Google some amount of the time as
Google’s translations are usually accurate. We di-
vide the workers into three groups: those with very
high overlap with Google (likely cheating by using
Google to translate words), those with reasonable
overlap, and those with no overlap (likely cheating
by other means, for instance, by submitting random
text).

Our gold-standard controls are designed to iden-
tify workers that fall into the third group (those who
are spamming or providing useless translations), but
they will not effectively flag workers who are cheat-
ing with Google Translate. We therefore remove the
500 Turkers with the highest overlap with Google.
This equates to removing all workers with greater
than 70% overlap. Figure 5b shows that removing
workers at or above the 70% threshold retains 90%
of the collected translations and over 90% of the
workers.

Quality scores reported throughout the paper re-
flect only translations from Turkers whose overlap
with Google falls below this 70% threshold.

5 Data Analysis

We performed an analysis of our data to address the
following questions:

• Do workers accurately represent their language
abilities? Should we constrain tasks by region?

• How quickly can we expect work to be com-
pleted in a particular language?

(a) Individual workers’ overlap with Google Translate.
We removed the 500 workers with the highest overlap
(shaded region on the left) from our analyses, as it is rea-
sonable to assume these workers are cheating by submit-
ting translations from Google. Workers with no overlap
(shaded region on the right) are also likely to be cheating,
e.g. by submitting random text.

(b) Cumulative distribution of overlap with Google trans-
late for workers and translations. We see that eliminating
all workers with >70% overlap with google translate still
preserves 90% of translations and >90% of workers.

Figure 5

• Can Turkers’ translations be used to train MT
systems?

• Do our dictionaries improve MT quality?

Language skills and location We measured the
average quality of workers who were in countries
that plausibly speak a language, versus workers from
countries that did not have large speaker populations
of that language. We used the Ethnologue (Lewis

85

Avg. Turker quality (# Ts) Primary locations Primary locations
In region Out of region of Turkers in region of Turkers out of region

Hindi 0.63 (296) 0.69 (7) India (284) UAE (5) UK (3) Saudi Arabia (2) Russia (1) Oman (1)
Tamil 0.65 (273) ** 0.25 (2) India (266) US (3) Canada (2) Tunisia (1) Egypt (1)
Malayalam 0.76 (234) 0.83 (2) India (223) UAE (6) US (3) Saudi Arabia (1) Maldives (1)
Spanish 0.81 (191) 0.84 (18) US (122) Mexico (16) Spain (14) India (15) New Zealand (1) Brazil (1)
French 0.75 (170) 0.82 (11) India (62) US (45) France (23) Greece (2) Netherlands (1) Japan (1)
Chinese 0.60 (116) 0.55 (21) US (75) Singapore (13) China (9) Hong Kong (6) Australia (3) Germany (2)
German 0.82 (91) 0.77 (41) Germany (48) US (25) Austria (7) India (34) Netherlands (1) Greece (1)
Italian 0.86 (90) * 0.80 (42) Italy (42) US (29) Romania (7) India (33) Ireland (2) Spain (2)
Amharic 0.14 (16) ** 0.01 (99) US (14) Ethiopia (2) India (70) Georgia (9) Macedonia (5)
Kannada 0.70 (105) NA (0) India (105)
Arabic 0.74 (60) ** 0.60 (45) Egypt (19) Jordan (16) Morocco (9) US (19) India (11) Canada (3)
Sindhi 0.19 (96) 0.06 (9) India (58) Pakistan (37) US (1) Macedonia (4) Georgia (2) Indonesia (2)
Portuguese 0.87 (101) 0.96 (3) Brazil (44) Portugal (31) US (15) Romania (1) Japan (1) Israel (1)
Turkish 0.76 (76) 0.80 (27) Turkey (38) US (18) Macedonia (8) India (19) Pakistan (4) Taiwan (1)
Telugu 0.80 (102) 0.50 (1) India (98) US (3) UAE (1) Saudi Arabia (1)
Irish 0.74 (54) 0.71 (47) US (39) Ireland (13) UK (2) India (36) Romania (5) Macedonia (2)
Swedish 0.73 (54) 0.71 (45) US (25) Sweden (22) Finland (3) India (23) Macedonia (6) Croatia (2)
Czech 0.71 (45) * 0.61 (50) US (17) Czech Republic (14) Serbia (5) Macedonia (22) India (10) UK (5)
Russian 0.15 (67) * 0.12 (27) US (36) Moldova (7) Russia (6) India (14) Macedonia (4) UK (3)
Breton 0.17 (3) 0.18 (89) US (3) India (83) Macedonia (2) China (1)

Table 3: Translation quality when partitioning the translations into two groups, one containing translations
submitted by Turkers whose location is within regions that plausibly speak the foreign language, and the
other containing translations from Turkers outside those regions. In general, in-region Turkers provide
higher quality translations. (**) indicates differences significant at p=0.05, (*) at p=0.10.

et al., 2013) to compile the list of countries where
each language is spoken. Table 3 compares the av-
erage translation quality of assignments completed
within the region of each language, and compares it
to the quality of assignments completed outside that
region.

Our workers reported speaking 95 languages na-
tively. US workers alone reported 61 native lan-
guages. Overall, 4,297 workers were located in a
region likely to speak the language from which they
were translating, and 2,778 workers were located
in countries considered out of region (meaning that
about a third of our 5,281 Turkers completed HITs
in multiple languages).

Table 3 shows the differences in translation qual-
ity when computed using in-region versus out-of-
region Turkers, for the languages with the greatest
number of workers. Within region workers typi-
cally produced higher quality translations. Given the
number of Indian workers on Mechanical Turk, it
is unsurprising that they represent majority of out-
of-region workers. For the languages that had more
than 75 out of region workers (Malay, Amharic, Ice-
landic, Sicilian, Wolof, and Breton), Indian workers
represented at least 70% of the out of region workers

in each language.
A few languages stand out for having suspiciously

strong performance by out of region workers, no-
tably Irish and Swedish, for which out of region
workers account for a near equivalent volume and
quality of translations to the in region workers. This
is admittedly implausible, considering the relatively
small number of Irish speakers worldwide, and the
very low number living in the countries in which our
Turkers were based (primarily India). Such results
highlight the fact that cheating using online transla-
tion resources is a real problem, and despite our best
efforts to remove workers using Google Translate,
some cheating is still evident. Restricting to within
region workers is an effective way to reduce the
prevalence of cheating. We discuss the languages
which are best supported by true native speakers in
section 6.

Speed of translation Figure 2 gives the comple-
tion times for 40 languages. The 10 languages to
finish in the shortest amount of time were: Tamil,
Malayalam, Telugu, Hindi, Macedonian, Spanish,
Serbian, Romanian, Gujarati, and Marathi. Seven of
the ten fastest languages are from India, which is un-

86

320 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

800,000

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000
M
al
ay
al
am

Ta
m
il

Tel
ugu

Hindi

Urd
u

Ben
gali

Figure 6: The total volume of translations (measured
in English words) as a function of elapsed days.

sentence English + dictionary
language pairs foreign words entries
Bengali 22k 732k 22k
Hindi 40k 1,488k 22k
Malayalam 32k 863k 23k
Tamil 38k 916k 25k
Telugu 46k 1,097k 21k
Urdu 35k 1,356k 20k

Table 4: Size of parallel corpora and bilingual dic-
tionaries collected for each language.

surprising given the geographic distribution of work-
ers. Some languages follow the pattern of having a
smattering of assignments completed early, with the
rate picking up later.

Figure 6 gives the throughput of the full-sentence
translation task for the six Indian languages. The
fastest language was Malayalam, for which we col-
lected half a million words of translations in just un-
der a week. Table 4 gives the size of the data set that
we created for each of these languages.

Training SMT systems We trained statistical
translation models from the parallel corpora that we
created for the six Indian languages using the Joshua
machine translation system (Post et al., 2012). Table
5 shows the translation performance when trained
on the bitexts alone, and when incorporating the
bilingual dictionaries created in our earlier HIT. The
scores reflect the performance when tested on held
out sentences from the training data. Adding the dic-

trained on bitext + BLEU
language bitexts alone dictionaries ∆

Bengali 12.03 17.29 5.26
Hindi 16.19 18.10 1.91
Malayalam 6.65 9.72 3.07
Tamil 8.08 9.66 1.58
Telugu 11.94 13.70 1.76
Urdu 19.22 21.98 2.76

Table 5: BLEU scores for translating into English
using bilingual parallel corpora by themselves, and
with the addition of single-word dictionaries. Scores
are calculated using four reference translations and
represent the mean of three MERT runs.

tionaries to the training set produces consistent per-
formance gains, ranging from 1 to 5 BLEU points.
This represents a substantial improvement. It is
worth noting, however, that while the source doc-
uments for the full sentences used for testing were
kept disjoint from those used for training, there is
overlap between the source materials for the dictio-
naries and those from the test set, since both the dic-
tionaries and the bitext source sentences were drawn
from Wikipedia.

6 Discussion

Crowdsourcing platforms like Mechanical Turk give
researchers instant access to a diverse set of bilin-
gual workers. This opens up exciting new avenues
for researchers to develop new multilingual systems.
The demographics reported in this study are likely to
shift over time. Amazon may expand its payments to
new currencies. Posting long-running HITs in other
languages may recruit more speakers of those lan-
guages. New crowdsourcing platforms may emerge.
The data presented here provides a valuable snap-
shot of the current state of MTurk, and the methods
used can be applied generally in future research.

Based on our study, we can confidently recom-
mend 13 languages as good candidates for research
now: Dutch, French, German, Gujarati, Italian, Kan-
nada, Malayalam, Portuguese, Romanian, Serbian,
Spanish, Tagalog, and Telugu. These languages
have large Turker populations who complete tasks
quickly and accurately. Table 6 summarizes the
strengths and weaknesses of all 100 languages cov-
ered in our study. Several other languages are viable

87

workers quality speed
many high fast Dutch, French, German, Gu-

jarati, Italian, Kannada, Malay-
alam, Portuguese, Romanian,
Serbian, Spanish, Tagalog, Tel-
ugu

slow Arabic, Hebrew, Irish, Punjabi,
Swedish, Turkish

low fast Hindi, Marathi, Tamil, Urdu
or
medium

slow Bengali, Bishnupriya Ma-
nipuri, Cebuano, Chinese,
Nepali, Newar, Polish, Russian,
Sindhi, Tibetan

few high fast Bosnia, Croatian, Macedonian,
Malay, Serbo-Croatian

slow Afrikaans, Albanian,
Aragonese, Asturian, Basque,
Belarusian, Bulgarian, Central
Bicolano, Czech, Danish,
Finnish, Galacian, Greek,
Haitian, Hungarian, Icelandic,
Ilokano, Indonesian, Japanese,
Javanese, Kapampangan,
Kazakh, Korean, Lithuanian,
Low Saxon, Malagasy, Nor-
wegian (Bokmal), Sicilian,
Slovak, Slovenian, Thai, UKra-
nian, Uzbek, Waray-Waray,
West Frisian, Yoruba

low fast –
or
medium

slow Amharic, Armenian, Azer-
baijani, Breton, Catalan,
Georgian, Latvian, Luxembour-
gish, Neapolitian, Norwegian
(Nynorsk), Pashto, Pied-
montese, Somali, Sudanese,
Swahili, Tatar, Vietnamese,
Walloon, Welsh

none low or
medium

slow Esperanto, Ido, Kurdish, Per-
sian, Quechua, Wolof, Zazaki

Table 6: The green box shows the best languages to
target on MTurk. These languages have many work-
ers who generate high quality results quickly. We
defined many workers as 50 or more active in-region
workers, high quality as≥70% accuracy on the gold
standard controls, and fast if all of the 10,000 words
were completed within two weeks.

candidates provided adequate quality control mech-
anisms are used to select good workers.

Since Mechanical Turk provides financial incen-
tives for participation, many workers attempt to
complete tasks even if they do not have the lan-
guage skills necessary to do so. Since MTurk does
not provide any information about workers demo-
graphics, including their language competencies, it
can be hard to exclude such workers. As a result
naive data collection on MTurk may result in noisy
data. A variety of techniques should be incorporated
into crowdsourcing pipelines to ensure high quality
data. As a best practice, we suggest: (1) restricting
workers to countries that plausibly speak the foreign
language of interest, (2) embedding gold standard
controls or administering language pretests, rather
than relying solely on self-reported language skills,
and (3) excluding workers whose translations have
high overlap with online machine translation sys-
tems like Google translate. If cheating using exter-
nal resources is likely, then also consider (4) record-
ing information like time spent on a HIT (cumulative
and on individual items), patterns in keystroke logs,
tab/window focus, etc.

Although our study targeted bilingual workers on
Mechanical Turk, and neglected monolingual work-
ers, we believe our results reliably represent the cur-
rent speaker populations, since the vast majority of
the work available on the crowdsourced platform
is currently English-only. We therefore assume the
number of non-English speakers is small. In the fu-
ture, it may be desirable to recruit monolingual for-
eign workers. In such cases, we recommend other
tests to validate their language abilities in place of
our translation test. These could include perform-
ing narrative cloze, or listening to audio files con-
taining speech in different language and identifying
their language.

7 Data release

With the publication of this paper, we are releasing
all data and code used in this study. Our data release
includes the raw data, along with bilingual dictionar-
ies that are filtered to be high quality. It will include
256,604 translation assignments from 5,281 Turkers
and 20,952 synonym assignments from 1,005 Turk-
ers, along with meta information like geolocation

88

and time submitted, plus external dictionaries used
for validation. The dictionaries will contain 1.5M
total translated words in 100 languages, along with
code to filter the dictionaries based on different cri-
teria. The data also includes parallel corpora for six
Indian languages, ranging in size between 700,000
to 1.5 million words.

8 Acknowledgements

This material is based on research sponsored by
a DARPA Computer Science Study Panel phase 3
award entitled “Crowdsourcing Translation” (con-
tract D12PC00368). The views and conclusions
contained in this publication are those of the authors
and should not be interpreted as representing offi-
cial policies or endorsements by DARPA or the U.S.
Government. This research was supported by the
Johns Hopkins University Human Language Tech-
nology Center of Excellence and through gifts from
Microsoft and Google.

The authors would like to thank the anonymous
reviewers for their thoughtful comments, which sub-
stantially improved this paper.

References

Amazon. 2013. Service summary tour for re-
questers on Amazon Mechanical Turk. https://
requester.mturk.com/tour.

Vamshi Ambati and Stephan Vogel. 2010. Can crowds
build parallel corpora for machine translation systems?
In Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s
Mechanical Turk. Association for Computational Lin-
guistics.

Vamshi Ambati, Stephan Vogel, and Jaime Carbonell.
2010. Active learning and crowd-sourcing for ma-
chine translation. In Proceedings of the 7th Interna-
tional Conference on Language Resources and Evalu-
ation (LREC).

Vamshi Ambati. 2012. Active Learning and Crowd-
sourcing for Machine Translation in Low Resource
Scenarios. Ph.D. thesis, Language Technologies In-
stitute, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA.

Michael S. Bernstein, Greg Little, Robert C. Miller,
Bjrn Hartmann, Mark S. Ackerman, David R. Karger,
David Crowell, and Katrina Panovich. 2010. Soylent:
a word processor with a crowd inside. In Proceed-

ings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST).

Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg Lit-
tle, Andrew Miller, Robert C. Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White,
and Tom Yeh. 2010. VizWiz: nearly real-time an-
swers to visual questions. In Proceedings of the ACM
Symposium on User Interface Software and Technol-
ogy (UIST).

Michael Bloodgood and Chris Callison-Burch. 2010.
Large-scale cost-focused active learning for statisti-
cal machine translation. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics.

Chris Callison-Burch and Mark Dredze. 2010. Creating
speech and language data with Amazon’s Mechanical
Turk. In Proceedings of the NAACL HLT 2010 Work-
shop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, pages 1–12, Los Angeles,
June. Association for Computational Linguistics.

Jia Deng, Alexander Berg, Kai Li, and Li Fei-Fei. 2010.
What does classifying more than 10,000 image cate-
gories tell us? In Proceedings of the 12th European
Conference of Computer Vision (ECCV, pages 71–84.

Maxine Eskenazi, Gina-Anne Levow, Helen Meng,
Gabriel Parent, and David Suendermann. 2013.
Crowdsourcing for Speech Processing, Applications to
Data Collection, Transcription and Assessment. Wi-
ley.

Siamak Faridani, Björn Hartmann, and Panagiotis G.
Ipeirotis. 2011. What’s the right price? pricing tasks
for finishing on time. In Third AAAI Human Compu-
tation Workshop (HCOMP’11).

Ulrich Germann. 2001. Building a statistical machine
translation system from scratch: How much bang for
the buck can we expect? In ACL 2001 Workshop on
Data-Driven Machine Translation, Toulouse, France.

Chang Hu, Benjamin B. Bederson, and Philip Resnik.
2010. Translation by iterative collaboration between
monolingual users. In Proceedings of ACM SIGKDD
Workshop on Human Computation (HCOMP).

Chang Hu, Philip Resnik, Yakov Kronrod, Vladimir Ei-
delman, Olivia Buzek, and Benjamin B. Bederson.
2011. The value of monolingual crowdsourcing in
a real-world translation scenario: Simulation using
haitian creole emergency sms messages. In Pro-
ceedings of the Sixth Workshop on Statistical Ma-
chine Translation, pages 399–404, Edinburgh, Scot-
land, July. Association for Computational Linguistics.

Panagiotis G. Ipeirotis. 2010a. Analyzing the mechani-
cal turk marketplace. In ACM XRDS, December.

Panagiotis G. Ipeirotis. 2010b. Demographics of
Mechanical Turk. Technical Report Working paper

89

CeDER-10-01, New York University, Stern School of
Business.

Ann Irvine and Alexandre Klementiev. 2010. Using Me-
chanical Turk to annotate lexicons for less commonly
used languages. In Workshop on Creating Speech and
Language Data with MTurk.

Ian Lane, Matthias Eck, Kay Rottmann, and Alex
Waibel. 2010. Tools for collecting speech corpora
via mechanical-turk. In Proceedings of the NAACL
HLT 2010 Workshop on Creating Speech and Lan-
guage Data with Amazon’s Mechanical Turk, Los An-
geles.

Florian Laws, Christian Scheible, and Hinrich Schütze.
2011. Active learning with amazon mechanical turk.
In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, Edinburgh,
Scotland.

Matthew Lease, Jessica Hullman, Jeffrey P. Bigham,
Juho Kim Michael S. Bernstein and, Walter Lasecki,
Saeideh Bakhshi, Tanushree Mitra, and Robert C.
Miller. 2013. Mechanical Turk is not anony-
mous. http://dx.doi.org/10.2139/ssrn.
2228728.

Vili Lehdonvirta and Mirko Ernkvist. 2011. Knowl-
edge map of the virtual economy: Converting
the virtual economy into development potential.
http://www.infodev.org/en/Document.
1056.pdf, April. An InfoDev Publication.

M. Paul Lewis, Gary F. Simons, and Charles D. Fennig
(eds.). 2013. Ethnologue: Languages of the world,
seventeenth edition. http://www.ethnologue.
com.

Greg Little, Lydia B. Chilton, Rob Miller, and Max Gold-
man. 2009. Turkit: Tools for iterative tasks on me-
chanical turk. In Proceedings of the Workshop on
Human Computation at the International Conference
on Knowledge Discovery and Data Mining (KDD-
HCOMP ’09), Paris.

Matthew Marge, Satanjeev Banerjee, and Alexander
Rudnicky. 2010. Using the Amazon Mechanical Turk
to transcribe and annotate meeting speech for extrac-
tive summarization. In Workshop on Creating Speech
and Language Data with MTurk.

George A. Miller. 1995. WordNet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Robert Munro and Hal Tily. 2011. The start of the
art: Introduction to the workshop on crowdsourcing
technologies for language and cognition studies. In
Crowdsourcing Technologies for Language and Cog-
nition Studies, Boulder.

Scott Novotney and Chris Callison-Burch. 2010. Cheap,
fast and good enough: Automatic speech recognition
with non-expert transcription. In Human Language

Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 207–215. Association for
Computational Linguistics.

Gabriel Parent and Maxine Eskenazi. 2011. Speaking
to the crowd: looking at past achievements in using
crowdsourcing for speech and predicting future chal-
lenges. In Proceedings Interspeech 2011, Special Ses-
sion on Crowdsourcing.

Matt Post, Chris Callison-Burch, and Miles Osborne.
2012. Constructing parallel corpora for six indian
languages via crowdsourcing. In Proceedings of the
Seventh Workshop on Statistical Machine Translation,
pages 401–409, Montréal, Canada, June. Association
for Computational Linguistics.

Alexander J. Quinn and Benjamin B. Bederson. 2011.
Human computation: A survey and taxonomy of a
growing field. In Computer Human Interaction (CHI).

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Ju-
lia Hockenmaier. 2010. Collecting image annotations
using Amazon’s Mechanical Turk. In Workshop on
Creating Speech and Language Data with MTurk.

Joel Ross, Lilly Irani, M. Six Silberman, Andrew Zal-
divar, and Bill Tomlinson. 2010. Who are the crowd-
workers?: Shifting demographics in Amazon Mechan-
ical Turk. In alt.CHI session of CHI 2010 extended
abstracts on human factors in computing systems, At-
lanta, Georgia.

Yaron Singer and Manas Mittal. 2011. Pricing mecha-
nisms for online labor markets. In Third AAAI Human
Computation Workshop (HCOMP’11).

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast - but is it
good? Evaluating non-expert annotations for natural
language tasks. In Proceedings of EMNLP.

Alexander Sorokin and David Forsyth. 2008. Utility
data annotation with amazon mechanical turk. In First
IEEE Workshop on Internet Vision at CVPR.

Luis von Ahn. 2005. Human Computation. Ph.D. thesis,
School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

Omar F. Zaidan and Chris Callison-Burch. 2011. Crowd-
sourcing translation: Professional quality from non-
professionals. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1220–
1229. Association for Computational Linguistics.

Rabih Zbib, Erika Malchiodi, Jacob Devlin, David
Stallard, Spyros Matsoukas, Richard Schwartz, John
Makhoul, Omar F. Zaidan, and Chris Callison-Burch.
2012. Machine translation of Arabic dialects. In The
2012 Conference of the North American Chapter of
the Association for Computational Linguistics. Asso-
ciation for Computational Linguistics.

90

Rabih Zbib, Gretchen Markiewicz, Spyros Matsoukas,
Richard Schwartz, and John Makhoul. 2013. Sys-
tematic comparison of professional and crowdsourced
reference translations for machine translation. In Pro-
ceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Atlanta,
Georgia.

91

92

Cross-lingual Projected Expectation Regularization for
Weakly Supervised Learning

Mengqiu Wang and Christopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305 USA

{mengqiu,manning}@cs.stanford.edu

Abstract

We consider a multilingual weakly supervised
learning scenario where knowledge from an-
notated corpora in a resource-rich language
is transferred via bitext to guide the learning
in other languages. Past approaches project
labels across bitext and use them as features
or gold labels for training. We propose a
new method that projects model expectations
rather than labels, which facilities transfer
of model uncertainty across language bound-
aries. We encode expectations as constraints
and train a discriminative CRF model using
Generalized Expectation Criteria (Mann and
McCallum, 2010). Evaluated on standard
Chinese-English and German-English NER
datasets, our method demonstrates F1 scores
of 64% and 60% when no labeled data is
used. Attaining the same accuracy with su-
pervised CRFs requires 12k and 1.5k labeled
sentences. Furthermore, when combined with
labeled examples, our method yields signifi-
cant improvements over state-of-the-art super-
vised methods, achieving best reported num-
bers to date on Chinese OntoNotes and Ger-
man CoNLL-03 datasets.

1 Introduction

Supervised statistical learning methods have en-
joyed great popularity in Natural Language Process-
ing (NLP) over the past decade. The success of su-
pervised methods depends heavily upon the avail-
ability of large amounts of annotated training data.
Manual curation of annotated corpora is a costly and
time consuming process. To date, most annotated re-
sources resides within the English language, which

hinders the adoption of supervised learning methods
in many multilingual environments.

To minimize the need for annotation, significant
progress has been made in developing unsupervised
and semi-supervised approaches to NLP (Collins
and Singer 1999; Klein 2005; Liang 2005; Smith
2006; Goldberg 2010; inter alia) . More recent
paradigms for semi-supervised learning allow mod-
elers to directly encode knowledge about the task
and the domain as constraints to guide learning
(Chang et al., 2007; Mann and McCallum, 2010;
Ganchev et al., 2010). However, in a multilingual
setting, coming up with effective constraints require
extensive knowledge of the foreign1 language.

Bilingual parallel text (bitext) lends itself as a
medium to transfer knowledge from a resource-rich
language to a foreign languages. Yarowsky and Ngai
(2001) project labels produced by an English tag-
ger to the foreign side of bitext, then use the pro-
jected labels to learn a HMM model. More recent
work applied the projection-based approach to more
language-pairs, and further improved performance
through the use of type-level constraints from tag
dictionary and feature-rich generative or discrimina-
tive models (Das and Petrov, 2011; Täckström et al.,
2013).

In our work, we propose a new projection-based
method that differs in two important ways. First,
we never explicitly project the labels. Instead, we
project expectations over the labels. This projection

1For experimental purposes, we designate English as the
resource-rich language, and other languages of interest as “for-
eign”. In our experiments, we simulate the resource-poor sce-
nario using Chinese and German, even though in reality these
two languages are quite rich in resources.

55

Transactions of the Association for Computational Linguistics, 2 (2014) 55–66. Action Editor: Lillian Lee.
Submitted 9/2013; Revised 12/2013; Published 2/2014. c©2014 Association for Computational Linguistics.

acts as a soft constraint over the labels, which al-
lows us to transfer more information and uncertainty
across language boundaries. Secondly, we encode
the expectations as constraints and train a model by
minimizing divergence between model expectations
and projected expectations in a Generalized Expec-
tation (GE) Criteria (Mann and McCallum, 2010)
framework.

We evaluate our approach on Named Entity
Recognition (NER) tasks for English-Chinese and
English-German language pairs on standard public
datasets. We report results in two settings: a weakly
supervised setting where no labeled data or a small
amount of labeled data is available, and a semi-
supervised settings where labeled data is available,
but we can gain predictive power by learning from
unlabeled bitext.

2 Related Work

Most semi-supervised learning approaches embody
the principle of learning from constraints. There are
two broad categories of constraints: multi-view con-
straints, and external knowledge constraints.

Examples of methods that explore multi-view
constraints include self-training (Yarowsky, 1995;
McClosky et al., 2006),2 co-training (Blum and
Mitchell, 1998; Sindhwani et al., 2005), multi-
view learning (Ando and Zhang, 2005; Carlson et
al., 2010), and discriminative and generative model
combination (Suzuki and Isozaki, 2008; Druck and
McCallum, 2010).

An early example of using knowledge as con-
straints in weakly-supervised learning is the work
by Collins and Singer (1999). They showed that the
addition of a small set of “seed” rules greatly im-
prove a co-training style unsupervised tagger. Chang
et al. (2007) proposed a constraint-driven learning
(CODL) framework where constraints are used to
guide the selection of best self-labeled examples to
be included as additional training data in an iterative
EM-style procedure. The kind of constraints used
in applications such as NER are the ones like “the
words CA, Australia, NY are LOCATION” (Chang
et al., 2007). Notice the similarity of this partic-

2A multi-view interpretation of self-training is that the self-
tagged additional data offers new views to learners trained on
existing labeled data.

ular constraint to the kinds of features one would
expect to see in a discriminative MaxEnt model.
The difference is that instead of learning the valid-
ity (or weight) of this feature from labeled exam-
ples — since we do not have them — we can con-
strain the model using our knowledge of the domain.
Druck et al. (2009) also demonstrated that in an ac-
tive learning setting where annotation budget is lim-
ited, it is more efficient to label features than ex-
amples. Other sources of knowledge include lexi-
cons and gazetteers (Druck et al., 2007; Chang et
al., 2007).

While it is straight-forward to see how resources
such as a list of city names can give a lot of mileage
in recognizing locations, we are also exposed to the
danger of over-committing to hard constraints. For
example, it becomes problematic with city names
that are ambiguous, such as Augusta, Georgia.3

To soften these constraints, Mann and McCallum
(2010) proposed the Generalized Expectation (GE)
Criteria framework, which encodes constraints as a
regularization term over some score function that
measures the divergence between the model’s ex-
pectation and the target expectation. The connection
between GE and CODL is analogous to the relation-
ship between hard (Viterbi) EM and soft EM, as il-
lustrated by Samdani et al. (2012).

Another closely related work is the Posterior
Regularization (PR) framework by Ganchev et al.
(2010). In fact, as Bellare et al. (2009) have shown,
in a discriminative model these two methods opti-
mize exactly the same objective.4 The two differ
in optimization details: PR uses a EM algorithm
to approximate the gradients which avoids the ex-
pensive computation of a covariance matrix between
features and constraints, whereas GE directly cal-
culates the gradient. However, later results (Druck,
2011) have shown that using the Expectation Semir-
ing techniques of Li and Eisner (2009), one can
compute the exact gradients of GE in a Conditional
Random Fields (CRF) (Lafferty et al., 2001) at costs

3This is a city in the state of Georgia in USA, famous for its
golf courses. It is ambiguous since both Augusta and Georgia
can also be used as person names.

4The different terminology employed by GE and PR may
be confusing to discerning readers, but the “expectation” in the
context of GE means the same thing as “marginal posterior” as
in PR.

56

no greater than computing the gradients of ordinary
CRF. And empirically, GE tends to perform more ac-
curately than PR (Bellare et al., 2009; Druck, 2011).

Obtaining appropriate knowledge resources for
constructing constraints remain as a bottleneck in
applying GE and PR to new languages. However,
a number of past work recognizes parallel bitext as a
rich source of linguistic constraints, naturally cap-
tured in the translations. As a result, bitext has
been effectively utilized for unsupervised multilin-
gual grammar induction (Alshawi et al., 2000; Sny-
der et al., 2009), parsing (Burkett and Klein, 2008),
and sequence labeling (Naseem et al., 2009).

A number of recent work also explored bilin-
gual constraints in the context of simultaneous bilin-
gual tagging, and showed that enforcing agreements
between language pairs give superior results than
monolingual tagging (Burkett et al., 2010; Che et
al., 2013; Wang et al., 2013a). Burkett et al. (2010)
also demonstrated a uptraining (Petrov et al., 2010)
setting where tag-induced bitext can be used as ad-
ditional monolingual training data to improve mono-
lingual taggers. A major drawback of this approach
is that it requires a readily-trained tagging models in
each languages, which makes a weakly supervised
setting infeasible. Another intricacy of this approach
is that it only works when the two models have com-
parable strength, since mutual agreements are en-
forced between them.

Projection-based methods can be very effective
in weakly-supervised scenarios, as demonstrated by
Yarowsky and Ngai (2001), and Xi and Hwa (2005).
One problem with projected labels is that they are
often too noisy to be directly used as training sig-
nals. To mitigate this problem, Das and Petrov
(2011) designed a label propagation method to au-
tomatically induce a tag lexicon for the foreign lan-
guage to smooth the projected labels. Fossum and
Abney (2005) filter out projection noise by com-
bining projections from from multiple source lan-
guages. However, this approach is not always viable
since it relies on having parallel bitext from multi-
ple source languages. Li et al. (2012) proposed the
use of crowd-sourced Wiktionary as additional re-
sources for inducing tag lexicons. More recently,
Täckström et al. (2013) combined token-level and
type-level constraints to constrain legitimate label
sequences and and recalibrate the probability distri-

bution in a CRF. The tag dictionary used for POS
tagging are analogous to the gazetteers and name
lexicons used for NER by Chang et al. (2007).

Our work is also closely related to Ganchev et
al. (2009). They used a two-step projection method
similar to Das and Petrov (2011) for dependency
parsing. Instead of using the projected linguis-
tic structures as ground truth (Yarowsky and Ngai,
2001), or as features in a generative model (Das
and Petrov, 2011), they used them as constraints
in a PR framework. Our work differs by project-
ing expectations rather than Viterbi one-best labels.
We also choose the GE framework over PR. Experi-
ments in Bellare et al. (2009) and Druck (2011) sug-
gest that in a discriminative model (like ours), GE
is more accurate than PR. More recently, Ganchev
and Das (2013) further extended this line of work
to directly train discriminative sequence models us-
ing cross lingual projection with PR. The types of
constraints applied in this new work are similar to
the ones in the monolingual PR setting proposed by
Ganchev et al. (2010), where the total counts of la-
bels of a particular kind are expected to match some
fraction of the projected total counts. Our work dif-
fer in that we enforce expectation constraints at to-
ken level, which gives tighter guidance to learning
the model.

3 Approach

Given bitext between English and a foreign lan-
guage, our goal is to learn a CRF model in the
foreign language from little or no labeled data.
Our method performs Cross-Lingual Projected
Expectation Regularization (CLiPER).

For every aligned sentence pair in the bitext, we
first compute the posterior marginal at each word po-
sition on the English side using a pre-trained English
CRF tagger; then for each aligned English word, we
project its posterior marginal as expectations to the
aligned word position on the foreign side. Figure 1
shows a snippet of a sentence from real corpus. No-
tice that if we were to directly project the Viterbi
best assignment from English to Chinese, all three
Chinese words that are named entities would have
gotten the wrong tags. But projecting the English
CRF model expectations preserves some uncertain-
ties, informing the Chinese model that there is a 40%

57

a reception in Luobu Linka met with representatives of Zhongguo Ribao

O:0.0032 O:0.0037 GPE:0.0000 GPE:0.0000PER:0.0000 PER:0.0000 PER:0.0000

GPE:0.0042 GPE:0.0042 LOC:0.0003 LOC:0.0003GPE:0.0000 GPE:0.0000 GPE:0.0000

ORG:0.0308 ORG:0.0307 O:0.0012 O:0.0011ORG:0.0000 ORG:0.0000 ORG:0.0000

LOC:0.3250 LOC:0.3256 ORG:0.4060 ORG:0.4061LOC:0.0000 LOC:0.0000 LOC:0.0000

PER:0.6369 PER:0.6377 PER:0.5925 PER:0.5925O:1.0000 O:1.0000 O:1.0000

在 罗布林卡 举行 的 招待会 会见 了 中国 日报 代表
PER:0.6373 PER:0.5925 PER:0.5925O:1.0000 O:1.0000 O:1.0000

LOC:0.3253 ORG:0.4060 ORG:0.4061LOC:0.0000 LOC:0.0000 LOC:0.0000

ORG:0.0307 O:0.0012 O:0.0011ORG:0.0000 ORG:0.0000 ORG:0.0000

GPE:0.0042 LOC:0.0003 LOC:0.0003GPE:0.0000 GPE:0.0000 GPE:0.0000

O:0.0035 GPE:0.0000 GPE:0.0000PER:0.0000 PER:0.0000 PER:0.0000

Figure 1: Diagram illustrating the projection of model expectation from English to Chinese. The posterior
probabilities assigned by the English CRF model is shown above each English word; automatically induced
word alignments are shown in red; the correct projected labels for Chinese words are shown in green, and
incorrect labels are shown in red.

chance that “中国日报” (China Daily) is an organi-
zation in this context.

We would like to learn a CRF model in the for-
eign language that has similar expectations as the
projected expectations from English. To this end,
we adopt the Generalized Expectation (GE) Crite-
ria framework introduced by Mann and McCallum
(2010). In the remainder of this section, we follow
the notation used in (Druck, 2011) to explain our ap-
proach.

3.1 CLiPER

The general idea of GE is that we can express our
preferences over models through constraint func-
tions. A desired model should satisfy the imposed
constraints by matching the expectations on these
constraint functions with some target expectations
(attained by external knowledge like lexicons or in
our case transferred knowledge from English). We
define a constraint function φi,lj for each word po-
sition i and output label assignment lj . φi,lj = 0 is
a constraint in that position i cannot take label lj .

The set {l1, · · · , lm} denotes all possible label as-
signment for each yi, and m is number of label val-
ues. Ai is the set of English words aligned to Chi-
nese word i. φi,lj are defined for all position i such
that Ai 6= ∅. In other words, the constraint function
applies only to Chinese word positions that have at
least one aligned English word. Each φi,lj (y) can
be treated as a Bernoulli random variable, and we
concatenate the set of all φi,lj into a random vector

φ(y), where φk = φi,lj if k = i ∗m + j. We drop
the (y) in φ for simplicity.

The target expectation over φi,lj , denoted as φ̃i,lj ,
is the expectation of assigning label lj to English
word Ai under the English conditional probability
model. When multiple English words are aligned to
the same foreign word, we average the expectations.

The expectation over φ under a conditional prob-
ability model P (y|x;θ) is denoted as EP (y|x;θ)[φ],
and simplified as Eθ[φ] whenever it is unambigu-
ous.

The conditional probability model P (y|x;θ) in
our case is defined as a standard linear-chain CRF:5

P (y|x;θ) = 1

Z(x;θ)
exp

(
n∑

i

θf(x, yi, yi−1)

)

where f is a set of feature functions; θ are the match-
ing parameters to learn; n = |x|.

The objective function to maximize in a standard
CRF is the log probability over a collection of la-
beled documents:

LCRF (θ) =

a′∑

a=1

logP (y∗a|xa;θ) (1)

a′ is the number of labeled sentences. y∗ is an ob-
served label sequence.

The objective function to maximize in GE is de-
fined as the sum over all unlabeled examples on the

5We simplify notation by dropping the L2 regularizer in the
CRF definition, but apply it in our experiments.

58

foreign side of bitext, denoted as xb, over some cost
function S between the model expectation over φ
(Eθ[φ]) and the target expectation (φ̃).

We choose S to be the negative L2
2 squared error

sum6 defined as:

LGE(θ) =
n′∑

b=1

S
(
EP (yb|xb;θ)[φ(yb)], φ̃b

)

=
n′∑

b=1

−‖φ̃b − Eθ[φ(yb)]‖22 (2)

n′ is the total number of unlabeled bitext sentence
pairs.

When both labeled and bitext training data are
available, the joint objective is the sum of Eqn. 1
and 2. Each is computed over the labeled training
data and foreign half in the bitext, respectively.

We can optimize this joint objective by comput-
ing the gradients and use a gradient-based optimiza-
tion method such as L-BFGS. Gradients of LCRF

decomposes down to the gradients over each la-
beled training example (x,y∗). Computing the gra-
dient of LGE decomposes down to the gradients of
S(EP (y|xb;θ[φ]) for each unlabeled foreign sentence
x and the constraints over this example φ . The gra-
dients can be calculated as:

∂

∂θ
S(Eθ[φ]) = −

∂

∂θ

(
φ̃− Eθ[φ]

)T (
φ̃− Eθ[φ]

)

= 2
(
φ̃− Eθ[φ]

)T (∂

∂θ
Eθ[φ]

)

We redefine the penalty vector u = 2
(
φ̃− Eθ[φ]

)

to be u. ∂
∂θEθ[φ] is a matrix where each column

contains the gradients for a particular model feature
θ with respect to all constraint functions φ. It can be

6In general, other loss functions such as KL-divergence can
also be used for S. We found L2

2 to work well in practice.

computed as:

∂

∂θ
Eθ[φ] =

∑

y

φ(y)
∂

∂θ
P (y|x;θ)

=
∑

y

φ(y)
∂

∂θ

(
1

Z(x;θ)
exp(θT f(x,y))

)

=
∑

y

φ(y)

(
1

Z(x;θ)

(
∂

∂θ
exp(θT f(x,y))

)

+ exp(θT f(x,y))

(
∂

∂θ

1

Z(x;θ)

))

=
∑

y

φ(y)

(
P (y|x;θ)f(x,y)T

− P (y|x;θ)
∑

y′
P (y′|x;θ)f(x,y′)T

)

=
∑

y

P (y|x;θ)
∑

y

φ(y)f(x,y)T

−
(∑

y

P (y|x;θ)φ(y)
)(∑

y

P (y|x;θ)f(x,y)T
)

= COVP (y|x;θ) (φ(y), f(x,y)) (3)

= Eθ[φf
T]− Eθ[φ]Eθ[f

T] (4)

Eqn. 3 gives the intuition of how optimization works
in GE. In each iteration of L-BFGS, the model pa-
rameters are updated according to their covariance
with the constraint features, scaled by the differ-
ence between current expectation and target expec-
tation. The term Eθ[φf

T] in Eqn. 4 can be com-
puted using a dynamic programming (DP) algo-
rithm, but solving it directly requires us to store a
matrix of the same dimension as fT in each step
of the DP. We can reduce the complexity by using
the same trick as in (Li and Eisner, 2009) for com-
puting Expectation Semiring. The resulting algo-
rithm has complexity O(nm2), which is the same as
the standard forward-backward inference algorithm
for CRF. (Druck, 2011, 93) gives full details of this
derivation.

3.2 Hard vs. soft Projection
Projecting expectations instead of one-best label as-
signments from English to foreign language can
be thought of as a soft version of the method de-
scribed in (Das and Petrov, 2011) and (Ganchev et

59

al., 2009). Soft projection has its advantage: when
the English model is not certain about its predic-
tions, we do not have to commit to the current best
prediction. The foreign model has more freedom
to form its own belief since any marginal distribu-
tion it produces would deviates from a flat distri-
bution by just about the same amount. In general,
preserving uncertainties till later is a strategy that
has benefited many NLP tasks (Finkel et al., 2006).
Hard projection can also be treated as a special case
in our framework. We can simply recalibrate pos-
terior marginal of English by assigning probability
mass 1 to the most likely outcome, and zero ev-
erything else out, effectively taking the argmax of

the marginal at each word position. We refer to
this version of expectation as the “hard” expecta-
tion. In the hard projection setting, GE training re-
sembles a “project-then-train” style semi-supervised
CRF training scheme (Yarowsky and Ngai, 2001;
Täckström et al., 2013). In such a training scheme,
we project the one-best predictions of English CRF
to the foreign side through word alignments, then in-
clude the newly “tagged” foreign data as additional
training data to a standard CRF in the foreign lan-
guage. Rather than projecting labels on a per-word
basis, Yarowsky and Ngai (2001) also explored an
alternative method for noun-phrase (NP) bracketing
task that amounts to projecting the spans of NPs
based on the observation that individual NPs tend to
retain their sequential spans across translations. We
experimented with the same method for NER, but
found that this method of projecting the NE spans
does not help in reducing noise and actually lowers
model performance.

Besides the difference in projecting expecta-
tions rather than hard labels, our method and the
“project-then-train” scheme also differ by optimiz-
ing different objectives: CRF optimizes maximum
conditional likelihood of the observed label se-
quence, whereas GE minimizes squared error be-
tween model’s expectation and “hard” expectation
based on the observed label sequence. In the case
where squared error loss is replaced with a KL-
divergence loss, GE has the same effect as marginal-
izing out all positions with unknown projected la-
bels, allowing more robust learning of uncertainties
in the model. As we will show in the experimen-

O PER LOC ORG GPE
O 291339 391 141 1281 221

PER 1263 6721 5 56 73
LOC 409 23 546 123 133
ORG 2423 143 52 8387 196
GPE 566 239 69 668 6604

O PER LOC ORG MISC
O 81209 24 38 155 103

PER 77 5725 41 69 10
LOC 49 40 3743 127 60
ORG 178 102 142 4075 91

MISC 175 41 30 114 1826

Table 1: Raw counts in the error confusion matrix of
English CRF models. Top table contains the counts
on OntoNotes test data, and bottom table contains
CoNLL-03 test data counts. Rows are the true la-
bels and columns are the observed labels. For exam-
ple, item at row 2, column 3 of the top table reads:
we observed 5 times where the true label should be
PERSON, but English CRF model output label LO-
CATION.

tal results in Section 4.2, soft projection in combi-
nation of the GE objective significantly outperforms
the project-then-train style CRF training scheme.

3.3 Source-side noise

An additional source of noise comes from errors
generated by the source-side English CRF mod-
els. We know that the English CRF models gives
F1 score of 81.68% on the OntoNotes dataset for
English-Chinese experiment, and 90.45% on the
CoNLL-03 dataset for English-German experiment.
We present a simple way of modeling English-side
noise by picturing the following process: the la-
bels assigned by the English CRF model (denoted
as y) are some noised version of the true labels (de-
noted as y∗). We can recover the probability of the
true labels by marginalizing over the observed la-
bels: P (y∗|x) =∑y P (y

∗|y) ∗ P (y|x). P (y|x) is
the posterior probabilities given by the CRF model,
and we can approximate P (y∗|y) by the column-
normalized error confusion matrix shown in Table 1.
This source-side noise model is likely to be overly
simplistic. Generally speaking, we could build much
more sophisticated noising model for the source-
side, possibly conditioning on context, or capturing
higher-order label sequences.

60

4 Experiments

We conduct experiments on Chinese and German
NER. We evaluate CLiPER in two learning set-
tings: weakly supervised and semi-supervised. In
the weakly supervised setting, we simulate the con-
dition of having no labeled training data, and evalu-
ate the model learned from bitext alone. We then
vary the amount of labeled data available to the
model, and examine the model’s learning curve. In
the semi-supervised setting, we assume our model
has access to the full labeled data; our goal is to
improve performance of the supervised method by
learning from additional bitext.

4.1 Dataset and setup
We used the latest version of Stanford NER Toolkit7

as our base CRF model in all experiments. Fea-
tures for English, Chinese and German CRFs are
documented extensively in (Che et al., 2013) and
(Faruqui and Padó, 2010) and omitted here for
brevity. It it worth noting that the current Stan-
ford NER models include recent improvements from
semi-supervise learning approaches that induces dis-
tributional similarity features from large word clus-
ters. These models represent the current state-of-
the-art in supervised methods, and serve as a very
strong baseline.

For Chinese NER experiments, we follow the
same setup as Che et al. (2013) to evaluate on the
latest OntoNotes (v4.0) corpus (Hovy et al., 2006).8

A total of 8,249 sentences from the parallel Chinese
and English Penn Treebank portion 9 are reserved
for evaluation. Odd-numbered documents are used
as development set, and even-numbered documents
are held out as blind test set. The rest of OntoNotes
annotated with NER tags are used to train the En-
glish and Chinese CRF base taggers. There are
about 16k and 39k labeled sentences for Chinese and
English training, respectively. The English CRF tag-
ger trained on this training corpus gives F1 score
of 81.68% on the OntoNotes test set. Four enti-
ties types10 are used for both Chinese and English
with a IO tagging scheme.11 The English-Chinese

7http://www-nlp.stanford.edu/ner
8LDC catalogue No.: LDC2011T03
9File numbers: chtb 0001-0325, ectb 1001-1078

10PERSON, LOCATION, ORGANIZATION and GPE.
11We did not adopt the commonly seen BIO tagging scheme

bitext comes from the Foreign Broadcast Informa-
tion Service corpus (FBIS).12 We randomly sampled
80k parallel sentence pairs to use as bitext in our
experiments. It is first sentence aligned using the
Champollion Tool Kit,13 then word aligned with the
BerkeleyAligner.14

For German NER experiments, we evaluate us-
ing the standard CoNLL-03 NER corpus (Sang and
Meulder, 2003). The labeled training set has 12k and
15k sentences, containing four entity types.15 An
English CRF model is also trained on the CoNLL-
03 English data with the same entity types. For bi-
text, we used a randomly sampled set of 40k parallel
sentences from the de-en portion of the News Com-
mentary dataset.16 The English CRF tagger trained
on CoNLL-03 English training corpus gives F1 score
of 90.4% on the CoNLL-03 test set.

We report typed entity precision (P), recall (R)
and F1 score. Statistical significance tests are done
using a paired bootstrap resampling method with
1000 iterations, averaged over 5 runs. We com-
pare against three recently approaches that were in-
troduced in Section 2. They are: semi-supervised
learning method using factored bilingual models
with Gibbs sampling (Wang et al., 2013a); bilin-
gual NER using Integer Linear Programming (ILP)
with bilingual constraints, by (Che et al., 2013);
and constraint-driven bilingual-reranking approach
(Burkett et al., 2010). The code from (Che et al.,
2013) and (Wang et al., 2013a) are publicly avail-
able.17 Code from (Burkett et al., 2010) is obtained
through personal communications.

Since the objective function in Eqn. 2 is non-
convex, we adopted the early stopping training
scheme from (Turian et al., 2010) as the following:
after each iteration in L-BFGS training, the model

(Ramshaw and Marcus, 1999), because when projected across
swapping word alignments, the “B-” and “I-” tag distinction
may not be well-preserved and may introduce additional noise.

12The FBIS corpus is a collection of radio news casts and
contains translations of openly available news and information
from media sources outside the United States. The LDC cata-
logue No. is LDC2003E14.

13champollion.sourceforge.net
14code.google.com/p/berkeleyaligner
15PERSON, LOCATION, ORGANIZATION and MISCELLA-

NEOUS.
16http://www.statmt.org/wmt13/

training-parallel-nc-v8.tgz
17https://github.com/stanfordnlp/CoreNLP

61

is evaluated against the development set; the train-
ing procedure is terminated if no improvements have
been made in 20 iterations.

4.2 Weakly supervised results

Figure 2a and 2b show results of weakly supervised
learning experiments. Quite remarkably, on Chinese
test set, our proposed method (CLiPER) achieves a
F1 score of 64.4% with 80k bitext, when no labeled
training data is used. In contrast, the supervised
CRF baseline would require as much as 12k labeled
sentences to attain the same accuracy. Results on the
German test set is less striking. With no labeled data
and 40k of bitext, CLiPER performs at F1 of 60.0%,
the equivalent of using 1.5k labeled examples in the
supervised setting. When combined with 1k labeled
examples, performance of CLiPER reaches 69%, a
gain of over 5% absolute over supervised CRF. We
also notice that supervised CRF model learns much
faster in German than Chinese. This result is not too
surprising, since it is well recognized that Chinese
NER is more challenging than German or English.
The best supervised results for Chinese is 10-20%
(F1 score) behind best German and English super-
vised results. Chinese NER relies more on lexical-
ized features, and therefore needs more labeled data
to achieve good coverage. The results suggest that
CLiPER seems to be very effective at transferring
lexical knowledge from English to Chinese.

Figure 2c and 2d compares soft GE projection
with hard GE projection and the “project-then-train”
style CRF training scheme (cf. Section 3.2). We
observe that both soft and hard GE projection sig-
nificantly outperform the “project-then-train” style
training scheme. The difference is especially pro-
nounced on the Chinese results when fewer labeled
examples are available. Soft projection gives better
accuracy than hard projection when no labeled data
is available, and also has a faster learning rate.

Incorporating source-side noise using the method
described in Section 3.3 gives a small improvement
on Chinese with supervised data, increasing F1 score
from 64.40% to 65.50%. This improvement is statis-
tically significant at 92% confidence interval. How-
ever, on the German data, we observe a tiny de-
crease with no statistical significance in F1 score,
dropping from 59.88% to 59.66%. A likely ex-
planation of the difference is that the English CRF

model in the English-Chinese experiment, which is
trained on OntoNotes data, has a much higher error
rate (18.32%) than the English CRF model in the
English-German experiment trained on CoNLL-03
(9.55%). Therefore, modeling noise in the English-
Chinese case is likely to have a greater effect than
the English-German case.

4.3 Semi-supervised results

In the semi-supervised experiments, we let the CRF
model use the full set of labeled examples in addi-
tion to the unlabeled bitext. Results on the test set
are shown in Table 2. All semi-supervised baselines
are tested with the same number of unlabeled bitext
as CLiPER in each language. The “project-then-
train” semi-supervised training scheme severely
hurts performance on Chinese, but gives a small im-
provement on German. Moreover, on Chinese it
learns to achieve high precision but at a significant
loss in recall. On German its behavior is the oppo-
site. Such drastic and erratic imbalance suggest that
this method is not robust or reliable. The other three
semi-supervised baselines (row 3-5) all show im-
provements over the CRF baseline, consistent with
their reported results. CLIPERs gives the best re-
sults on both Chinese and German, yielding statis-
tically significant improvements over all baselines
except for CWD13 on German. The hard projection
version of CLiPER also gives sizable gain over CRF.
However, in comparison, CLIPERs is superior.

The improvements of CLIPERs over CRF on
Chinese test set is over 2.8% in absolute F1. The
improvement over CRF on German is almost a per-
cent. To our knowledge, these are the best reported
numbers on the OntoNotes Chinese and CoNLL-03
German datasets.

4.4 Efficiency

Another advantage of our proposed approach is ef-
ficiency. Because we eliminated the previous multi-
stage “uptraining” paradigm, but instead integrating
the semi-supervised and supervised objective into
one joint objective, we are able to attain signifi-
cant speed improvements over all methods except
CRFptt. Table 3 shows the required training time.

62

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

of labeled training sentences [k]

F1
sc

or
e

[%
]

supervised CRF
CLiPPER soft

(a) Chinese Test

0 1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

50

60

70

80

of labeled training sentences [k]

F1
sc

or
e

[%
]

supervised CRF
CLiPPER soft

(b) German Test

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

of labeled training sentences [k]

F1
sc

or
e

[%
]

CRF projection
CLiPPER hard
CLiPPER soft

(c) Soft vs. Hard on Chinese Test

0 1 2 3 4 5 6 7 8 9 10 11 12
54

56

58

60

62

64

66

68

70

72

74

76

78

80

of labeled training sentences [k]

F1
sc

or
e

[%
]

CRF projection
CLiPPER hard
CLiPPER soft

(d) Soft vs. Hard on German Test

[高岗] 纪念碑 在 [横山] 落成

A monument commemorating [Vice President Gao GangPER] was completed in [HengshanLOC]

(e) Word proceeding “monument” is PERSON

[碛口] [毛主席] 东渡 [黄河] 纪念碑 简介

Introduction of [QikouLOC] [Chairman MaoPER] [Yellow RiverLOC] crossing monument

(f) Word proceeding “monument” is LOCATION

Figure 2: Top four figures show performance curves of CLiPER with varying amounts of available labeled
training data in a weakly supervised setting. Vertical axes show the F1 score on the test set. Performance
curves of supervised CRF and “project-then-train” CRF are plotted for comparison. Bottom two figures are
examples of aligned sentence pairs in Chinese and English.

63

Chinese German
P R F1 P R F1

CRF 79.09 63.59 70.50 86.69 71.30 78.25
CRFptt 84.01 45.29 58.85 81.50 75.56 78.41
BPBK10 79.25 65.67 71.83 84.00 72.17 77.64
CWD13 81.31 65.50 72.55 85.99 72.98 78.95
WCD13a 80.31 65.78 72.33 85.98 72.37 78.59
WCD13b 78.55 66.54 72.05 85.19 72.98 78.62
CLiPERh 83.67 64.80 73.04§‡ 86.52 72.02 78.61∗

CLiPERs 82.57 65.99 73.35§†?�∗ 87.11 72.56 79.17‡?∗§

Table 2: Test set Chinese, German NER results.
Best number of each column is highlighted in
bold. CRF is the supervised baseline. CRFptt is
the “project-then-train” semi-supervised scheme for
CRF. BPBK10 is (Burkett et al., 2010), WCD13 is
(Wang et al., 2013a), CWD13A is (Che et al., 2013),
and WCD13B is (Wang et al., 2013b) . CLIPERs

and CLIPERh are the soft and hard projections. §
indicates F1 scores that are statistically significantly
better than CRF baseline at 99.5% confidence level;
? marks significance over CRFptt with 99.5% con-
fidence; † and ‡ marks significance over WCD13
with 99.9% and 94% confidence; and � marks sig-
nificance over CWD13 with 99.7% confidence; ∗
marks significance over BPBK10 with 99.9% con-
fidence.

5 Discussions

Figure 2e and 2f give two examples of cross-lingual
projection methods in action. Both examples have
a named entity that immediately proceeds the word
“纪念碑” (monument) in the Chinese sentence. In
Figure 2e, the word “高岗” has literal meaning of a
hillock located at a high position, which also hap-
pens to be the name of a former vice president of
China. Without having previously observed this
word as a person name in the labeled training data,
the CRF model does not have enough evidence to
believe that this is a PERSON, instead of LOCATION.
But the aligned words in English (“Gao Gang”) are
clearly part of a person name as they were pre-
ceded by a title (“Vice President”). The English
model has high expectation that the aligned Chi-
nese word of ”Gao Gang” is also a PERSON. There-
fore, projecting the English expectations to Chinese
provides a strong clue to help disambiguating this
word. Figure 2f gives another example: the word
“黄河”(Huang He, the Yellow River of China) can

Chinese German
CRF 19m30s 7m15s
CRFptt 34m2s 12m45s
WCD13 3h17m 1h1m
CWD13a 16h42m 4h49m
CWD13b 16h42m 4h49m
BPBK10 6h16m 2h42m
CLiPERh 1h28m 16m30s
CLiPERs 1h40m 18m51s

Table 3: Timing stats during model training.

be confused with a person name since “黄”(Huang
or Hwang) is also a common Chinese last name.18.
Again, knowing the translation in English, which
has the indicative word “River” in it, helps disam-
biguation.

The CRFptt and CLIPERh methods successfully
labeled these two examples correctly, but failed to
produce the correct label for the example in Fig-
ure 1. On the other hand, a model trained with the
CLIPERs method does correctly label both entities
in Figure 1, demonstrating the merits of the soft pro-
jection method.

6 Conclusion

We introduced a domain and language independent
semi-supervised method for training discriminative
models by projecting expectations across bitext. Ex-
periments on Chinese and German NER show that
our method, learned over bitext alone, can rival per-
formance of supervised models trained with thou-
sands of labeled examples. Furthermore, applying
our method in a setting where all labeled examples
are available also shows improvements over state-of-
the-art supervised methods. Our experiments also
showed that soft expectation projection is more fa-
vorable to hard projection. This technique can be
generalized to all sequence labeling tasks, and can
be extended to include more complex constraints.
For future work, we plan to apply this method to
more language pairs and also explore data selection
strategies and modeling alignment uncertainties.

18In fact, a people search of the name黄河 on the most pop-
ular Chinese social network (renren.com) returns over 13,000
matches.

64

Acknowledgments

The authors would like to thank Jennifer Gillenwa-
ter for a discussion that inspired this work, Behrang
Mohit and Nathan Schneider for their help with the
Arabic NER data, and David Burkett for providing
the source code of their work for comparison. We
would also like to thank editor Lillian Lee and the
three anonymous reviewers for their valuable com-
ments and suggestions. We gratefully acknowledge
the support of the U.S. Defense Advanced Research
Projects Agency (DARPA) Broad Operational Lan-
guage Translation (BOLT) program through IBM.
Any opinions, findings, and conclusion or recom-
mendations expressed in this material are those of
the authors and do not necessarily reflect the view of
DARPA, or the US government.

References
Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas.

2000. Head-transducer models for speech translation
and their automatic acquisition from bilingual data.
Machine Translation, 15.

Rie Kubota Ando and Tong Zhang. 2005. A high-
performance semi-supervised learning method for text
chunking. In Proceedings of ACL.

Kedar Bellare, Gregory Druck, and Andrew McCallum.
2009. Alternating projections for learning with expec-
tation constraints. In Proceedings of UAI.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Proceed-
ings of COLT.

David Burkett and Dan Klein. 2008. Two languages are
better than one (for syntactic parsing). In Proceedings
of EMNLP.

David Burkett, Slav Petrov, John Blitzer, and Dan Klein.
2010. Learning better monolingual models with unan-
notated bilingual text. In Proceedings of CoNLL.

Andrew Carlson, Justin Betteridge, Richard C. Wang, Es-
tevam R. Hruschka Jr., and Tom M. Mitchell. 2010.
Coupled semi-supervised learning for information ex-
traction. In Proceedings of WSDM.

Ming-Wei Chang, Lev Ratinov, and Dan Roth.
2007. Guiding semi-supervision with constraint-
driven learning. In Proceedings of ACL.

Wanxiang Che, Mengqiu Wang, and Christopher D. Man-
ning. 2013. Named entity recognition with bilingual
constraints. In Proceedings of NAACL.

Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. In Proceedings
of EMNLP.

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-
of-speech tagging with bilingual graph-based projec-
tions. In Proceedings of ACL.

Gregory Druck and Andrew McCallum. 2010. High-
performance semi-supervised learning using discrim-
inatively constrained generative models. In Proceed-
ings of ICML.

Gregory Druck, Gideon Mann, and Andrew McCallum.
2007. Leveraging existing resources using generalized
expectation criteria. In Proceedings of NIPS Workshop
on Learning Problem Design.

Gregory Druck, Burr Settles, and Andrew McCallum.
2009. Active learning by labeling features. In Pro-
ceedings of EMNLP.

Gregory Druck. 2011. Generalized Expectation Criteria
for Lightly Supervised Learning. Ph.D. thesis, Univer-
sity of Massachusetts Amherst.

Manaal Faruqui and Sebastian Padó. 2010. Training and
evaluating a German named entity recognizer with se-
mantic generalization. In Proceedings of KONVENS.

Jenny Rose Finkel, Christopher D. Manning, and An-
drew Y. Ng. 2006. Solving the problem of cascading
errors: Approximate bayesian inference for linguistic
annotation pipelines. In Proceedings of EMNLP.

Victoria Fossum and Steven Abney. 2005. Automatically
inducing a part-of-speech tagger by projecting from
multiple source languages across aligned corpora. In
Proceedings of IJCNLP.

Kuzman Ganchev and Dipanjan Das. 2013. Cross-
lingual discriminative learning of sequence models
with posterior regularization. In Proceedings of
EMNLP.

Kuzman Ganchev, Jennifer Gillenwater, and Ben Taskar.
2009. Dependency grammar induction via bitext pro-
jection constraints. In Proceedings of ACL.

Kuzman Ganchev, Jo ao Graça, Jennifer Gillenwater, and
Ben Taskar. 2010. Posterior regularization for struc-
tured latent variable models. JMLR, 10:2001–2049.

Andrew B. Goldberg. 2010. New Directions in Semi-
supervised Learning. Ph.D. thesis, University of
Wisconsin-Madison.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
the 90% solution. In Proceedings of NAACL-HLT.

Dan Klein. 2005. The Unsupervised Learning of Natural
Language Structure. Ph.D. thesis, Stanford Univer-
sity.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of ICML.

65

Zhifei Li and Jason Eisner. 2009. First- and second-order
expectation semirings with applications to minimum-
risk training on translation forests. In Proceedings of
EMNLP.

Shen Li, Jo ao Graça, and Ben Taskar. 2012. Wiki-ly
supervised part-of-speech tagging. In Proceedings of
EMNLP-CoNLL.

Percy Liang. 2005. Semi-supervised learning for natural
language. Master’s thesis, Massachusetts Institute of
Technology.

Gideon Mann and Andrew McCallum. 2010. General-
ized expectation criteria for semi-supervised learning
with weakly labeled data. JMLR, 11:955–984.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of NAACL-HLT.

Tahira Naseem, Benjamin Snyder, Jacob Eisenstein,
and Regina Barzilay. 2009. Multilingual part-of-
speech tagging: Two unsupervised approaches. JAIR,
36:1076–9757.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and
Hiyan Alshawi. 2010. Uptraining for accurate deter-
ministic question parsing. In Proceedings of EMNLP.

Lance A. Ramshaw and Mitchell P. Marcus. 1999. Text
chunking using transformation-based learning. Natu-
ral Language Processing Using Very Large Corpora,
11:157–176.

Rajhans Samdani, Ming-Wei Chang, and Dan Roth.
2012. Unified expectation maximization. In Proceed-
ings of NAACL.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 shared task: language-
independent named entity recognition. In Proceedings
of CoNLL.

Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin.
2005. A co-regularization approach to semi-
supervised learning with multiple views. In Proceed-
ings of ICML Workshop on Learning with Multiple
Views, International Conference on Machine Learn-
ing.

Noah A. Smith. 2006. Novel Estimation Methods for
Unsupervised Discovery of Latent Structure in Natu-
ral Language Text. Ph.D. thesis, Johns Hopkins Uni-
versity.

Benjamin Snyder, Tahira Naseem, and Regina Barzilay.
2009. Unsupervised multilingual grammar induction.
In Proceedings of ACL.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-word
scale unlabeled data. In Proceedings of ACL.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan Mc-
Donald, and Joakim Nivre. 2013. Token and type
constraints for cross-lingual part-of-speech tagging. In
Proceedings of ACL.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of ACL.

Mengqiu Wang, Wanxiang Che, and Christopher D. Man-
ning. 2013a. Effective bilingual constraints for semi-
supervised learning of named entity recognizers. In
Proceedings of AAAI.

Mengqiu Wang, Wanxiang Che, and Christopher D. Man-
ning. 2013b. Joint word alignment and bilingual
named entity recognition using dual decomposition.
In Proceedings of ACL.

Chenhai Xi and Rebecca Hwa. 2005. A backoff model
for bootstrapping resources for non-english languages.
In Proceedings of HLT-EMNLP.

David Yarowsky and Grace Ngai. 2001. Inducing mul-
tilingual POS taggers and NP bracketers via robust
projection across aligned corpora. In Proceedings of
NAACL.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Proceed-
ings of ACL.

66

Back to Basics for Monolingual Alignment: Exploiting Word Similarity and
Contextual Evidence

Md Arafat Sultan†, Steven Bethard‡ and Tamara Sumner†
†Institute of Cognitive Science and Department of Computer Science

University of Colorado Boulder
‡Department of Computer and Information Sciences

University of Alabama at Birmingham
arafat.sultan@colorado.edu, bethard@cis.uab.edu, sumner@colorado.edu

Abstract

We present a simple, easy-to-replicate monolin-
gual aligner that demonstrates state-of-the-art
performance while relying on almost no su-
pervision and a very small number of external
resources. Based on the hypothesis that words
with similar meanings represent potential pairs
for alignment if located in similar contexts, we
propose a system that operates by finding such
pairs. In two intrinsic evaluations on alignment
test data, our system achieves F1 scores of 88–
92%, demonstrating 1–3% absolute improve-
ment over the previous best system. Moreover,
in two extrinsic evaluations our aligner out-
performs existing aligners, and even a naive
application of the aligner approaches state-of-
the-art performance in each extrinsic task.

1 Introduction

Monolingual alignment is the task of discovering and
aligning similar semantic units in a pair of sentences
expressed in a natural language. Such alignments pro-
vide valuable information regarding how and to what
extent the two sentences are related. Consequently,
alignment is a central component of a number of
important tasks involving text comparison: textual
entailment recognition, textual similarity identifica-
tion, paraphrase detection, question answering and
text summarization, to name a few.

The high utility of monolingual alignment has
spawned significant research on the topic in the re-
cent past. Major efforts that have treated alignment
as a standalone problem (MacCartney et al., 2008;
Thadani and McKeown, 2011; Yao et al., 2013a) are

primarily supervised, thanks to the manually aligned
corpus with training and test sets from Microsoft Re-
search (Brockett, 2007). Primary concerns of such
work include both quality and speed, due to the fact
that alignment is frequently a component of larger
NLP tasks.

Driven by similar motivations, we seek to devise a
lightweight, easy-to-construct aligner that produces
high-quality output and is applicable to various end
tasks. Amid a variety of problem formulations and
ingenious approaches to alignment, we take a step
back and examine closely the effectiveness of two
frequently made assumptions: 1) Related semantic
units in two sentences must be similar or related
in their meaning, and 2) Commonalities in their se-
mantic contexts in the respective sentences provide
additional evidence of their relatedness (MacCartney
et al., 2008; Thadani and McKeown, 2011; Yao et al.,
2013a; Yao et al., 2013b). Alignment, based solely
on these two assumptions, reduces to finding the best
combination of pairs of similar semantic units in sim-
ilar contexts.

Exploiting existing resources to identify similarity
of semantic units, we search for robust techniques
to identify contextual commonalities. Dependency
trees are a commonly used structure for this purpose.
While they remain a central part of our aligner, we
expand the horizons of dependency-based alignment
beyond exact matching by systematically exploiting
the notion of “type equivalence” with a small hand-
crafted set of equivalent dependency types. In addi-
tion, we augment dependency-based alignment with
surface-level text analysis.

While phrasal alignments are important and have

219

Transactions of the Association for Computational Linguistics, 2 (2014) 219–230. Action Editor: Alexander Koller.
Submitted 11/2013; Revised 1/2014; Published 5/2014. c©2014 Association for Computational Linguistics.

been investigated in multiple studies, we focus pri-
marily on word alignments (which have been shown
to form the vast majority of alignments (≥ 95%)
in multiple human-annotated corpora (Yao et al.,
2013b)), keeping the framework flexible enough to
allow incorporation of phrasal alignments in future.

Evaluation of our aligner on the benchmark dataset
reported in (Brockett, 2007) shows an F1 score of
91.7%: a 3.1% absolute improvement over the previ-
ous best system (Yao et al., 2013a), corresponding
to a 27.2% error reduction. It shows superior perfor-
mance also on the dataset reported in (Thadani et
al., 2012). Additionally, we present results of two
extrinsic evaluations, namely textual similarity iden-
tification and paraphrase detection. Our aligner not
only outperforms existing aligners in each task, but
also approaches top systems for the extrinsic tasks.

2 Background

Monolingual alignment has been applied to various
NLP tasks including textual entailment recognition
(Hickl et al., 2006; Hickl and Bensley, 2007), para-
phrase identification (Das and Smith, 2009; Madnani
et al., 2012), and textual similarity assessment (Bär
et al., 2012; Han et al., 2013) – in some cases ex-
plicitly, i.e., as a separate module. But many such
systems resort to simplistic and/or ad-hoc strategies
for alignment and in most such work, the alignment
modules were not separately evaluated on alignment
benchmarks, making their direct assessment difficult.

With the introduction of the MSR alignment cor-
pus (Brockett, 2007) developed from the second
Recognizing Textual Entailment challenge data (Bar-
Haim et al., 2006), direct evaluation and comparison
of aligners became possible. The first aligner trained
and evaluated on the corpus was a phrasal aligner
called MANLI (MacCartney et al., 2008). It repre-
sents alignments as sets of different edit operations
(where a sequence of edits turns one input sentence
into the other) and finds an optimal set of edits via
a simulated annealing search. Weights of different
edit features are learned from the training set of the
MSR alignment corpus using a perceptron learning
algorithm. MANLI incorporates only shallow fea-
tures characterizing contextual similarity: relative
positions of the two phrases being aligned (or not) in
the two sentences and boolean features representing

whether or not the preceding and following tokens of
the two phrases are similar.

Thadani and McKeown (2011) substituted
MANLI’s simulated annealing-based decoding with
integer linear programming, and achieved a consider-
able speed-up. More importantly for our discussion,
they found contextual evidence in the form of syn-
tactic constraints useful in better aligning stop words.
Thadani et al. (2012) further extended the model by
adding features characterizing dependency arc edits,
effectively bringing stronger influence of contextual
similarity into alignment decisions. Again the perfor-
mance improved consequently.

The most successful aligner to date both in terms
of accuracy and speed, called JacanaAlign, was de-
veloped by Yao et al. (2013a). In contrast to the
earlier systems, JacanaAlign is a word aligner that
formulates alignment as a sequence labeling prob-
lem. Each word in the source sentence is labeled
with the corresponding target word index if an align-
ment is found. It employs a conditional random field
to assign the labels and uses a feature set similar to
MANLI’s in terms of the information they encode
(with some extensions). Contextual features include
only semantic match of the left and the right neigh-
bors of the two words and their POS tags. Even
though JacanaAlign outperformed the MANLI en-
hancements despite having less contextual features,
it is difficult to compare the role of context in the
two models because of the large paradigmatic dispar-
ity. An extension of JacanaAlign was proposed for
phrasal alignments in (Yao et al., 2013b), but the
contextual features remained largely unchanged.

Noticeable in all the above systems is the use of
contextual evidence as a feature for alignment, but
in our opinion, not to an extent sufficient to harness
its full potential. Even though deeper dependency-
based modeling of contextual commonalities can be
found in some other studies (Kouylekov and Magnini,
2005; Chambers et al., 2007; Chang et al., 2010; Yao
et al., 2013c), we believe there is further scope for
systematic exploitation of contextual evidence for
alignment, which we aim to do in this work.

On the contrary, word semantic similarity has been
a central component of most aligners; various mea-
sures of word similarity have been utilized, including
string similarity, resource-based similarity (derived
from one or more lexical resources like WordNet)

220

Align
identical

word
sequences

Align
named
entities

Align
content
words

Align
stop

words

Figure 1: System overview

and distributional similarity (computed from word
co-occurrence statistics in large corpora). An impor-
tant trade-off between precision, coverage and speed
exists here and aligners commonly rely on only a
subset of these measures (Thadani and McKeown,
2011; Yao et al., 2013a). We use the Paraphrase
Database (PPDB) (Ganitkevitch et al., 2013), which
is a large resource of lexical and phrasal paraphrases
constructed using bilingual pivoting (Bannard and
Callison-Burch, 2005) over large parallel corpora.

3 System

Our system operates as a pipeline of alignment mod-
ules that differ in the types of word pairs they align.
Figure 1 is a simplistic representation of the pipeline.
Each module makes use of contextual evidence to
make alignment decisions. In addition, the last two
modules are informed by a word semantic similarity
algorithm. Because of their phrasal nature, we treat
named entities separately from other content words.
The rationale behind the order in which the modules
are arranged is discussed later in this section (3.3.5).

Before discussing each alignment module in de-
tail, we describe the system components that identify
word and contextual similarity.

3.1 Word Similarity
The ability to correctly identify semantic similarity
between words is crucial to our aligner, since con-
textual evidence is important only for similar words.
Instead of treating word similarity as a continuous
variable, we define three levels of similarity.

The first level is an exact word or lemma match
which is represented by a similarity score of 1. The
second level represents semantic similarity between
two terms which are not identical. To identify such
word pairs, we employ the Paraphrase Database
(PPDB)1. We use the largest (XXXL) of the PPDB’s
lexical paraphrase packages and treat all pairs iden-
tically by ignoring the accompanying statistics. We

1http://paraphrase.org

customize the resource by removing pairs of identi-
cal words or lemmas and adding lemmatized forms
of the remaining pairs. For now, we use the term
ppdbSim to refer to the similarity of each word pair
in this modified version of PPDB (which is a value in
(0, 1)) and later explain how we determine it (Section
3.3.5). Finally, any pair of different words which is
absent in PPDB is assigned a zero similarity score.

3.2 Extracting Contextual Evidence

Our alignment modules collect contextual evidence
from two complementary sources: syntactic depen-
dencies and words occurring within a small textual
vicinity of the two words to be aligned. The applica-
tion of each kind assumes a common principle of min-
imal evidence. Formally, given two input sentences
S and T , we consider two words s ∈ S and t ∈ T to
form a candidate pair for alignment if ∃rs ∈ S and
∃rt ∈ T such that:

1. (s, t) ∈ <Sim and (rs, rt) ∈ <Sim, where
<Sim is a binary relation indicating sufficient
semantic relatedness between the members of
each pair (≥ ppdbSim in our case).

2. (s, rs) ∈ <C1 and (t, rt) ∈ <C2 , such that
<C1 ≈ <C2 ; where <C1 and <C2 are binary re-
lations representing specific types of contextual
relationships between two words in a sentence
(e.g., an nsubj dependency between a verb and
a noun). The symbol ≈ represents equivalence
between two relationships, including identical-
ity.

Note that the minimal-evidence assumption holds
a single piece of contextual evidence as sufficient
support for a potential alignment; but as we discuss
later in this section, an evidence for word pair (s, t)
(where s ∈ S and t ∈ S) may not lead to an align-
ment if there exists a competing pair (s′, t) or (s, t′)
with more evidence (where s′ ∈ S and t′ ∈ T).

In the rest of this section, we elaborate the different
forms of contextual relationships we exploit along
with the notion of equivalence between relationships.

3.2.1 Syntactic Dependencies
Dependencies can be important sources of con-

textual evidence. Two nsubj children rs and rt of
two verbs s ∈ S and t ∈ T , for example, pro-
vide evidence for not only an (s, t) alignment, but

221

S: He wrote a book .

nsubj

dobj

det

T : I read the book he wrote .

nsubj

dobj

det

rcmod

nsubj

Figure 2: Equivalent dependency types: dobj and rcmod

also an (rs, rt) alignment if (s, t) ∈ <Sim and
(rs, rt) ∈ <Sim. (We adopt the Stanford typed de-
pendencies (de Marneffe and Manning, 2008).)

Moreover, dependency types can exhibit equiva-
lence; consider the two sentences in Figure 2. The
dobj dependency in S is equivalent to the rcmod
dependency in T (dobj ≈ rcmod, following our ear-
lier notation) since they represent the same semantic
relation between identical word pairs in the two sen-
tences. To be able to use such evidence for alignment,
we need to go beyond exact matching of dependen-
cies and develop a mapping among dependency types
that encodes such equivalence. Note also that the
parent-child roles are opposite for the two depen-
dency types in the above example, a scenario that
such a mapping must accommodate.

The four possible such scenarios regarding parent-
child orientations are shown in Figure 3. If (s, t) ∈
<Sim and (rs, rt) ∈ <Sim (represented by bidirec-
tional arrows), then each orientation represents a set
of possible ways in which the S and T dependen-
cies (unidirectional arrows) can provide evidence of
similarity between the contexts of s in S and t in T .
Each such set comprises equivalent dependency type
pairs for that orientation. In the example of Figure 2,
(dobj, rcmod) is such a pair for orientation (c), given
s = t = “wrote” and rs = rt = “book”.

We apply the notion of dependency type equiva-
lence to intra-category alignment of content words
in four major lexical categories: verbs, nouns,
adjectives and adverbs (the Stanford POS tag-
ger (Toutanova et al., 2003) is used to identify the
categories). Table 1 shows dependency type equiva-
lences for each lexical category of s and t.

The ‘←’ sign on column 5 of some rows repre-
sents a duplication of the column 4 content of the

s

rs

t

rt

rs

s

rt

t

s

rs

t

rt

s

rs

t

rt

(a) (b) (c) (d)

Figure 3: Parent-child orientations in dependencies

same row. For each row, columns 4 and 5 show two
sets of dependency types; each member of the first
is equivalent to each member of the second for the
current orientation (column 1) and lexical categories
of the associated words (columns 2 and 3). For exam-
ple, row 2 represents the fact that an agent relation
(between s and rs; s is the parent) is equivalent to an
nsubj relation (between t and rt; t is the parent).

Note that the equivalences are fundamentally re-
dundant across different orientations. For example,
row 2 (which is presented as an instance of ori-
entation (a)) can also be presented as an instance
of orientation (b) with POS(s)=POS(t)=noun and
POS(rs)=POS(rt)=verb. We avoid such redundancy
for compactness. For the same reason, the equiva-
lence of dobj and rcmod in Figure 2 is shown in the
table only as an instance of orientation (c) and not as
an instance of orientation (d) (in general, this is why
orientations (b) and (d) are absent in the table).

We present dependency-based contextual evidence
extraction in Algorithm 1. (The Stanford dependency
parser (de Marneffe et al., 2006) is used to extract the
dependencies.) Given a word pair (si, tj) from the in-
put sentences S and T , it collects contextual evidence
(as indexes of rsi and rtj with a positive similarity)
for each matching row in Table 1. An exact match
of the two dependencies is also considered a piece
of evidence. Note that Table 1 only considers con-
tent word pairs (si, tj) such that POS(si)=POS(tj),
but as 90% of all content word alignments in the
MSR alignment dev set are within the same lexical
category, this is a reasonable set to start with.

3.2.2 Textual Neighborhood
While equivalent dependencies can provide strong

contextual evidence, they can not ensure high recall
because, a) the ability to accurately extract depen-

222

Orientation POS(s, t) POS(rs, rt) S Dependency Types T Dependency Types

s

rs

t

rt

verb

verb {purpcl, xcomp} ←−

noun

{agent, nsubj, xsubj} ←−
{dobj, nsubjpass, rel} ←−

{tmod, prep in, prep at, prep on} ←−
{iobj, prep to} ←−

noun
verb {infmod, partmod, rcmod} ←−

(a)
noun {pos, nn, prep of, prep in, prep at, prep for} ←−

adjective {amod, rcmod} ←−

s

rs

t

rt verb
verb

{conj and} ←−
{conj or} ←−
{conj nor} ←−

noun {dobj, nsubjpass, rel} {infmod, partmod, rcmod}
adjective {acomp} {cop, csubj}

noun
noun

{conj and} ←−
{conj or} ←−
{conj nor} ←−

adjective {amod, rcmod} {nsubj}

adjective adjective
{conj and} ←−
{conj or} ←−

(c)
{conj nor} ←−

adverb adverb
{conj and} ←−
{conj or} ←−
{conj nor} ←−

Table 1: Equivalent dependency structures

Algorithm 1: depContext(S, T, i, j, EQ)

Input:
1. S, T : Sentences to be aligned
2. i: Index of a word in S
3. j: Index of a word in T
4. EQ: Dependency type equivalences (Table 1)

Output: context = {(k, l)}: pairs of word indexes

context← {(k, l) : wordSim(sk, tl) > 01
∧ (i, k, τs) ∈ dependencies(S)2
∧ (j, l, τt) ∈ dependencies(T)3
∧ POS(si) = POS(tj) ∧ POS(sk) = POS(tl)4
∧ (τs = τt5
∨ (POS(si), POS(sk), τs, τt) ∈ EQ))}6

dencies is limited by the accuracy of the parser, and
b) we investigate equivalence types for only inter-
lexical-category alignment in this study. Therefore
we apply an additional model of word context: the
textual neighborhood of s in S and t in T .

Extraction of contextual evidence for content
words from textual neighborhood is described in Al-
gorithm 2. Like the dependency-based module, it
accumulates evidence for each (si, tj) pair by in-
specting multiple pairs of neighboring words. But in-
stead of aligning only words within a lexical category,

Algorithm 2: textContext(S, T, i, j, STOP)

Input:
1. S, T : Sentences to be aligned
2. i: Index of a word in S
3. j: Index of a word in T
4. STOP: A set of stop words

Output: context = {(k, l)}: pairs of word indexes

Ci ← {k : k ∈ [i− 3, i+ 3] ∧ k 6= i ∧ sk 6∈ STOP}1
Cj ← {l : l ∈ [j − 3, j + 3] ∧ l 6= j ∧ tl 6∈ STOP}2
context← Ci × Cj3

this module also performs inter-category alignment,
considering content words within a (3, 3) window
of si and tj as neighbors. We implement relational
equivalence (≈) here by holding any two positions
within the window equally contributive and mutually
comparable as sources of contextual evidence.

3.3 The Alignment Algorithm
We now describe each alignment module in the
pipeline and their sequence of operation.

3.3.1 Identical Word Sequences
The presence of a common word sequence in S

and T is indicative of an (a) identical, and (b) con-

223

textually similar word in the other sentence for each
word in the sequence. We observe the results of
aligning identical words in such sequences of length
n containing at least one content word. This simple
heuristic demonstrates a high precision (≈ 97%) on
the MSR alignment dev set for n ≥ 2, and therefore
we consider membership in such sequences as the
simplest form of contextual evidence in our system
and align all identical word sequence pairs in S and
T containing at least one content word. From this
point on, we will refer to this module as wsAlign.

3.3.2 Named Entities
We align named entities separately to enable the

alignment of full and partial mentions (and acronyms)
of the same entity. We use the Stanford Named Entity
Recognizer (Finkel et al., 2005) to identify named
entities in S and T . After aligning the exact term
matches, any unmatched term of a partial mention
is aligned to all terms in the full mention. The mod-
ule recognizes only first-letter acronyms and aligns
an acronym to all terms in the full mention of the
corresponding name.

Since named entities are instances of nouns, named
entity alignment is also informed by contextual ev-
idence (which we discuss in the next section), but
happens before alignment of other generic content
words. Parents (or children) of a named entity are
simply the parents (or children) of its head word. We
will refer to this module as a method named neAlign
from this point on.

3.3.3 Content Words
Extraction of contextual evidence for promising

content word pairs has already been discussed in
Section 3.2, covering both dependency-based context
and textual context.

Algorithm 3 (cwDepAlign) describes the
dependency-based alignment process. For each
potentially alignable pair (si, tj), the dependency-
based context is extracted as described in Algorithm
1, and context similarity is calculated as the sum
of the word similarities of the (sk, tl) context word
pairs (lines 2-7). (The wordSim method returns a
similarity score in {0, ppdbSim, 1}.) The alignment
score of the (si, tj) pair is then a weighted sum
of word and contextual similarity (lines 8-12).
(We discuss how the weights are set in Section

Algorithm 3: cwDepAlign(S, T,EQ,AE , w, STOP)

Input:
1. S, T : Sentences to be aligned
2. EQ: Dependency type equivalences (Table 1)
3. AE : Already aligned word pair indexes
4. w: Weight of word similarity relative to contex-

tual similarity
5. STOP: A set of stop words

Output: A = {(i, j)}: word index pairs of aligned
words {(si, tj)} where si ∈ S and tj ∈ T

Ψ← ∅; ΛΨ ← ∅; Φ← ∅1
for si ∈ S, tj ∈ T do2

if si 6∈ STOP ∧ ¬∃tl : (i, l) ∈ AE3
∧ tj 6∈ STOP ∧ ¬∃sk : (k, j) ∈ AE4
∧ wordSim(si, tj) > 0 then5

context← depContext(S, T, i, j, EQ)6

contextSim←
∑

(k,l)∈context

wordSim(sk, tl)
7

if contextSim > 0 then8
Ψ← Ψ ∪ {(i, j)}9
ΛΨ(i, j)← context10
Φ(i, j)← w ∗ wordSim(si, tj)11

+(1− w) ∗ contextSim12

Linearize and sort Ψ in decreasing order of Φ(i, j)13
A← ∅14
for (i, j) ∈ Ψ do15

if ¬∃l : (i, l) ∈ A16
∧¬∃k : (k, j) ∈ A then17

A← A ∪ {(i, j)}18

for (k, l) ∈ ΛΨ(i, j) do19
if ¬∃q : (k, q) ∈ A ∪AE20
∧¬∃p : (p, l) ∈ A ∪AE then21

A← A ∪ {(k, l)}22

3.3.5.) The module then aligns (si, tj) pairs with
non-zero evidence in decreasing order of this score
(lines 13-18). In addition, it aligns all the pairs
that contributed contextual evidence for the (si, tj)
alignment (lines 19-22). Note that we implement a
one-to-one alignment whereby a word gets aligned
at most once within the module.

Algorithm 4 (cwTextAlign) presents alignment
based on similarities in the textual neighborhood. For
each potentially alignable pair (si, tj), Algorithm 2
is used to extract the context, which is a set of neigh-
boring content word pairs (lines 2-7). The contextual
similarity is the sum of the similarities of these pairs

224

Algorithm 4: cwTextAlign(S, T,AE , w, STOP)

Input:
1. S, T : Sentences to be aligned
2. AE : Existing alignments by word indexes
3. w: Weight of word similarity relative to contex-

tual similarity
4. STOP: A set of stop words

Output: A = {(i, j)}: word index pairs of aligned
words {(si, tj)} where si ∈ S and tj ∈ T

Ψ← ∅; Φ← ∅1
for si ∈ S, tj ∈ T do2

if si 6∈ STOP ∧ ¬∃tl : (i, l) ∈ AE3
∧ tj 6∈ STOP ∧ ¬∃sk : (k, j) ∈ AE4
∧ wordSim(si, tj) > 0 then5

Ψ← Ψ ∪ {(i, j)}6
context← textContext(S, T, i, j, STOP)7

contextSim←
∑

(k,l)∈context

wordSim(sk, tl)
8

Φ(i, j)← w ∗ wordSim(si, tj)9
+ (1− w) ∗ contextSim10

Linearize and sort Ψ in decreasing order of Φ(i, j)11
A← ∅12
for (i, j) ∈ Ψ do13

if ¬∃l : (i, l) ∈ A14
∧¬∃k : (k, j) ∈ A then15

A← A ∪ {(i, j)}16

(line 8), and the alignment score is a weighted sum of
word similarity and contextual similarity (lines 9, 10).
The alignment score is then used to make one-to-one
word alignment decisions (lines 11-16). Considering
textual neighbors as weaker sources of evidence, we
do not align the neighbors.

Note that in cwTextAlign we also align semanti-
cally similar content word pairs (si, tj) with no con-
textual similarities if no pairs (sk, tj) or (si, tl) exist
with a higher alignment score. This is a consequence
of our observation of the MSR alignment dev data,
where we find that more often than not content words
are inherently sufficiently meaningful to be aligned
even in the absence of contextual evidence when
there are no competing pairs.

The content word alignment module is thus itself
a pipeline of cwDepAlign and cwTextAlign.

3.3.4 Stop Words
We follow the contextual evidence-based approach

to align stop words as well, some of which get aligned

Algorithm 5: align(S, T,EQ,w, STOP)

Input:
1. S, T : Sentences to be aligned
2. EQ: Dependency type equivalences (Table 1)
3. w: Weight of word similarity relative to contex-

tual similarity
4. STOP: A set of stop words

Output: A = {(i, j)}: word index pairs of aligned
words {(si, tj)} where si ∈ S and tj ∈ T

A← wsAlign(S, T)1
A← A ∪ neAlign(S, T,EQ,A,w)2
A← A ∪ cwDepAlign(S, T,EQ,A,w, STOP)3
A← A ∪ cwTextAlign(S, T,A,w, STOP)4
A← A ∪ swDepAlign(S, T,A,w, STOP)5
A← A ∪ swTextAlign(S, T,A,w, STOP)6

as part of word sequence alignment as discussed in
Section 3.3.1, and neighbor alignment as discussed
in Section 3.3.3. For the rest we utilize dependen-
cies and textual neighborhoods as before, with three
adjustments.

Firstly, since stop word alignment is the last mod-
ule in our pipeline, rather than considering all se-
mantically similar word pairs for contextual similar-
ity, we consider only aligned pairs. Secondly, since
many stop words (e.g. determiners, modals) typi-
cally demonstrate little variation in the dependencies
they engage in, we ignore type equivalences for stop
words and implement only exact matching of depen-
dencies. (Stop words in general can participate in
equivalent dependencies, but we leave constructing
a corresponding mapping for future work.) Finally,
for textual neighborhood, we separately check align-
ments of the left and the right neighbors and aggre-
gate the evidences to determine alignment – again
due to the primarily syntactic nature of interaction of
stop words with their neighbors.

Thus stop words are also aligned in a sequence of
dependency and textual neighborhood-based align-
ments. We assume two corresponding modules
named swDepAlign and swTextAlign, respectively.

3.3.5 The Algorithm
Our full alignment pipeline is shown as the method

align in Algorithm 5. Note that the strict order of the
alignment modules limits the scope of downstream
modules since each such module discards any word
that has already been aligned by an earlier module

225

(this is accomplished via the variable A; the corre-
sponding parameter in Algorithms 3 and 4 is AE).

The rationales behind the specific order of the mod-
ules can now be explained: (1) wsAlign is a module
with relatively higher precision, (2) it is convenient to
align named entities before other content words to en-
able alignment of entity mentions of different lengths,
(3) dependency-based evidence was observed to be
more reliable (i.e. of higher precision) than textual
evidence in the MSR alignment dev set, and (4) stop
word alignments are dependent on existing content
word alignments.

The aligner assumes two free parameters:
ppdbSim and w (in Algorithms 3 and 4). To
determine their values, we exhaustively search
through the two-dimensional space (ppdbSim,w)
for ppdbSim,w ∈ {0.1, ..., 0.9, 1} and the combina-
tion (0.9, 0.9) yields the best F1 score for the MSR
alignment dev set. We use these values for the aligner
in all of its subsequent applications.

4 Evaluation

We evaluate the performance of our aligner both in-
trinsically and extrinsically on multiple corpora.

4.1 Intrinsic Evaluation

The MSR alignment dataset2 (Brockett, 2007) was
designed to train and directly evaluate automated
aligners. Three annotators individually aligned words
and phrases in 1600 pairs of premise and hypothe-
sis sentences from the RTE2 challenge data (divided
into dev and test sets, each consisting of 800 sen-
tences). The dataset has subsequently been used to
assess several top performing aligners (MacCartney
et al., 2008; Thadani and McKeown, 2011; Yao et
al., 2013a; Yao et al., 2013b). We use the test set for
evaluation in the same manner as these studies: (a)
we apply majority rule to select from the three sets
of annotations for each sentence and discard three-
way disagreements, (b) we evaluate only on the sure
links (word pairs that annotators mentioned should
certainly be aligned, as opposed to possible links).

We test the generalizability of the aligner by eval-
uating it, unchanged (i.e. with identical parameter
values), on a second alignment corpus: the Edin-

2http://www.cs.biu.ac.il/ nlp/files/RTE 2006 Aligned.zip

System P% R% F1% E%

M
SR

MacCartney et al. (2008) 85.4 85.3 85.3 21.3
Thadani & McKeown (2011) 89.5 86.2 87.8 33.0
Yao et al. (2013a) 93.7 84.0 88.6 35.3
Yao et al. (2013b) 92.1 82.8 86.8 29.1
This Work 93.7 89.8 91.7 43.8

E
D

B
++ Yao et al. (2013a) 91.3 82.0 86.4 15.0

Yao et al. (2013b) 90.4 81.9 85.9 13.7
This Work 93.5 82.5 87.6 18.3

Table 2: Results of intrinsic evaluation on two datasets

burgh++3 (Thadani et al., 2012) corpus. The test set
consists of 306 pairs; each pair is aligned by at most
two annotators and we adopt the random selection
policy described in (Thadani et al., 2012) to resolve
disagreements.

Table 2 shows the results. For each corpus, it
shows precision (% alignments that matched with
gold annotations), recall (% gold alignments discov-
ered by the aligner), F1 score and the percentage
of sentences that received the exact gold alignments
(denoted by E) from the aligner.

On the MSR test set, our aligner shows a 3.1%
improvement in F1 score over the previous best sys-
tem (Yao et al., 2013a) with a 27.2% error reduction.
Importantly, it demonstrates a considerable increase
in recall without a loss of precision. TheE score also
increases as a consequence.

On the Edinburgh++ test set, our system achieves a
1.2% increase in F1 score (an error reduction of 8.8%)
over the previous best system (Yao et al., 2013a),
with improvements in both precision and recall. This
is a remarkable result that demonstrates the general
applicability of the aligner, as no parameter tuning
took place.

4.1.1 Ablation Test
We perform a set of ablation tests to assess the

importance of the aligner’s individual components.
Each row of Table 3 beginning with (-) shows a fea-
ture excluded from the aligner and two associated
sets of metrics, showing the performance of the re-
sulting algorithm on the two alignment corpora.

Without a word similarity module, recall drops
as would be expected. Without contextual evidence
(word sequences, dependencies and textual neigh-
bors) precision drops considerably and recall also
falls. Without dependencies, the aligner still gives

3http://www.ling.ohio-state.edu/∼scott/#edinburgh-plusplus

226

MSR EDB++

Feature P% R% F1% P% R% F1%
Original 93.7 89.8 91.7 93.5 82.5 87.6
(-) Word Similarity 95.2 86.3 90.5 95.1 77.3 85.3
(-) Contextual Evidence 81.3 86.0 83.6 86.4 80.6 83.4

(-) Dependencies 94.2 88.8 91.4 93.8 81.3 87.1
(-) Text Neighborhood 85.5 90.4 87.9 90.4 84.3 87.2

(-) Stop Words 94.2 88.3 91.2 92.2 80.0 85.7

Table 3: Ablation test results

state-of-the-art results, which points to the possibility
of a very fast yet high-performance aligner. Without
evidence from textual neighbors, however, the preci-
sion of the aligner suffers badly. Textual neighbors
find alignments across different lexical categories,
a type of alignment that is currently not supported
by our dependency equivalences. Extending the set
of dependency equivalences might alleviate this is-
sue. Finally, without stop words (i.e. while aligning
content words only) recall drops just a little for each
corpus, which is expected as content words form the
vast majority of non-identical word alignments.

4.2 Extrinsic Evaluation
We extrinsically evaluate our system on textual simi-
larity identification and paraphrase detection. Here
we discuss each task and the results of evaluation.

4.2.1 Semantic Textual Similarity
Given two short input text fragments (commonly

sentences), the goal of this task is to identify the
degree to which the two fragments are semantically
similar. The *SEM 2013 STS task (Agirre et al.,
2013) assessed a number of STS systems on four test
datasets by comparing their output scores to human
annotations. Pearson correlation coefficient with hu-
man annotations was computed individually for each
test set and a weighted sum of the correlations was
used as the final evaluation metric (the weight for
each dataset was proportional to its size).

We apply our aligner to the task by aligning each
sentence pair and taking the proportion of content
words aligned in the two sentences (by normalizing
with the harmonic mean of their number of content
words) as a proxy of their semantic similarity. Only
three of the four STS 2013 datasets are freely avail-
able4 (headlines, OnWN, and FNWN), which we use
for our experiments (leaving out the SMT dataset).

4http://ixa2.si.ehu.es/sts/

System Correl.% Rank
Han et al. (2013) 73.7 1 (original)
JacanaAlign 46.2 66
This Work 67.2 7

Table 4: Extrinsic evaluation on STS 2013 data

These three sets contain 1500 annotated sentence
pairs in total.

Table 4 shows the results. The first row shows the
performance of the top system in the task. With a
direct application of our aligner (no parameter tun-
ing), our STS algorithm acheives a 67.15% weighted
correlation, which would earn it the 7th rank among
90 participating systems. Considering the fact that
alignment is one of many components of STS, this
result is truly promising.

For comparison, we also evaluate the previous best
aligner named JacanaAlign (Yao et al., 2013a) on
STS 2013 data (the JacanaAlign public release5 is
used, which is a version of the original aligner with
extra lexical resources). We apply three different val-
ues derived from its output as proxies of semantic
similarity: a) aligned content word proportion, b) the
Viterbi decoding score, and c) the normalized decod-
ing score. Of the three, (b) gives the best results,
which we show in row 2 of Table 4. Our aligner
outperforms JacanaAlign by a large margin.

4.2.2 Paraphrase Identification
The goal of paraphrase identification is to decide if

two sentences have the same meaning. The output is
a yes/no decision instead of a real-valued similarity
score as in STS. We use the MSR paraphrase cor-
pus6 (4076 dev pairs, 1725 test pairs) (Dolan et al.,
2004) to evaluate our aligner and compare with other
aligners. Following earlier work (MacCartney et al.,
2008; Yao et al., 2013b), we use a normalized align-
ment score of the two sentences to make a decision
based on a threshold which we set using the dev set.
Alignments with a higher-than-threshold score are
taken to be paraphrases and the rest non-paraphrases.

Again, this is an oversimplified application of the
aligner, even more so than in STS, since a small
change in linguistic properties of two sentences
(e.g. polarity or modality) can turn them into non-

5https://code.google.com/p/jacana/
6http://research.microsoft.com/en-us/downloads/607d14d9-

20cd-47e3-85bc-a2f65cd28042/

227

System Acc.% P% R% F1%
Madnani et al. (2012) 77.4 79.0 89.9 84.1
Yao et al. (2013a) 70.0 72.6 88.1 79.6
Yao et al. (2013b) 68.1 68.6 95.8 79.9
This Work 73.4 76.6 86.4 81.2

Table 5: Extrinsic evaluation on MSR paraphrase data

paraphrases despite having a high degree of align-
ment. So the aligner was not expected to demonstrate
state-of-the-art performance, but still it gets close as
shown in Table 5. The first column shows the accu-
racy of each system in classifying the input sentences
into one of two classes: true (paraphrases) and false
(non-paraphrases). The rest of the columns show the
performance of the system for the true class in terms
of precision, recall, and F1 score. Italicized numbers
represent scores that were not reported by the authors
of the corresponding papers, but have been recon-
structed from the reported data (and hence are likely
to have small precision errors).

The first row shows the best performance by any
system on the test set to the best of our knowledge.
The next two rows show the performances of two
state-of-the-art aligners (performances of both sys-
tems were reported in (Yao et al., 2013b)). The
last row shows the performance of our aligner. Al-
though it does worse than the best paraphrase system,
it outperforms the other aligners.

5 Discussion

Our experiments reveal that a word aligner based on
simple measures of lexical and contextual similar-
ity can demonstrate state-of-the-art accuracy. How-
ever, as alignment is frequently a component of larger
tasks, high accuracy alone is not always sufficient.
Other dimensions of an aligner’s usability include
speed, consumption of computing resources, replica-
bility, and generalizability to different applications.
Our design goals include achieving a balance among
such multifarious and conflicting goals.

A speed advantage of our aligner stems from for-
mulating the problem as one-to-one word alignment
and thus avoiding an expensive decoding phase. The
presence of multiple phases is offset by discarding
already aligned words in subsequent phases. The
use of PPDB as the only (hashable) word similarity
resource helps in reducing latency as well as space
requirements. As shown in Section 4.1.1, further

speedup could be achieved with only a small perfor-
mance degradation by considering only the textual
neighborhood as source of contextual evidence.

However, the two major goals that we believe the
aligner achieves to the greatest extent are replicabil-
ity and generalizability. The easy replicability of
the aligner stems from its use of only basic and fre-
quently used NLP modules (a lemmatizer, a POS
tagger, an NER module, and a dependency parser: all
available as part of the Stanford CoreNLP suite7; we
use a Python wrapper8) and a single word similarity
resource (PPDB).

We experimentally show that the aligner can be
successfully applied to different alignment datasets
as well as multiple end tasks. We believe a design
characteristic that enhances the generalizability of
the aligner is its minimal dependence on the MSR
alignment training data, which originates from a tex-
tual entailment corpus having unique properties such
as disparities in the lengths of the input sentences
and a directional nature of their relationship (i.e.,
the premise implying the hypothesis, but not vice
versa). A related potential reason is the symmetry
of the aligner’s output (caused by its assumption of
no directionality) – the fact that it outputs the same
set of alignments regardless of the order of the input
sentences, in contrast to most existing aligners.

Major limitations of the aligner include the inabil-
ity to align phrases, including multiword expressions.
It is incapable of capturing and exploiting long dis-
tance dependencies among words (e.g. coreferences).
No word similarity resource is perfect and PPDB is
no exception, therefore certain word alignments also
remain undetected.

6 Conclusions

We show how contextual evidence can be used to
construct a monolingual word aligner with certain de-
sired properties, including state-of-the-art accuracy,
easy replicability, and high generalizability. Some
potential avenues for future work include: allow-
ing phrase-level alignment via phrasal similarity re-
sources (e.g. the phrasal paraphrases of PPDB), in-
cluding other sources of similarity such as vector
space models or WordNet relations, expanding the set

7http://nlp.stanford.edu/downloads/corenlp.shtml
8https://github.com/dasmith/stanford-corenlp-python

228

of dependency equivalences and/or using semantic
role equivalences, and formulating our alignment al-
gorithm as objective optimization rather than greedy
search.

The aligner is available for download at
https://github.com/ma-sultan/
monolingual-word-aligner.

Acknowledgments

This material is based in part upon work supported by
the National Science Foundation under Grant Num-
bers EHR/0835393 and EHR/0835381. Any opin-
ions, findings, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Na-
tional Science Foundation.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-

Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic Textual Similarity. In Proceedings of
the Second Joint Conference on Lexical and Compu-
tational Semantics. Association for Computational
Linguistics, 32-43.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with Bilingual Parallel Corpora. In Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics. Association for Computa-
tional Linguistics, 597-604.

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten
Zesch. 2012. UKP: computing semantic textual sim-
ilarity by combining multiple content similarity mea-
sures. In Proceedings of the First Joint Conference on
Lexical and Computational Semantics. Association for
Computational Linguistics, 435-440.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The Second PASCAL Recognising Textual En-
tailment Challenge. In Proceedings of The Second
PASCAL Recognising Textual Entailment Challenge.

Chris Brockett. 2007. Aligning the RTE 2006 Cor-
pus. Technical Report MSR-TR-2007-77, Microsoft
Research.

Nathanael Chambers, Daniel Cer, Trond Grenager, David
Hall, Chloe Kiddon, Bill MacCartney, Marie-Catherine
de Marneffe, Daniel Ramage, Eric Yeh, and Christopher
D Manning. 2007. Learning alignments and leverag-
ing natural logic. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing As-
sociation for Computational Linguistics, 165-170.

Ming-Wei Chang, Dan Goldwasser, Dan Roth, and Vivek
Srikumar. 2010. Discriminative Learning over Con-
strained Latent Representations. In Proceedings of the
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics
Association for Computational Linguistics, 429-437.

Dipanjan Das and Noah A. Smith. 2009. Paraphrase Iden-
tication as Probabilistic Quasi-Synchronous Recogni-
tion. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP. Association for Computational Linguistics,
468-476.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating Typed
Dependency Parses from Phrase Structure Parses. In
Proceedings of the International Conference on Lan-
guage Resources and Evaluation. 449-454.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. Stanford typed dependencies manual.
Technical Report, Stanford University.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised Construction of Large Paraphrase Corpora:
Exploiting Massively Parallel News Sources. In Pro-
ceedings of the International Conference on Compu-
tational Linguistics. Association for Computational
Linguistics, 350-356.

Jenny Rose Finkel, Trond Grenager, and Christopher Man-
ning. 2005. Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling. In
Proceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, 363-370.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Com-
putational Linguistics. Association for Computational
Linguistics, 758-764.

Lushan Han, Abhay Kashyap, Tim Finin, James Mayeld,
and Jonathan Weese. 2013. UMBC EBIQUITY-CORE:
Semantic Textual Similarity Systems. In Proceedings
of the Second Joint Conference on Lexical and Compu-
tational Semantics, Volume 1. Association for Compu-
tational Linguistics, 44-52.

Andrew Hickl and Jeremy Bensley. 2007. A Discourse
Commitment-Based Framework for Recognizing Tex-
tual Entailment. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing. As-
sociation for Computational Linguistics, 171-176.

Andrew Hickl, Jeremy Bensley, John Williams, Kirk
Roberts, Bryan Rink, and Ying Shi. 2006. Recog-
nizing Textual Entailment with LCCs GROUNDHOG

229

System. In Proceedings of the Second PASCAL Chal-
lenges Workshop on Recognizing Textual Entailment.

Milen Kouylekov and Bernardo Magnini. 2005. Rec-
ognizing textual entailment with tree edit distance al-
gorithms. In Proceedings of the PASCAL Challenges
Workshop: Recognising Textual Entailment Challenge
17-20.

Bill MacCartney, Michel Galley, and Christopher D. Man-
ning. 2008. A Phrase-Based Alignment Model for Nat-
ural Language Inference. In Proceedings of the 2008
Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics,
802-811.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining Machine Translation Metrics for
Paraphrase Identification. In Proceedings of 2012 Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, 182-190.

Kapil Thadani and Kathleen McKeown. 2011. Optimal
and Syntactically-Informed Decoding for Monolingual
Phrase-Based Alignment. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Associa-
tion for Computational Linguistics, 254-259.

Kapil Thadani, Scott Martin, and Michael White. 2012.
A Joint Phrasal and Dependency Model for Paraphrase
Alignment. In Proceedings of COLING 2012: Posters.
1229-1238.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003 Feature-rich Part-of-speech
Tagging with a Cyclic Dependency Network In Pro-
ceedings of the 2003 Human Language Technology
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics. Association for
Computational Linguistics, 173-180.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch,
and Peter Clark. 2013a. A Lightweight and High Per-
formance Monolingual Word Aligner. In Proceedings
of the 51st Annual Meeting of the Association for Com-
putational Linguistics. Association for Computational
Linguistics, 702-707.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch,
and Peter Clark. 2013b. Semi-Markov Phrase-based
Monolingual Alignment. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics,
590-600.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch,
and Peter Clark. 2013c. Answer Extraction as Se-
quence Tagging with Tree Edit Distance. In Proceed-
ings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguis-

tics. Association for Computational Linguistics, 858-
867.

230

From image descriptions to visual denotations:
New similarity metrics for semantic inference over event descriptions

Peter Young Alice Lai Micah Hodosh Julia Hockenmaier
Department of Computer Science

University of Illinois at Urbana-Champaign
{pyoung2, aylai2, mhodosh2, juliahmr}@illinois.edu

Abstract

We propose to use the visual denotations of
linguistic expressions (i.e. the set of images
they describe) to define novel denotational
similarity metrics, which we show to be at
least as beneficial as distributional similarities
for two tasks that require semantic inference.
To compute these denotational similarities, we
construct a denotation graph, i.e. a subsump-
tion hierarchy over constituents and their de-
notations, based on a large corpus of 30K im-
ages and 150K descriptive captions.

1 Introduction

The ability to draw inferences from text is a prereq-
uisite for language understanding. These inferences
are what makes it possible for even brief descrip-
tions of everyday scenes to evoke rich mental im-
ages. For example, we would expect an image of
people shopping in a supermarket to depict aisles
of produce or other goods, and we would expect
most of these people to be customers who are either
standing or walking around. But such inferences
require a great deal of commonsense world knowl-
edge. Standard distributional approaches to lexical
similarity (Section 2.1) are very effective at iden-
tifying which words are related to the same topic,
and can provide useful features for systems that per-
form semantic inferences (Mirkin et al., 2009), but
are not suited to capture precise entailments between
complex expressions. In this paper, we propose a
novel approach for the automatic acquisition of de-
notational similarities between descriptions of ev-
eryday situations (Section 2). We define the (visual)

denotation of a linguistic expression as the set of im-
ages it describes. We create a corpus of images of
everyday activities (each paired with multiple cap-
tions; Section 3) to construct a large scale visual de-
notation graph which associates image descriptions
with their denotations (Section 4). The algorithm
that constructs the denotation graph uses purely syn-
tactic and lexical rules to produce simpler captions
(which have a larger denotation). But since each
image is originally associated with several captions,
the graph can also capture similarities between syn-
tactically and lexically unrelated descriptions. We
apply these similarities to two different tasks (Sec-
tions 6 and 7): an approximate entailment recogni-
tion task for our domain, where the goal is to decide
whether the hypothesis (a brief image caption) refers
to the same image as the premises (four longer cap-
tions), and the recently introduced Semantic Textual
Similarity task (Agirre et al., 2012), which can be
viewed as a graded (rather than binary) version of
paraphrase detection. Both tasks require semantic
inference, and our results indicate that denotational
similarities are at least as effective as standard ap-
proaches to similarity. Our code and data set, as
well as the denotation graph itself and the lexical
similarities we define over it are available for re-
search purposes at http://nlp.cs.illinois.edu/
Denotation.html.

2 Towards Denotational Similarities

2.1 Distributional Similarities

The distributional hypothesis posits that linguistic
expressions that appear in similar contexts have a

67

Transactions of the Association for Computational Linguistics, 2 (2014) 67–78. Action Editor: Lillian Lee.
Submitted 6/2013; Revised 10/2013; Published 2/2014. c©2014 Association for Computational Linguistics.

Gray haired man in black suit and yellow tie working in a financial environment.
A graying man in a suit is perplexed at a business meeting.
A businessman in a yellow tie gives a frustrated look.
A man in a yellow tie is rubbing the back of his neck.
A man with a yellow tie looks concerned.

A butcher cutting an animal to sell.
A green-shirted man with a butcher’s apron uses a knife to carve out the hanging carcass of a cow.
A man at work, butchering a cow.
A man in a green t-shirt and long tan apron hacks apart the carcass of a cow

while another man hoses away the blood.
Two men work in a butcher shop; one cuts the meat from a butchered cow, while the other hoses the floor.

Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i ∈ Us ⊆ U in

a ‘universe’ of images U that s describes:

JsK = {i ∈ U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s′ (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s′ (JsK ⊆ Js′K),
and we say that s′ subsumes the more specific s
(s′ v s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations ω ∈ O ⊂ S × S
that preserve upward entailment, so that if ω(s) =
s′, JsK ⊆ Js′K. We consider three types of oper-
ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle →
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⊂ S × S, the
denotation graph DG = 〈E, V 〉 of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = 〈s, JsK〉 corresponds
to a string s ∈ S and its denotation JsK ⊆ I . Di-
rected edges e = (s, s′) ∈ E ⊆ V × V indicate a
subsumption relation s v s′ between a more generic
expression s and its child s′. An edge from s to s′

68

exists if there is an operation ω ∈ O that reduces the
string s′ to s (i.e. ω(s′) = s) and its inverse ω−1

expands the string s to s′ (i.e. ω−1(s) = s′).

2.4 Denotational Similarities
Given a denotation graph over N images, we esti-
mate the denotational probability of an expression s
with a denotation of size |JsK| as PJK(s) = |JsK|/N ,
and the joint probability of two expressions analo-
gously as PJK(s, s′) = |JsK ∩ Js′K|/N . The condi-
tional probability PJK(s | s′) indicates how likely
s is to be true when s′ holds, and yields a simple
directed denotational similarity. The (normalized)
pointwise mutual information (PMI) (Church and
Hanks, 1990) defines a symmetric similarity:

nPMI JK(s, s′) =
log
(

PJK(s,s′)
PJK(s)PJK(s′)

)

− log(PJK(s, s′))

We set PJK(s|s) = nPMI JK(s, s) = 1, and, if s or
s′ are not in the denotation graph, nPMI JK(s, s′) =
PJK(s, s′) = 0.

3 Our Data Set

Our data set (Figure 1) consists of 31,783 pho-
tographs of everyday activities, events and scenes
(all harvested from Flickr) and 158,915 captions
(obtained via crowdsourcing). It contains and ex-
tends Hodosh et al. (2013)’s corpus of 8,092 im-
ages. We followed Hodosh et al. (2013)’s approach
to collect images. We also use their annotation
guidelines, and use similar quality controls to cor-
rect spelling mistakes, eliminate ungrammatical or
non-descriptive sentences. Almost all of the im-
ages that we add to those collected by Hodosh et
al. (2013) have been made available under a Cre-
ative Commons license. Each image is described in-
dependently by five annotators who are not familiar
with the specific entities and circumstances depicted
in them, resulting in captions such as “Three people
setting up a tent”, rather than the kind of captions
people provide for their own images (“Our trip to
the Olympic Peninsula”). Moreover, different an-
notators use different levels of specificity, from de-
scribing the overall situation (performing a musical
piece) to specific actions (bowing on a violin). This
variety of descriptions associated with the same im-
age is what allows us to induce denotational similari-

ties between expressions that are not trivially related
by syntactic rewrite rules.

4 Constructing the Denotation Graph

The construction of the denotation graph consists
of the following steps: preprocessing and linguistic
analysis of the captions, identification of applicable
transformations, and generation of the graph itself.

Preprocessing and Linguistic Analysis We use
the Linux spell checker, the OpenNLP tok-
enizer, POS tagger and chunker (http://opennlp.
apache.org), and the Malt parser (Nivre et al.,
2006) to analyze the captions. Since the vocabulary
of our corpus differs significantly from the data these
tools are trained on, we resort to a number of heuris-
tics to improve the analyses they provide. Since
some heuristics require us to identify different entity
types, we developed a lexicon of the most common
entity types in our domain (people, clothing, bodily
appearance (e.g. hair or body parts), containers of
liquids, food items and vehicles).

After spell-checking, we normalize certain words
and compounds with several spelling variations, e.g.
barbecue (barbeque, BBQ), gray (grey), waterski
(water ski), brown-haired (brown haired), and to-
kenize the captions using the OpenNLP tokenizer.
The OpenNLP POS tagger makes a number of sys-
tematic errors on our corpus (e.g. mistagging main
verbs as nouns). Since these errors are highly sys-
tematic, we are able to correct them automatically
by applying deterministic rules (e.g. climbs is never
a noun in our corpus, stand is a noun if it is pre-
ceded by vegetable but a verb when preceded by a
noun that refers to people). These fixes apply to
27,784 (17% of the 158,915 image captions). Next,
we use the OpenNLP chunker to create a shallow
parse. Fixing its (systematic) errors affects 28,587
captions. We then analyze the structure of each
NP chunk to identify heads, determiners and pre-
nominal modifiers. The head may include more than
a single token if WordNet (or our hypernym lexi-
con, described below) contains a corresponding en-
try (e.g. little girl). Determiners include phrases
such as a couple or a few. Although we use the
Malt parser (Nivre et al., 2006) to identify subject-
verb-object dependencies, we have found it more ac-
curate to develop deterministic heuristics and lexi-

69

cal rules to identify the boundaries of complex (e.g.
conjoined) NPs, allowing us to treat “a man with red
shoes and a white hat” as an NP followed by a sin-
gle PP, but “a man with red shoes and a white-haired
woman” as two NPs, and to transform e.g. “stand-
ing by a man and a woman” into “standing” and not
“standing and a woman” when dropping the PP.

Hypernym Lexicon We use our corpus and Word-
Net to construct a hypernym lexicon that allows us
to replace head nouns with more generic terms. We
only consider hypernyms that occur themselves with
sufficient frequency in the original captions (replac-
ing “adult” with “person”, but not with “organ-
ism”). Since the language in our corpus is very
concrete, each noun tends to have a single sense, al-
lowing us to always replace it with the same hyper-
nyms.1 But since WordNet provides us with mul-
tiple senses for most nouns, we first have to iden-
tify which sense is used in our corpus. To do this,
we use the heuristic cross-caption coreference algo-
rithm of Hodosh et al. (2010) to identify coreferent
NP chunks among the original five captions of each
image.2 For each ambiguous head noun, we con-
sider every non-singleton coreference chains it ap-
pears in, and reduce its synsets to those that stand
in a hypernym-hyponym relation with at least one
other head noun in the chain. Finally, we apply a
greedy majority voting algorithm to iteratively nar-
row down each term’s senses to a single synset that
is compatible with the largest number of coreference
chains it occurs in.

Caption Normalization In order to increase the
recall of the denotations we capture, we drop all
punctuation marks, and lemmatize nouns, verbs, and
adjectives that end in “-ed” or “-ing” before gener-

1Descriptions of people that refer to both age and gen-
der (e.g. “man”) can have multiple distinct hypernyms
(“adult”/’“male”). Because our annotators never describe
young children or babies as “persons”, we only allow terms
that are likely to describe adults or teenagers (including occu-
pations) to be replaced by the term “person”. This means that
the term “girl” has two senses: a female child (the default) or a
younger woman. We distinguish the two senses in a preprocess-
ing step: if the other captions of the same image do not mention
children, but refer to teenaged or adult women, we assign girl
the woman-sense. Some nouns that end in -er (e.g. “diner”,
“pitcher” also violate our monosemy assumption.

2Coreference resolution has also been used for word sense
disambiguation by Preiss (2001) and Hu and Liu (2011).

ating the denotation graph. In order to distinguish
between frequently occurring homonyms where the
noun is unrelated to the verb, we change all forms of
the verb dress to dressed, all forms of the verb stand
to standing and all forms of the verb park to park-
ing. Finally, we drop sentence-initial there/here/this
is/are (as in there is a dog splashing in the water),
and normalize the expressions in X and dressed (up)
in X (where X is an article of clothing or a color) to
wear X. We reduce plural determiners to {two, three,
some}, and drop singular determiners except for no.

4.1 Rule Templates

The denotation graph contains a directed edge from
s to s′ if there is a rule ω that reduces s′ to s, with an
inverse ω−1 that expands s to s′. Reduction rules can
drop optional material, extract simpler constituents,
or perform lexical substitutions.

Drop Pre-Nominal Modifiers: “red shirt” →
“shirt” In an NP of the form “X Y Z”, where
X and Y both modify the head Z, we only allow
X and Y to be dropped separately if “X Z” and
“Y Z” both occur elsewhere in the corpus. Since
“white building” and “stone building” occur else-
where in the corpus, we generate both “white build-
ing” and “stone building” from the NP “white stone
building”. But since “ice player” is not used,
we replace “ice hockey player” only with “hockey
player” (which does occur) and then “player”.

Drop Other Modifiers “run quickly” → “run”
We drop ADVP chunks and adverbs in VP chunks.
We also allow a prepositional phrase (a preposi-
tion followed by a possibly conjoined NP chunk)
to be dropped if the preposition is locational
(“in”, “on”, “above”, etc.), directional (“towards”,
“through”, “across”, etc.), or instrumental (“by”,
“for”, “with”). Similarly, we also allow the drop-
ping of all “wear NP” constructions. Since the dis-
tinction between particles and prepositions is often
difficult, we also use a predefined list of phrasal
verbs that commonly occur in our corpus to identify
constructions such as “climb up a mountain”, which
is transformed into “climb a mountain” or “walk
down a street”, which is transformed into “walk”.

Replace Nouns by Hypernyms: “red shirt” →
“red clothing” We iteratively use our hypernym

70

GENERATEGRAPH():
Q,Captions,Rules← ∅
for all c ∈ ImageCorpus do

Rules(c)← GenerateRules(sc)
pushAll(Q, {c} × RootNodes(sc,Rules(c)))

while ¬empty(Q) do
(c, s)← pop(Q)
Captions(s)← Captions(s) ∪ {c}
if |Captions(s)| = 2 then

for all c′ ∈ Captions(s) do
pushAll(Q, {c′} × Children(s,Rules(c′)))

else if |Captions(s)| > 2 then
pushAll(Q, {c} × Children(s,Rules(c)))

Figure 2: Generating the graph

lexicon to make head nouns more generic. We only
allow head nouns to be replaced by their hypernyms
if any age based modifiers have already been re-
moved: “toddler” can be replaced with “child”, but
not “older toddler” with “older child”.

Handle Partitive NPs: cup of tea→ “cup”, “tea”
In most partitive NP1-of-NP2 constructions (“cup of
tea”, “a team of football players”) the correspond-
ing entity can be referred to by both the first or the
second NP. Exceptions include the phrase “body of
water”, and expressions such as “a kind/type/sort
of”, which we treat similar to determiners.

Handle VP1-to-VP2 Cases Depending on the first
verb, we replace VPs of the form X to Y with both X
and Y if X is a movement or posture (jump to catch,
etc.). Otherwise we distinguish between cases we
can only replace with X (wait to jump) and those we
can only replace with Y (seem to jump).

Extract Simpler Constituents Any noun phrase
or verb phrase can also be used as a node in the
graph and simplified further. We use the Malt de-
pendencies (and the person terms in the entity type
lexicon) to identify and extract subject-verb-object
chunks which correspond to simpler sentences that
we would otherwise not be able to obtain: from
“man laugh(s) while drink(ing)”, we extract “man
laugh” and “man drink”, and then further split those
into “man”, “laugh(s)”, and “drink”.

4.2 Graph Generation

The naive approach to graph generation would be to
generate all possible strings for each caption. How-
ever, this would produce far more strings than can be

processed in a reasonable amount of time, and most
of these strings would have uninformative denota-
tions, consisting of only a single image. To make
graph generation tractable, we use a top-down al-
gorithm which generates the graph from the most
generic (root) nodes, and stops at nodes that have a
singleton denotation (Figure 2). We first identify the
set of rules that can apply to each original caption
(GenerateRules). These rules are then used to re-
duce each caption as much as possible. The resulting
(maximally generic) strings are added as root nodes
to the graph (RootNodes), and added to the queue
Q. Q keeps track of all currently possible node ex-
pansions. It contains items 〈c, s〉, which pair the ID
of an original caption and its image (c) with a string
(s) that corresponds to an existing node in the graph
and can be derived from c’s caption. When 〈c, s〉 is
processed, we check how many captions have gen-
erated s so far (Captions(s)). If s has more than a
single caption, we use each of the applicable rewrite
rules of c’s caption to create new strings s′ that cor-
respond to the children of s in the graph, and push
all resulting 〈c, s′〉 onto Q. If c is the second caption
of s, we also use all of the applicable rewrite rules
from the first caption c′ to create its children.

A post-processing step (not shown in Figure 2)
attaches each original caption to all leaf nodes of the
graph to which it can be reduced. Finally, we obtain
the denotation of each node s from the set of images
whose captions are in Captions(s).

5 The Denotation Graph

Size and Coverage On our corpus of 158,439
unique captions and 31,783 images, the denotation
graph contains 1,749,097 captions, out of which
230,811 describe more than a single image. Ta-
ble 1 provides the distribution of the size of deno-
tations. It is perhaps surprising that the 161 cap-
tions which describe each over 1,000 images do
not just consist of nouns such as person, but also
contain simple sentences such as woman standing,
adult work, person walk street, or person play in-
strument. Since the graph is derived from the origi-
nal captions by very simple syntactic operations, the
denotations it captures are most likely incomplete:
Jsoccer playerK contains 251 images, Jplay soccerK
contains 234 images, and Jsoccer gameK contains

71

Size of denotations |JsK| ≥ 1 |JsK| ≥ 2 |JsK| ≥ 5 |JsK| ≥ 10 |JsK| ≥ 100 |JsK| ≥ 1000

Nr. of captions 1,749,096 230,811 53,341 22,683 1,921 161
Table 1: Distribution of the size of denotations in our graph

119 images. We have not yet attempted to iden-
tify variants in word order (“stick tongue out” vs.
“stick out tongue”) or equivalent choices of prepo-
sition (“look into mirror” vs. “look in mirror”). De-
spite this brittleness, the current graph already gives
us a large number of semantic associations.

Denotational Similarities The following exam-
ples of the similarities found by nPMI JK and PJK
show that denotational similarities do not simply
find topically related events, but instead find events
that are related by entailment:

PJK(x|y) x y

0.962 sit eat lunch
0.846 play guitar strum
0.811 surf catch wave
0.800 ride horse rope calf
0.700 listen sit in classroom

If someone is eating lunch, it is likely that they
are sitting, and people who sit in a classroom are
likely to be listening to somebody. These entail-
ments can be very precise: “walk up stair” entails
“ascend”, but not “descend”; the reverse is true for
“walk down stair”:

PJK(x|y) x =ascend x =descend
y =walk up stair 32.0 0.0

y =walk down stair 0.0 30.8

nPMI JK captures paraphrases as well as closely
related events: people look in a mirror when shav-
ing their face, and baseball players may try to tag
someone who is sliding into base:

nPMI JK x y

0.835 open present unwrap
0.826 lasso try to rope
0.791 get ready to kick run towards ball
0.785 try to tag slide into base
0.777 shave face look in mirror

Comparing the expressions that are most similar
to “play baseball” or “play football” according to
the denotational nPMI JK and the compositional Σ
similarities reveals that the denotational similarity
finds a number of actions that are part of the partic-
ular sport, while the compositional similarity finds
events that are similar to playing baseball (football):

play baseball
nPMI JK Σ

0.674 tag him 0.859 play softball
0.637 hold bat 0.782 play game
0.616 try to tag 0.768 play ball
0.569 slide into base 0.741 play catch
0.516 pitch ball 0.739 play cricket

play football
nPMI JK Σ

0.623 tackle person 0.826 play game
0.597 hold football 0.817 play rugby
0.545 run down field 0.811 play soccer
0.519 wear white jersey 0.796 play on field
0.487 avoid 0.773 play ball

6 Task 1: Approximate Entailment

A caption never provides a complete description of
the depicted scene, but commonsense knowledge
often allows us to draw implicit inferences: when
somebody mentions a bride, it is quite likely that the
picture shows a woman in a wedding dress; a pic-
ture of a parent most likely also has a child or baby,
etc. In order to compare the utility of denotational
and distributional similarities for drawing these in-
ferences, we apply them to an approximate entail-
ment task, which is loosely modeled after the Rec-
ognizing Textual Entailment problem (Dagan et al.,
2006), and consists of deciding whether a brief cap-
tion h (the hypothesis) can describe the same image
as a set of captions P = {p1, ...,pN} known to de-
scribe the same image (the premises).

Data We generate positive and negative items
〈P,h,±〉 (Figure 3) as follows: Given an image,
any subset of four of its captions form a set of
premises. A hypothesis is either a short verb phrase
or sentence that corresponds to a node in the deno-
tation graph. By focusing on short hypotheses, we
minimize the possibility that they contain extrane-
ous details that cannot be inferred from the premises.
Positive examples are generated by choosing a node
h as hypothesis and an image i ∈ JhK such that ex-
actly one caption of i generates h and the other four
captions of i are not descendants of h and hence
do not trivially entail h, giving an unfair advantage
to denotational approaches. Negative examples are
generated by choosing a node h as hypothesis and
selecting four of the captions of an image i 6∈ JhK.

72

Premises: A woman with dark hair in bending, open mouthed, towards the back of a dark headed toddler’s head.
A dark-haired woman has her mouth open and is hugging a little girl while sitting on a red blanket.
A grown lady is snuggling on the couch with a young girl and the lady has a frightened look.
A mom holding her child on a red sofa while they are both having fun.

VP Hypothesis: make face

Premises: A man editing a black and white photo at a computer with a pencil in his ear.
A man in a white shirt is working at a computer.
A guy in white t-shirt on a mac computer.
A young main is using an Apple computer.

S Hypothesis: man sit

Figure 3: Positive examples from the Approximate Entailment tasks.

Since our items are created automatically, a posi-
tive hypothesis is not necessarily logically entailed
by its premises. We have performed a small-scale
human evaluation on 300 items (200 positive, 100
negative), each judged independently by the same
three judges (inter-annotator agreement: Fleiss-κ =
0.74). Our results indicate that over half (55%) of
the positive hypotheses can be inferred from their
premises alone without looking at the original im-
age, while almost none of the negative hypotheses
(100% for sentences, 96% for verb phrases) can be
inferred from their premises. The training items are
generated from the captions of 25,000 images, and
the test items are generated from a disjoint set of
3,000 images. The VP data set consists of 290,000
training items and 16,000 test items, while the S data
set consists of 400,000 training items and 22,000 test
items. Half of the items in each set are positive, and
the other half are negative.

Models All of our models are binary MaxEnt clas-
sifiers, trained using MALLET (McCallum, 2002).
We have two baseline models: a plain bag-of-words
model (BOW) and a bag-of-words model where we
add all hypernyms in our lexicon to the captions be-
fore computing their overlap (BOW-H). This is in-
tended to minimize the advantage the denotational
features obtain from the hypernym lexicon used to
construct the denotation graph. In both cases, a
global BOW feature captures the fraction of tokens
in the hypothesis that are contained in the premises.
Word-specific BOW features capture the product of
the frequencies of each word in h and P. All other
models extend the BOW-H model.

Denotational Similarity Features We compute
denotational similarities nPMI JK and PJK (Sec-

tion 2.4) over the pairs of nodes in a denotation
graph that is restricted to the training images. We
only consider pairs of nodes n,n′ if their denota-
tions contain at least 10 images and their intersection
contains at least 2 images.

To map an item 〈P,h〉 to denotational simi-
larity features, we represent the premises as the
set of all nodes P that are ancestors of its cap-
tions. A sentential hypothesis is represented as
the set of nodes H = {hS , hsbj , hV P , hv, hdobj}
that correspond to the sentence (h itself), its sub-
ject, its VP and its direct object. A VP hypothe-
sis has only the nodes H = {hV P , hv, hdobj}. In
both cases, hdobj may be empty. Both of the de-
notational similarities nPMI JK(h, p) and PJK(h|p)
for h ∈ H , p ∈ P lead to two constituent-
specific features, sumx and maxx, (e.g. sumsbj =∑

p sim(hsbj , p), maxdobj = maxp sim(hdobj , p))
and two global features sump,h =

∑
p,h sim(h, p)

and maxp,h = maxp,h sim(h, p). Each constituent
type also has a set of node-specific sumx,s and
maxx,s features that are on when constituent x in
h is equal to the string s and whose value is equal
to the constituent-based feature. For PJK, each con-
stituent (and each constituent-node pair) has an ad-
ditional feature P (h|P) = 1 −∏n(1 − PJK(h|pn))
that estimates the probability that h is generated by
some node in the premise.

Lexical Similarity Features We use two sym-
metric lexical similarities: standard cosine distance
(cos), and Lin (1998)’s similarity (Lin):

cos(w,w′) = w·w′

‖w‖‖w′‖

Lin(w,w′) =
∑

i:w(i)>0∧w′(i)>0 w(i)+w′(i)∑
i w(i)+

∑
i w

′(i)

73

We use two directed lexical similarities: Clarke
(2009)’s similarity (Clk), and Szpektor and Dagan
(2008)’s balanced precision (Bal), which builds on
Lin and on Weeds and Weir (2003)’s similarity (W):

Clk(w | w′) =

∑
i:w(i)>0∧w′(i)>0 min(w(i),w′(i))

∑
i w(i)

Bal(w | w′) =
√
W(w | w′)× Lin(w,w′)

W(w | w′) =

∑
i:w(i)>0∧w′(i)>0 w(i)

∑
i w(i)

We also use two publicly available resources that
provide precomputed similarities, Kotlerman et al.
(2010)’s DIRECT noun and verb rules and Chklovski
and Pantel (2004)’s VERBOCEAN rules. Both are
motivated by the need for numerically quantifiable
semantic inferences between predicates. We only
use entries that correspond to single tokens (ignor-
ing e.g. phrasal verbs).

Each lexical similarity results in the follow-
ing features: words in the output are represented
by a max-simw feature which captures its max-
imum similarity with any word in the premises
(max-simw = maxw′∈P sim(w,w′)) and by a
sum-simw feature which captures the sum of its sim-
ilarities to the words in the premises (sum-simw =∑

w′∈P sim(w,w′)). Global max sim and sum sim
features capture the maximal (resp. total) similarity
of any word in the hypothesis to the premise.

We compute distributional and compositional
similarities (cos, Lin, Bal, Clk, Σ, Π) on our im-
age captions (“cap”), the BNC and Gigaword. For
each corpus C, we map each word w that appears
at least 10 times in C to a vector wC of the non-
negative normalized pointwise mutual information
scores (Section 2.4) of w and the 1,000 words (ex-
cluding stop words) that occur in the most sentences
of C. We generally define P (w) (and P (w,w′)) as
the fraction of sentences in C in which w (and w′)
occur. To allow a direct comparison between dis-
tributional and denotational similarities, we first de-
fine P (w) (and P (w,w′)) over individual captions
(“cap”), and then, to level the playing field, we rede-
fine P (w) (and P (w,w′)) as the fraction of images
in whose captions w (and w′) occur (“img”), and
then we use our lexicon to augment captions with
all hypernyms (“+hyp”). Finally, we include BNC
and Gigaword similarity features (“all”).

VP task S task
Baseline 1: BoW 58.7 71.2
Baseline 2: BoW-H 59.0 73.6
External 1: DIRECT 59.2 73.5
External 2: VerbOcean 60.8 74.0

Cap All Cap All
Distributional cos 67.5 71.9 76.1 78.9
Distributional Lin 62.6 70.2 75.4 77.8
Distributional Bal 62.3 69.6 74.7 75.3
Distributional Clk 62.4 69.2 75.4 77.5
Compositional Π 68.4 70.3 75.3 77.3
Compositional Σ 67.8 71.4 76.9 79.2
Compositional Π,Σ 69.8 72.7 77.0 79.6
Denotational nPMI JK 74.9 80.2
Denotational PJK 73.8 79.5
nPMI JK, PJK 75.5 81.2
Combined cos, Π,Σ 71.1 72.6 77.4 79.2
nPMI JK, PJK, Π,Σ 75.6 75.9 80.2 80.7
nPMI JK, PJK, cos 75.6 75.7 80.2 81.2
nPMI JK, PJK, cos, Π,Σ 75.8 75.9 81.2 80.5

Table 2: Test accuracy on Approximate Entailment.

Compositional Similarity Features We use two
standard compositional baselines to combine the
word vectors of a sentence into a single vector: ad-
dition (s∑ = w1 + ... + wn, which can be inter-
preted as a disjunctive operation), and element-wise
(Hadamard) multiplication (s∏ = w1 � ... � wn,
which can be seen as a conjunctive operation). In
both cases, we represent the premises (which con-
sist of four captions) as a the sum of each caption’s
vector p = p1 + ...p4. This gives two composi-
tional similarity features: Σ = cos(pΣ,hΣ), and
Π = cos(pΠ,hΠ).

6.1 Experimental Results

Table 2 provides the test accuracy of our mod-
els on the VP and S tasks. Adding hypernyms
(BOW-H) yields a slight improvement over the ba-
sic BOW model. Among the external resources,
VERBOCEAN is more beneficial than DIRECT, but
neither help as much as in-domain distributional
similarities (this may be due to sparsity).

Table 2 shows only the simplest (“Cap”) and
the most complex (“all”) distributional and com-
positional models, but Table 3 provides accuracies
of these models as we go from standard sentence-
based co-occurrence counts towards more denota-
tion graph-like co-occurrence counts that are based
on all captions describing the same image (“Img”),

74

VP task S task
Cap Img +Hyp All Cap Img +Hyp All

cos 67.5 69.3 69.8 71.9 76.1 76.8 77.5 78.9
Lin 62.6 63.4 61.3 70.0 75.4 74.8 75.2 77.8
Bal 62.3 61.9 62.8 69.6 74.7 75.5 75.1 75.3
Clk 62.4 67.3 68.0 69.2 75.4 75.5 76.0 77.5
Π 68.4 70.5 70.5 70.3 75.3 76.6 77.1 77.3
Σ 67.8 71.4 71.6 71.4 76.9 78.1 79.1 79.2
Π,Σ 69.8 72.7 72.9 72.7 77.0 78.6 79.3 79.6
nPMI JK 74.9 80.2
PJK 73.8 79.5
nPMI JK, PJK 75.5 81.2

Table 3: Accuracy on hypotheses as various additions are
made to the vector corpora. Cap is the image corpus with
caption co-occurrence. Img is the image corpus with im-
age co-occurrence. +Hyp augments the image corpus
with hypernyms and uses image co-occurrence. All adds
the BNC and Gigaword corpora to +Hyp.

VP task S task
Words in h 1 2 3+ 2 3 4+
% of items 72.8 13.9 13.3 65.3 22.8 11.9
BoW-H 52.0 75.0 80.1 69.1 80.8 84.4
cos (All) 68.8 79.4 81.1 75.9 83.9 85.7∑

(All) 68.1 80.8 79.5 76.5 83.9 85.1
nPMI JK 72.0 82.9 82.2 77.3 85.4 86.2

Table 4: Accuracy on hypotheses of varying length.

include hypernyms (“+Hyp”), and add informa-
tion from other corpora (“All”). The “+Hyp” col-
umn in Table 3 shows that the denotational metrics
clearly outperform any distributional metric when
both have access to the same information. Al-
though the distributional models benefit from the
BNC and Gigaword-based similarities (“All”), their
performance is still below that of the denotational
models. Among the distributional model, the simple
cos performs better than Lin, or the directed Clk and
Bal similarities. In all cases, giving models access to
different similarity features improves performance.

Table 4 shows the results by hypothesis length.
As the length of h increases, classifiers that use sim-
ilarities between pairs of words (BOW-H and cos)
continue to improve in performance relative to the
classifiers that use similarities between phrases and
sentences (Σ and nPMI JK). Most likely, this is due
to the lexical similarities having a larger set of fea-
tures to work with for longer h. nPMI JK does espe-
cially well on shorter h, likely due to the shorter h
having larger denotations.

7 Task 2: Semantic Textual Similarity

To assess how the denotational similarities perform
on a more established task and domain, we apply
them to the 1500 sentence pairs from the MSR Video
Description Corpus (Chen and Dolan, 2011) that
were annotated for the SemEval 2012 Semantic Tex-
tual Similarity (STS) task (Agirre et al., 2012). The
goal of this task is to assign scores between 0 and 5
to a pair of sentences, where 5 indicates equivalence,
and 0 unrelatedness. Since this is a symmetric task,
we do not consider directed similarities. And be-
cause the goal of this experiment is not to achieve
the best possible performance on this task, but to
compare the effectiveness of denotational and more
established similarities, we only compare the impact
of denotational similarities with compositional sim-
ilarities computed on our own corpus. Since the
MSR Video corpus associates each video with mul-
tiple sentences, it is in principle also amenable to a
denotational treatment, but the STS task description
explicitly forbids its use.

7.1 Models
Baseline and Compositional Features Our start-
ing point is Bär et al. (2013)’s DKPro Similarity,
one of the top-performing models from the 2012
STS shared task, which is available and easily mod-
ified. It consists of a log-linear regression model
trained on multiple text features (word and charac-
ter n-grams, longest common substring and longest
common subsequence, Gabrilovich and Markovitch
(2007)’s Explicit Semantic Analysis, and Resnik
(1995)’s WordNet-based similarity). We investigate
the effects of adding compositional (computed on
the vectors obtained from the image-caption train-
ing data) and denotational similarity features to this
state-of-the-art system.

Denotational Features Since the STS task is
symmetric, we only consider nPMI JK similari-
ties. We again represent each sentence s by fea-
tures based on 5 types of constituents: S =
{sS , ssbj , sV P , sv, sdobj}. Since sentences might be
complex, they might contain multiple constituents
of the same type, and we therefore think of each
feature as a feature over sets of nodes. For each
constituent C we consider two sets of nodes in the
denotation graph: C itself (typically leaf nodes),

75

DKPro +Σ,Π (img) +nPMI JK +both
Pearson r 0.868 0.880 0.888 0.890

Table 5: Performance on the STS MSRvid task: DKPro
(Bär et al., 2013) plus compositional (Σ,Π) and/or deno-
tational similarities (nPMI JK) from our corpus

and Canc, their parents and grandparents. For
each pair of sentences, C-C similarities compute
the similarity of the constituents of the same type,
while C-all similarities compute the similarity of
a C constituent in one sentence against all con-
stituents in the other sentence. For each pair of
constituents we consider three similarity features:
sim(C1, C2), max(sim(C1C

anc
2), sim(Canc

1 , C2)),
sim(Canc

1 , Canc
2). The similarity of two sets of

nodes is determined by the maximal similarity
of any pair of their elements: sim(C1, C2) =
maxc1∈C1,c2∈C2 nPMI JK(c1, c2). This gives us 15
C-C features and 15 C-all features.

7.2 Experiments

We use the STS 2012 train/test data, normalized in
the same way as the image captions for the deno-
tation graph (i.e. we re-tokenize, lemmatize, and
remove determiners). Table 5 shows experimental
results for four models: DKPro is the off-the-shelf
DKProSimilarity model (Bär et al., 2013). From
our corpus, we either add additive and multiplicative
compositional features (Σ,Π) from Section 6 (img),
the C-C and C-All denotational features based on
nPMI JK, or both compositional and denotational
features. Systems are evaluated by the Pearson cor-
relation (r) of their predicted similarity scores to the
human-annotated ones. We see that the denotational
similarities outperform the compositional similari-
ties, and that including compositional similarity fea-
tures in addition to denotational similarity features
has little effect. For additional comparison, the
published numbers for the TakeLab Semantic Text
Similarity System (Šarić et al., 2012), another top-
performing model from the 2012 shared task, are
r = 0.880 on this dataset.

8 Conclusion

Summary of Contributions We have defined
novel denotational metrics of linguistic similarity
(Section 2), and have shown them to be at least

competitive with, if not superior to, distributional
similarities for two tasks that require simple se-
mantic inferences (Sections 6, 7), even though our
current method of computing them is somewhat
brittle (Section 5). We have also introduced two
new resources: a large data set of images paired
with descriptive captions, and a denotation graph
that pairs generalized versions of these captions
with their visual denotations, i.e. the sets of im-
ages they describe. Both of these resources are
freely available (http://nlp.cs.illinois.edu/
Denotation.html) Although the aim of this paper
is to show their utility for a purely linguistic task,
we believe that they should also be of great interest
for people who aim to build systems that automat-
ically associate image with sentences that describe
them (Farhadi et al., 2010; Kulkarni et al., 2011; Li
et al., 2011; Yang et al., 2011; Mitchell et al., 2012;
Kuznetsova et al., 2012; Gupta et al., 2012; Hodosh
et al., 2013).

Related Work and Resources We believe that the
work reported in this paper has the potential to open
up promising new research directions. There are
other data sets that pair images or video with de-
scriptive language, but we have not yet applied our
approach to them. Chen and Dolan (2011)’s MSR
Video Description Corpus (of which the STS data
is a subset) is most similar to ours, but its curated
part is significantly smaller. Instead of several in-
dependent captions, Grubinger et al. (2006)’s IAPR
TC-12 data set contains longer descriptions. Or-
donez et al. (2011) harvested 1 million images and
their user-generated captions from Flickr to create
the SBU Captioned Photo Dataset. These captions
tend to be less descriptive of the image. The de-
notation graph is similar to Berant et al. (2012)’s
‘entailment graph’, but differs from it in two ways:
first, entailment relations in the denotation graph
are defined extensionally in terms of the images de-
scribed by the expressions at each node, and sec-
ond, nodes in Berant et al.’s entailment graph corre-
spond to generic propositional templates (X treats
Y), whereas nodes in our denotation graph corre-
spond to complete propositions (a dog runs).

76

Acknowledgements

We gratefully acknowledge the support of the
National Science Foundation under NSF awards
0803603 “INT2-Medium: Understanding the mean-
ing of images”, 1053856 “CAREER: Bayesian Mod-
els for Lexicalized Grammars”, and 1205627 “CI-
P:Collaborative Research: Visual entailment data
set and challenge for the Language and Vision Com-
munity”, as well as via an NSF Graduate Research
Fellowship to Alice Lai.

References

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: a pilot
on semantic textual similarity. In Proceedings of the
First Joint Conference on Lexical and Computational
Semantics - Volume 1: Proceedings of the main confer-
ence and the shared task, and Volume 2: Proceedings
of the Sixth International Workshop on Semantic Eval-
uation, SemEval ’12, pages 385–393.

Daniel Bär, Torsten Zesch, and Iryna Gurevych. 2013.
DKPro Similarity: An Open Source Framework for
Text Similarity. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics: System Demonstrations, pages 121–126, Sofia,
Bulgaria, August.

Jon Barwise and John Perry. 1980. Situations and atti-
tudes. Journal of Philosophy, 78:668–691.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2012. Learning entailment relations by global graph
structure optimization. Computational Linguistics,
38(1):73–111.

Greg Carlson, 2005. The Encyclopedia of Language and
Linguistics, chapter Generics, Habituals and Iteratives.
Elsevier, 2nd edition.

David Chen and William Dolan. 2011. Collecting
highly parallel data for paraphrase evaluation. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 190–200, Portland, Oregon, USA,
June.

Timothy Chklovski and Patrick Pantel. 2004. Verbo-
cean: Mining the web for fine-grained semantic verb
relations. In Proceedings of the 2004 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 33–40, Barcelona, Spain, July.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicogra-
phy. Computational Linguistics, 16(1):22–29.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In Proceedings of
the Workshop on Geometrical Models of Natural Lan-
guage Semantics, pages 112–119, Athens, Greece,
March.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL Recognising Textual Entailment
challenge. In Machine Learning Challenges, volume
3944 of Lecture Notes in Computer Science, pages
177–190. Springer.

David Dowty, Robert Wall, and Stanley Peters. 1981. In-
troduction to Montague Semantics. Reidel, Dordrecht.

Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi,
Peter Young, Cyrus Rashtchian, Julia Hockenmaier,
and David Forsyth. 2010. Every picture tells a
story: Generating sentences from images. In Proceed-
ings of the European Conference on Computer Vision
(ECCV), Part IV, pages 15–29, Heraklion, Greece,
September.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Com-
puting semantic relatedness using wikipedia-based ex-
plicit semantic analysis. In Proceedings of the 20th
international joint conference on Artifical intelligence,
IJCAI’07, pages 1606–1611.

Michael Grubinger, Paul Clough, Henning Müller, and
Thomas Deselaers. 2006. The IAPR benchmark: A
new evaluation resource for visual information sys-
tems. In OntoImage 2006, Workshop on Language
Resources for Content-based Image Retrieval during
LREC 2006, pages 13–23, Genoa, Italy, May.

Ankush Gupta, Yashaswi Verma, and C. Jawahar. 2012.
Choosing linguistics over vision to describe images.
In Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, Toronto, Ontario, Canada,
July.

Zellig S Harris. 1954. Distributional structure. Word,
10:146–162.

Micah Hodosh, Peter Young, Cyrus Rashtchian, and Julia
Hockenmaier. 2010. Cross-caption coreference reso-
lution for automatic image understanding. In Proceed-
ings of the Fourteenth Conference on Computational
Natural Language Learning, pages 162–171, Uppsala,
Sweden, July.

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing image description as a ranking task:
Data, models and evaluation metrics. Journal of Arti-
ficial Intelligence Research (JAIR), 47:853–899.

Shangfeng Hu and Chengfei Liu. 2011. Incorporating
coreference resolution into word sense disambigua-
tion. In Alexander F. Gelbukh, editor, Computational
Linguistics and Intelligent Text Processing, volume
6608 of Lecture Notes in Computer Science, pages
265–276. Springer Berlin Heidelberg.

77

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distributional
similarity for lexical inference. Natural Language En-
gineering, 16(4):359–389.

Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming
Li, Yejin Choi, Alexander C. Berg, and Tamara L.
Berg. 2011. Baby talk: Understanding and generat-
ing simple image descriptions. In Proceedings of the
2011 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1601–1608.

Polina Kuznetsova, Vicente Ordonez, Alexander Berg,
Tamara Berg, and Yejin Choi. 2012. Collective gener-
ation of natural image descriptions. In Proceedings of
the 50th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
359–368, Jeju Island, Korea, July.

Siming Li, Girish Kulkarni, Tamara L. Berg, Alexan-
der C. Berg, and Yejin Choi. 2011. Composing sim-
ple image descriptions using web-scale n-grams. In
Proceedings of the Fifteenth Conference on Compu-
tational Natural Language Learning (CoNLL), pages
220–228, Portland, OR, USA, June.

Dekang Lin. 1998. An information-theoretic defini-
tion of similarity. In Proceedings of the Fifteenth In-
ternational Conference on Machine Learning (ICML),
pages 296–304, Madison, WI, USA, July.

Bill MacCartney and Christopher D. Manning. 2008.
Modeling semantic containment and exclusion in nat-
ural language inference. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics (Coling 2008), pages 521–528, Manchester, UK,
August.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://www.cs.umass.edu/ mccallum/mallet.

Shachar Mirkin, Ido Dagan, and Eyal Shnarch. 2009.
Evaluating the inferential utility of lexical-semantic
resources. In Proceedings of the 12th Conference of
the European Chapter of the ACL (EACL 2009), pages
558–566, Athens, Greece, March.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive Science,
34(8):1388–1429.

Margaret Mitchell, Jesse Dodge, Amit Goyal, Kota Ya-
maguchi, Karl Stratos, Xufeng Han, Alyssa Mensch,
Alex Berg, Tamara Berg, and Hal Daume III. 2012.
Midge: Generating image descriptions from computer
vision detections. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (EACL), pages 747–756,
Avignon, France, April.

Richard Montague. 1974. Formal philosophy: papers
of Richard Montague. Yale University Press, New
Haven. Edited by Richmond H. Thomason.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
parser: A data-driven parser-generator for dependency
parsing. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC),
pages 2216–2219.

Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg.
2011. Im2text: Describing images using 1 million
captioned photographs. In Advances in Neural Infor-
mation Processing Systems 24, pages 1143–1151.

Judita Preiss. 2001. Anaphora resolution with word
sense disambiguation. In Proceedings of SENSEVAL-
2 Second International Workshop on Evaluating
Word Sense Disambiguation Systems, pages 143–146,
Toulouse, France, July.

Philip Resnik. 1995. Using information content to evalu-
ate semantic similarity in a taxonomy. In Proceedings
of the 14th international joint conference on Artificial
intelligence - Volume 1, IJCAI’95, pages 448–453.

Idan Szpektor and Ido Dagan. 2008. Learning entailment
rules for unary templates. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics (Coling 2008), pages 849–856, Manchester, UK,
August. Coling 2008 Organizing Committee.

Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,
and Bojana Dalbelo Bašić. 2012. Takelab: Sys-
tems for measuring semantic text similarity. In Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation (SemEval 2012), pages 441–448,
Montréal, Canada, 7-8 June.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. In Proceedings of
the 2003 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 81–88.

Yezhou Yang, Ching Teo, Hal Daume III, and Yiannis
Aloimonos. 2011. Corpus-guided sentence genera-
tion of natural images. In Proceedings of the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 444–454, Edin-
burgh, UK, July.

78

Senti-LSSVM: Sentiment-Oriented Multi-Relation Extraction
with Latent Structural SVM

Lizhen Qu
Max Planck Institute

for Informatics
lqu@mpi-inf.mpg.de

Yi Zhang
Nuance Communications
yi.zhang@nuance.com

Rui Wang
DFKI GmbH

mars198356@hotmail.com

Lili Jiang
Max Planck Institute

for Informatics
ljiang@mpi-inf.mpg.de

Rainer Gemulla
Max Planck Institute

for Informatics
rgemulla@mpi-inf.mpg.de

Gerhard Weikum
Max Planck Institute

for Informatics
weikum@mpi-inf.mpg.de

Abstract

Extracting instances of sentiment-oriented re-
lations from user-generated web documents is
important for online marketing analysis. Un-
like previous work, we formulate this extrac-
tion task as a structured prediction problem
and design the corresponding inference as an
integer linear program. Our latent structural
SVM based model can learn from training cor-
pora that do not contain explicit annotations of
sentiment-bearing expressions, and it can si-
multaneously recognize instances of both bi-
nary (polarity) and ternary (comparative) re-
lations with regard to entity mentions of in-
terest. The empirical evaluation shows that
our approach significantly outperforms state-
of-the-art systems across domains (cameras
and movies) and across genres (reviews and
forum posts). The gold standard corpus that
we built will also be a valuable resource for
the community.

1 Introduction

Sentiment-oriented relation extraction (Choi et al.,
2006) is concerned with recognizing sentiment po-
larities and comparative relations between entities
from natural language text. Identifying such rela-
tions often requires syntactic and semantic analysis
at both sentence and phrase level. Most prior work
on sentiment analysis consider either i) subjective
sentence detection (Yu and Kübler, 2011), ii) po-
larity classification (Johansson and Moschitti, 2011;
Wilson et al., 2005), or iii) comparative relation
identification (Jindal and Liu, 2006; Ganapathib-
hotla and Liu, 2008). In practice, however, differ-

ent types of sentiment-oriented relations frequently
coexist in documents. In particular, we found that
more than 38% of the sentences in our test corpus
contain more than one type of relations. The iso-
lated analysis approach is inappropriate because i) it
sacrifices acuracy by ignoring the intricate interplay
among different types of relations; ii) it could lead to
conflicting predictions such as estimating a relation
candidate as both negative and comparative. There-
fore, in this paper, we identify instances of both sen-
timent polarities and comparative relations for enti-
ties of interest simultaneously. We assume that all
the mentions of entities and attributes are given, and
entities are disambiguated. It is a widely used as-
sumption when evaluating a module in a pipeline
system that the outputs of preceding modules are
error-free.

To the best of our knowledge, the only exist-
ing system capable of extracting both comparisons
and sentiment polarities is a rule-based system pro-
posed by Ding et al. (2009). We argue that it is
better to tackle the task by using a unified model
with structured outputs. It allows us to consider a
set of correlated relation instances jointly and char-
acterize their interaction through a set of soft and
hard constraints. For example, we can encode con-
straints to discourage an attribute to participate in
a polarity relation and a comparative relation at the
same time. As a result, the system extracts a set of
correlated instances of sentiment-oriented relations
from a given sentence. For example, with the sen-
tence about the camera Canon 7D, “The sensor is
great, but the price is higher than Nikon D7000.”
the expected output is positive(Canon 7D, sensor)

155

Transactions of the Association for Computational Linguistics, 2 (2014) 155–168. Action Editor: Janyce Wiebe.
Submitted 6/2013; Revised 11/2013; Published 4/2014. c©2014 Association for Computational Linguistics.

and preferred(Nikon D7000, Canon 7D, textit-
price).

However, constructing a fully annotated train-
ing corpus for this task is labor-intensive and re-
quires strong linguistic background. We minimize
this overhead by applying a simplified annotation
scheme, in which annotators mark mentions of en-
tities and attributes, disambiguate the entities, and
label instances of relations for each sentence. Based
on the new scheme, we have created a small Senti-
ment Relation Graph (SRG) corpus for the domains
of cameras and movies, which significantly differs
from the corpora used in prior work (Wei and Gulla,
2010; Kessler et al., 2010; Toprak et al., 2010;
Wiebe et al., 2005; Hu and Liu, 2004) in the follow-
ing ways: i) both sentiment polarities and compar-
ative relations are annotated; ii) all mentioned en-
tities are disambiguated; and iii) no subjective ex-
pressions are annotated, unless they are part of entity
mentions.

The new annotation scheme raises a new chal-
lenge for learning algorithms in that they need to
automatically find textual evidences for each anno-
tated relation during training. For example, with the
sentence “I like the Rebel a little better, but that is
another price jump”, simply assigning a sentiment-
bearing expression to the nearest relation candidate
is insufficient, especially when the sentiment is not
explicitly expressed.

In this paper, we propose SENTI-LSSVM, a latent
structural SVM based model for sentiment-oriented
relation extraction. SENTI-LSSVM is applied to find
the most likely set of the relation instances expressed
in a given sentence, where the latent variables are
used to assign the most appropriate textual evidences
to the respective instances.

In summary, the contributions of this paper are the
following:

• We propose SENTI-LSSVM: the first unified sta-
tistical model with the capability of extracting
instances of both binary and ternary sentiment-
oriented relations.

• We design a task-specific integer linear pro-
gramming (ILP) formulation for inference.

• We construct a new SRG corpus as a valuable
asset for the evaluation of sentiment relation

extraction.

• We conduct extensive experiments with on-
line reviews and forum posts, showing that
SENTI-LSSVM model can effectively learn from
a training corpus without explicitly annotated
subjective expressions and that its performance
significantly outperforms state-of-the-art sys-
tems.

2 Related Work

There are ample works on analyzing sentiment po-
larities and entity comparisons, but the majority of
them studied the two tasks in isolation.

Most prior approaches for fine-grained sentiment
analysis focus on polarity classification. Super-
vised approaches on expression-level analysis re-
quire the annotation of sentiment-bearing expres-
sions as training data (Jin et al., 2009; Choi
and Cardie, 2010; Johansson and Moschitti, 2011;
Yessenalina and Cardie, 2011; Wei and Gulla,
2010). However, the corresponding annotation pro-
cess is time-consuming. Although sentence-level
annotations are easier to obtain, the analysis at this
level cannot cope with sentences conveying relations
of multiple types (McDonald et al., 2007; Täckström
and McDonald, 2011; Socher et al., 2012). Lexicon-
based approaches require no training data (Ku et al.,
2006; Kim and Hovy, 2006; Godbole et al., 2007;
Ding et al., 2008; Popescu and Etzioni, 2005; Liu et
al., 2005) but suffer from inferior performance (Wil-
son et al., 2005; Qu et al., 2012). In contrast, our
method requires no annotation of sentiment-bearing
expressions for training and can predict both senti-
ment polarities and comparative relations.

Sentiment-oriented comparative relations have
been studied in the context of user-generated dis-
course (Jindal and Liu, 2006; Ganapathibhotla and
Liu, 2008). Approaches rely on linguistically moti-
vated rules and assume the existence of independent
keywords in sentences which indicate comparative
relations. Therefore, these methods fall short of ex-
tracting comparative relations based on domain de-
pendent information.

Both Johansson and Moschitti (2011) and Wu et
al. (2011) formulate fine-grained sentiment analy-
sis as a learning problem with structured outputs.
However, they focus only on polarity classification

156

of expressions and require annotation of sentiment-
bearing expressions for training as well.

While ILP has been previously applied for infer-
ence in sentiment analysis (Choi and Cardie, 2009;
Somasundaran and Wiebe, 2009; Wu et al., 2011),
our task requires a complete ILP reformulation due
to 1) the absence of annotated sentiment expressions
and 2) the constraints imposed by the joint extrac-
tion of both sentiment polarity and comparative re-
lations.

3 System Overview

This section gives an overview of the whole system
for extracting sentiment-oriented relation instances.
Prior to presenting the system architecture, we in-
troduce the essential concepts and the definitions of
two kinds of directed hypergraphs as the represen-
tation of correlated relation instances extracted from
sentences.

3.1 Concepts and Definitions

Entity. An entity is an abstract or concrete thing,
which needs not be of material existence. An entity
in this paper refers to either a product or a brand.
Attribute. An attribute is an object closely associ-
ated with or belonging to an entity, such as the lens
of digital camera.
Sentiment-Oriented Relation. A sentiment-
oriented relation is either a sentiment polarity or a
comparative relation, defined on tuples of entities
and attributes. A sentiment polarity relation conveys
either a positive or a negative attitude towards enti-
ties or their attributes, whereas a comparative rela-
tion indicates the preference of one entity over the
other entity w.r.t. an attribute.
Relation Instance. An instance of sentiment polar-
ity takes the form r(entity, attribute) with r ∈ {pos-
itive, negative}, such as positive(Canon 7D, sen-
sor). The polarity instances expressed in the form
of unary relations, such as “Nikon D7000 is ex-
cellent.”, are denoted as binary relations r(entity,
whole), where the attribute whole indicates the en-
tity as a whole. In contrast, an instance of compar-
ative relation is in the form of preferred{entity, en-
tity, attribute}, e.g. preferred(Canon 7D, Nikon
D7000, price). For brevity, we refer to an instance
set of sentiment-oriented relations extracted from a

sentence as an sSoR. To represent the instances
of the remaining relations, we represent them as
other{entity, attribute}, such as textitpartOf{wheel,
car}. These relations include objective relations
and the subjective relations other than sentiment-
oriented relations.
Mention-Based Relation Instances. A mention-
based relation instance refers to a tuple of entity
mentions with a certain relation. This concept is in-
troduced as the representation of instances in a sen-
tence by replacing entities with the corresponding
entity mentions, such as positive(“Canon SD880i”,
“wide angle view”).

Figure 1: An example of MRG.

Mention-Based Relation Graph. A mention-based
relation graph (or MRG) represents a collection of
mention-based relation instances expressed in a sen-
tence. As illustrated in Figure 1, an MRG is a di-
rected hypergraph G = 〈M,E〉 with a vertex set
M and an edge set E. A vertex mi ∈ M denotes
a mention of an entity or an attribute occurring ei-
ther within the sentence or in its context. We say
that a mention is from the context if it is mentioned
in the previous sentence or is an attribute implied
in the current sentence. An instance of a binary re-
lation in an MRG takes the form of a binary edge
el = (mi,ma), where mi and ma denote an en-
tity mention and an attribute mention respectively,
and the type l ∈ {positive, negative, other}. A
ternary edge el indicating comparative relation is
represented as el = (mi,mj ,ma), where two en-
tity mentions mi and mj are compared with respect
to the attribute mention ma. We define the type
l ∈ {better,worse} to indicate two possible direc-
tions of the relation and assume mi occurs before
mj . As a result, we have a set L of five relation
types: positive, negative, better, worse or other. Ac-
cording to these definitions, the annotations in the
SRG corpus are actually MRGs and disambiguated
entities. If there are multiple mentions referring to
the same entity, annotators are asked to choose the

157

most obvious one because it saves annotation time
and is less demanding for the entity recognition and
diambiguation modules.

Figure 2: An example of eMRG. The textual evi-
dences are wrapped by green dashed boxes.

Evidentiary Mention-Based Relation Graph. An
evidentiary mention-based relation graph, coined
eMRG , extends an MRG by associating each edge
with a textual evidence to support the corresponding
relation assertions (see Figure 2). Consequently, an
edge in an eMRG is denoted by a pair (a, c), where
a represents a mention-based relation instance and
c is the associated textual evidence. It is also re-
ferred to as an evidentiary edge. represented as
el = (mi,mj ,ma), an MRG as an evidentiary MRG
(eMRG) and the edges of eMRGs as evidentiary
edges, as shown in Figure 2.

3.2 System Architecture

Figure 3: System architecture.

As illustrated by Figure 3, at the core of our sys-
tem is the SENTI-LSSVM model, which extracts sets

of mention-based relationships in the form of eMRGs
from sentences. For a given sentence with known
entity mentions, we select all possible mention sets
as relation candidates, where each set includes at
least one entity mention. Then we associate each
relation candidate with a set of constituents or the
whole sentence as the textual evidence candidates
(cf. Section 6.1). Subsequently, the inference com-
ponent aims to find the most likely eMRG from all
possible combinations of mention-based relation in-
stances and their textual evidences (cf. Section 6.2).
The representation eMRG is chosen because it char-
acterizes exactly the model outputs by letting each
edge correspond to an instance of mention-based re-
lation and the associated textual evidence. Finally,
the model parameters of this model are learned by
an online algorithm (cf. Section 7).

Since instance sets of sentiment-oriented relations
(sSoRs) are the expected outputs, we can obtain
sSoRs from MRGs by using a simple rule-based al-
gorithm. The algorithm essentially maps the men-
tions from an MRG into entities and attributes in an
sSoR and label the corresponding tuples with the re-
lation types of the edges from an MRG. For instances
of comparative relation, the label better or worse is
mapped to the relation type preferred.

4 SENTI-LSSVM Model

The task of sentiment-oriented relation extraction
is to determine the most likely sSoR in a sentence.
Since sSoRs are derived from the corresponding
MRGs as described in Section 3, the task is reduced
to find the most likely MRG for each sentence. Since
an MRG is created by assigning relation types to a
subset of all relation candidates, which are possible
tuples of mentions with unknown relation types, the
number of MRGs can be extremely high.

To tackle the task, one solution is to employ
an edge-factored linear model in the framework of
structural SVM (Martins et al., 2009; Tsochantaridis
et al., 2004). The model suggests that a bag of fea-
tures should be specified for each relation candidate,
and then the model predicts the most likely candi-
date sets along with their relation types to form the
optimal MRGs. As we observed, for a relation can-
didate, the most informative features are the words
near its entity mentions in the original text. How-

158

ever, if we represent a candidate by all these words,
it is very likely that the instances of different relation
types share overly similar features, because a men-
tion is often involved in more than one relation can-
didate, as shown in Figure 2. As a consequence, the
instances of different relations represented by overly
similar features can easily confuse the learning algo-
rithm. Thus, it is critical to select proper constituents
or sentences as textual evidences for each relation
candidate in both training and testing.

Consequently, we divide the task of sentiment-
oriented relation extraction into two subtasks : i)
identifying the most likely MRGs; ii) assigning
proper textual evidences to each edge of MRGs to
support their relation assertions. It is desirable to
carry out the two subtasks jointly as these two sub-
tasks could enhance each other. First, the identifi-
cation of relation types requires proper textual ev-
idences; second, the soft and hard constraints im-
posed by the correlated relation instances facilitate
the recognition of the corresponding textual evi-
dences. Since the eMRGs are created by attaching
every MRG with a set of textual evidences, tackling
the two subtasks simultaneously is equivalent to se-
lecting the most likely eMRG from a set of eMRG

candidates. It is challenging because our SRG corpus
does not contain any annotation of textual evidences.

Formally, let X denote the set of all available sen-
tences, and we define y ∈ Y(x)(x ∈ X) as the set
of labeled edges of an MRG and Y = ∪x∈XY(x).
Since the assignments of textual evidences are not
observed, an assignment of evidences to y is de-
noted by a latent variable h ∈ H(x) and H =
∪x∈XH(x). Then (y, h) corresponds to an eMRG,
and (a, c) ∈ (y, h) is a labeled edge a attached
with a textual evidence c. Given a labeled dataset
D = {(x1, y1), ..., (xn, yn)} ∈ (X × Y)n, we aim
to learn a discriminant function f : X → Y×H that
outputs the optimal eMRG (y, h) ∈ Y(x)×H(x) for
a given sentence x.

Due to the introduction of latent variables, we
adopt the latent structural SVM (Yu and Joachims,
2009) for structural classification. Our discriminant
function is defined as

f(x) = argmax(y,h)∈Y(x)×H(x)β
>Φ(x, y, h) (1)

where Φ(x, y, h) is the feature function of an eMRG

(y, h) and β is the corresponding weight vector.

To ensure tractability, we also employ edge-based
factorization for our model. Let Mp denote a set of
entity mentions and yr(mi) be a set of edges labeled
with sentiment-oriented relations incident to mi, the
factorization of Φ(x, y, h) is given as

Φ(x, y, h) =
∑

(a,c)∈(y,h)

Φe(x, a, c) + (2)

∑

mi∈Mp

∑

a,a′∈yr(mi),a 6=a′

Φc(a, a
′)

where Φe(x, a, c) is a local edge feature function
for a labeled edge a attached with a textual evidence
c and Φc(a, a

′) is a feature function capturing co-
occurrence of two labeled edges ami and a′mi

inci-
dent to an entity mention mi.

5 Feature Space

The following features are used in the feature func-
tions (Equation 2):

Unigrams: As mentioned before, a textual evi-
dence attached to an edge in MRG is either a word,
phrase or sentence. We consider all lemmatized un-
igrams in the textual evidence as unigram features.

Context: Since web users usually express related
sentiments about the same entity across sentence
boundaries, we describe the sentiment flow using a
set of contextual binary features. For example, if en-
tity A is mentioned in both the previous sentence and
the current sentence, a set of contextual binary fea-
tures are used to indicate all possible combinations
of the current and the previous mentioned sentiment-
oriented relations regarding to entity A.

Co-occurrence: We have mentioned the co-
occurrence feature in Equation 2, indicated by
Φc(a, a

′). It captures the co-occurrence of two la-
beled edges incident to the same entity mention.
Note that the co-occurrence feature function is con-
sidered only if there is a contrast conjunction such as
“but” between the non-shared entity mentions inci-
dent to the two labeled edges.

Senti-predictors: Following the idea of (Qu et
al., 2012), we encode the prediction results from
the rule-based phrase-level multi-relation predic-
tor (Ding et al., 2009) and from the bag-of-opinions
predictor (Qu et al., 2010) as features based on the
textual evidence. The output of the first predictor
is an integer value, while the output of the second
predictor is a sentiment relation, such as “positive”,

159

“negative”, “better” or “worse”. We map the rela-
tional outputs into integer values and then encode
the outputs from both predictors as senti-predictor
features.

Others: The commonly used part-of-speech tags
are also included as features. Moreover, for an edge
candidate, a set of binary features are used to denote
the types of the edge and its entity mentions. For in-
stance, a binary feature indicates whether an edge is
a binary edge related to an entity mentioned in con-
text. To characterize the syntactic dependencies be-
tween two adjacent entity mentions, we use the path
in the dependency tree between the heads of the cor-
responding constituents, the number of words and
other mentions in-between as features. Additionally,
if the textual evidence is a constituent, its feature
w.r.t. an edge is the dependency path to the clos-
est mention of the edge that does not overlap with
this constituent.

6 Structural Inference

In order to find the best eMRG for a given sentence
with a well trained model, we need to determine
the most likely relation type for each relation candi-
date and support the corresponding assertions with
proper textual evidences. We formulate this task
as an Integer Linear Programming (ILP). Instead of
considering all constituents of a sentence, we empir-
ically select a subset as textual evidences for each
relation candidate.

6.1 Textual Evidence Candidates Selection

Textual evidences are selected based on the con-
stituent trees of sentences parsed by the Stanford
parser (Klein and Manning, 2003). For each men-
tion in a sentence, we first locate a constituent in
the tree with the maximal overlap by Jaccard sim-
ilarity. Starting from this constituent, we consider
two types of candidates: type I candidates are con-
stituents at the highest level which contain neither
any word of another mention nor any contrast con-
junctions such as “but”; type II candidates are con-
stituents at the highest level which cover exactly two
mentions of an edge and do not overlap with any
other mentions. For a binary edge connecting an en-
tity mention and an attribute mention, we consider
a type I candidate starting from the attribute men-

tion. For a binary edge connecting two entity men-
tions, we consider type I candidates starting from
both mentions. Moreover, for a comparative ternary
edge, we consider both type I and type II candidates
starting from the attribute mention. This strategy is
based on our observation that these candidates of-
ten cover the most important information w.r.t. the
covered entity mentions.

6.2 ILP Formulation

We formulate the inference problem of finding the
best eMRG as an ILP problem due to its convenient
integration of both soft and hard constraints.

Given the model parameters β, we reformulate
the score of an eMRG in the discriminant function
(1) as follows,

β>Φ(x, y, h) =
∑

(a,c)∈(y,h)

saczac +

∑

mi∈Mp

∑

a,a′∈yr(mi),a 6=a′
saa′zaa′

where sac = β>Φe(x, a, c) denotes the score of a
labeled edge a attached with a textual evidence c,
saa′ = β>Φc(a, a

′) is the edge co-occurrence score,
the binary variable zac indicates the presence or ab-
sence of the corresponding edge, and zaa′ indicates
if two edges co-occurr. As not every edge set can
form an eMRG, we require that a valid eMRG should
satisfy a set of linear constraints, which form our
constraint space. Then function (1) is equivalent to

max
z∈B

s>z + µzd

s.t. A

z
η
τ

 ≤ d

z,η, τ ∈ B

where B = 2S with S = {0, 1}, and η and τ are
auxiliary binary variables that help define the con-
straint space. The above optimization problem takes
exactly the form of an ILP because both the con-
straints and the objective function are linear, and all
variables take only integer values.

In the following, we consider two types of con-
straint space, 1) an eMRG with only binary edges and
2) an eMRG with both binary and ternary edges.

160

eMRG with only Binary Edges: An eMRG has
only binary edges if a sentence contains no attribute
mention or at most one entity mention. We expect
that each edge has only one relation type and is sup-
ported by a single textual evidence. To facilitate the
formulation of constraints, we introduce ηel to de-
note the presence or absence of a labeled edge el,
and ηec to indicate if a textual evidence c is assigned
to an unlabeled edge e. Then the binary variable for
the corresponding evidentiary edge zelc = ηec ∧ ηel ,
where the ILP formulation of conjunction can be
found in (Martins et al., 2009).

Let Ce denote the set of textual evidence candi-
dates of an unlabeled edge e. The constraint of at
most one textual evidence per edge is formulated as:

∑

c∈Ce

ηec ≤ 1 (3)

Once a textual evidence is assigned to an edge,
their relation labels should match and the number
of labeled edges must agree with the number of at-
tached textual evidences. Further, we assume that a
textual evidence c conveys at most one relation so
that an evidence will not be assigned to the relations
of different types, which is the main problem for the
structural SVM based model. Let ηcl indicate that
the textual evidence c is labeled by the relation type
l. The corresponding constraints are expressed as,

∑

l∈Le

ηel =
∑

c∈Ce

ηec; zelc ≤ ηcl;
∑

l∈L
ηcl ≤ 1

where Le denotes the set of all possible labels for
an unlabeled edge e, and L is the set of all relation
types of MRGs (cf. Section 3).

In order to avoid a textual evidence being overly
reused by multiple relation candidates, we first pe-
nalize the assignment of a textual evidence c to a
labeled edge a by associating the corresponding zac
with a fixed negative cost −µ in the objective func-
tion. Then the selection of one textual evidence per
edge a is encouraged by associating µ to zdc in the
objective function, where zdc =

∨
e∈Sc

ηec and Sc is
the set of edges that the textual evidence c serves as
a candidate. The disjunction zdc is expressed as:

zdc ≥ ηe, e ∈ Sc
zdc ≤

∑

e∈Sc

ηe

(a) Binary edge structure

(b) Ternary edge structure

Figure 4: Alternative structures associated with an
attribute mention.

This soft constraint not only encourages one textual
evidence per edge, but also keeps it eligible for mul-
tiple assignments.

For any two labeled edge a and a′ incident
to the same entity mention, the edge-to-edge co-
occurrence is described by zca,a′ = za ∧ za′ .

eMRG with both Binary and Ternary Edges: If
there are more than one entity mentions and at least
one attribute mention in a sentence, an eMRG can
potentially have both binary and ternary edges. In
this case, we assume that each mention of attributes
can participate either in binary relations or in ternary
relations. The assumption holds in more than 99.9%
of the sentences in our SRG corpus, thus we describe
it as a set of hard constraints. Geometrically, the as-
sumption can be visualized as the selection between
two alternative structures incident to the same at-
tribute mention, as shown in Figure 4. Note that,
in the binary edge structure, we include not only the
edges incident to the attribute mention but also the
edge between the two entity mentions.

Let Sb
mi

be the set of all possible labeled edges
in a binary edge structure of an attribute mention
mi. Variable τ bmi

=
∨

el∈Sb
mi
ηel indicates whether

the attribute mention is associated with a binary
edge structure or not. In the same manner, we use
τ tmi

=
∨

el∈St
mi
ηel to indicate the association of the

an attribute mention mi with an ternary edge struc-
ture from the set of all incident ternary edges St

mi
.

The selection between two alternative structures is

161

formulated as τ bmi
+ τ tmi

= 1. As this influences
only the edges incident to an attribute mention, we
keep all the constraints introduced in the previous
section unchanged except for constraint (3), which
is modified as

∑

c∈Ce

ηec ≤ τ bmi
;

∑

c∈Ce

ηec ≤ τ tmi

Therefore, we can have either binary edges or
ternary edges for an attribute mention.

7 Learning Model Parameters

Given a set of training sentences D =
{(x1, y1), . . . , (xn, yn)}, the best weight vec-
tor β of the discriminant function (1) is found by
solving the following optimization problem:

min
β

1

n

n∑

i=1

[max
(ŷ,ĥ)∈Y(x)×H(x)

(β>Φ(x, ŷ, ĥ)+δ(ĥ, ŷ, y))

− max
h̄∈H(x)

β>Φ(x, y, h̄)] + ρ|β|] (4)

where δ(ĥ, ŷ, y) is a loss function measuring the dis-
crepancies between an eMRG (y, h̄) with gold stan-
dard edge labels y and an eMRG (ŷ, ĥ) with inferred
labeled edges ŷ and textual evidences ĥ. Due to the
sparse nature of the lexical features, we apply L1
regularizer to the weight vector β, and the degree of
sparsity is controlled by the hyperparameter ρ.

Since the L1 norm in the above optimization
problem is not differentiable at zero, we apply the
online forward-backward splitting (FOBOS) algo-
rithm (Duchi and Singer, 2009). It requires two steps
for updating the weight vector β by using a single
training sentence x on each iteration t.

βt+ 1
2

= βt − εt∆t

βt+1 = arg min
β

1

2
‖β − βt‖2 + εtρ|β|

where ∆t is the subgradient computed without con-
sidering the L1 norm and εt is the learning rate.
For a labeled sentence x, ∆t = Φ(x, ŷ∗, ĥ∗) −
Φ(x, y, h̄∗), where the feature functions of the corre-
sponding eMRGs are inferred by solving (ŷ∗, ĥ∗) =
arg max(ĥ,ŷ)∈H(x)×Y(x)[β

>Φ(x, ŷ, ĥ) + δ(ĥ, ŷ, y)]

and (y, h̄∗) = arg maxh̄∈H(x) β
>Φ(x, y, h̄), as in-

dicated in the optimization problem (4).

The former inference problem is similar to the
one we considered in the previous section except
the inclusion of the loss function. We incorporate
the loss function into the ILP formulation by defin-
ing the loss between an MRG (y, h) and a gold stan-
dard MRG as the sum of per-edge costs. In our ex-
periments, we consider a positive cost ϕ for each
wrongly labeled edge a, so that if an edge a has a
different label from the gold standard, we add ϕ to
the coefficient sac of the corresponding variable zac
in the objective function of the ILP formulation.

In addition, since the non-positive weights of edge
labels in the initial learning phrase often lead to
eMRGs with many unlabeled edges, which harms the
learning performance, we fix it by adding a con-
straint for the minimal number of labeled edges in
an eMRG, ∑

a∈A

∑

c∈Ca

ηac ≥ ζ (5)

where A is the set of all labeled edge candidates and
ζ denotes the minimal number of labeled edges.

Empirically, the best way to determine ζ is to
make it equal to the maximal number of labeled
edges in an eMRG with the restriction that a tex-
tual evidence can be assigned to at most one edge.
By considering all the edge candidates A and all the
textual evidence candidates C as two vertex sets in a
bipartite graph Ĝ = 〈V = (A,C), E〉 (with edges in
E indicating which textual evidence can be assigned
to which edge), ζ corresponds to exactly the size of
a maximum matching of the bipartite graph1.

To find the optimal eMRG (y, h̄∗), for the gold la-
bel k of each edge, we consider the following set of
constraints for inference since the labels of the edges
are known for the training data,

∑

c∈Ce

ηec ≤ 1; ηec ≤ lck
∑

k′∈L
lck′ ≤ 1;

∑

e∈Sc

ηec ≤ 1

We include also the soft constraints, which avoid
a textual evidence being overly reused by multiple
relations, and the constraints similar to (5) to ensure
a minimal number of labeled edges and a minimal
number of sentiment-oriented relations.

1It is computed by the Hopcroft-Karp algorithm (Hopcroft
and Karp, 1973) in our implementation.

162

8 SRG Corpus

For evaluation we constructed the SRG corpus,
which in total consists of 1686 manually annotated
online reviews and forum posts in the digital camera
and movie domains2. For each domain, we maintain
a set of attributes and a list of entity names.

The annotation scheme for the sentiment repre-
sentation asserts minimal linguistic knowledge from
our annotators. By focusing on the meanings of the
sentences, the annotators make decisions based on
their language intuition, not restricted by specific
syntactic structures. Taking the example in Figure
2, the annotators only need to mark the mentions of
entities and attributes from both the sentences and
the context, disambiguate them, and label (“Canon
7D”, “Nikon D7000”, price) as worse and (“Canon
7D”, “sensor”) as positive, whereas in prior work,
people have annotated the sentiment-bearing expres-
sions such as “great” and link them to the respective
relation instances as well. This also enables them
to annotate instances of both sentiment polarity and
comparative relaton, which are conveyed by not only
explicit sentiment-bearing expressions like “excel-
lent performance”, but also factual expressions im-
plying evaluations such as “The 7V has 10x optical
zoom and the 9V has 16x.”.

Camera Movie
Reviews Forums Reviews Forums

positive 386 1539 879 905
negative 165 363 529 331
comparison 30 480 39 35

Table 1: Distribution of relation instances in SRG corpus.

14 annotators participated in the annotation
project. After a short training period, annotators
worked on randomly assigned documents one at a
time. For product reviews, the system lists all rel-
evant information about the entity and the prede-
fined attributes. For forum posts, the system shows
only the attribute list. For each sentence in a doc-
ument, the annotator first determines if it refers to
an entity of interest. If not, the sentence is marked

2The 107 camera reviews are from bestbuy.com and Ama-
zon.com; the 667 camera forum posts are downloaded from fo-
rum.digitalcamerareview.com; the 138 movie reviews and 774
forum posts are from imdb.com and boards.ie respectively

as off-topic. Otherwise, the annotator will identify
the most obvious mentions, disambiguate them, and
mark the MRGs. We evaluate the inter-annotator
agreement on sSoRs in terms of Cohen’s Kappa
(κ) (Cohen, 1968). An average Kappa value of 0.698
was achieved on a randomly selected set consisting
of 412 sentences.

Table 1 shows the corpus distribution after nor-
malizing them into sSoRs. Camera forum posts con-
tain the largest proportion of comparisons because
they are mainly about the recommendation of dig-
ital cameras. In contrast, web users are much less
interested in comparing movies, in both reviews and
forums. In all subsets, positive relations play a dom-
inant role since web users intend to express more
positive attitudes online than negative ones (Pang
and Lee, 2007).

9 Experiments

This section describes the empirical evaluation of
SENTI-LSSVM together with two competitive base-
lines on the SRG corpus.

9.1 Experimental Setup

We implemented a rule-based baseline (DING-

RULE) and a structural SVM (Tsochantaridis et
al., 2004) baseline (SENTI-SSVM) for comparison.
The former system extends the work of Ding et
al. (2009), which designed several linguistically-
motivated rules based on a sentiment polarity lexi-
con for relation identification and assumes there is
only one type of sentiment relation in a sentence. In
our implementation, we keep all the rules of (Ding et
al., 2009) and add one phrase-level rule when there
are more than one mention in a sentence. The ad-
ditional rule assigns sentiment-bearing words and
negators to its nearest relation candidates based on
the absolute surface distance between the words and
the corresponding mentions. In this case, the phrase-
level sentiment-oriented relations depend only on
the assigned sentiment words and negators. The lat-
ter system is based on a structural SVM and does
not consider the assignment of textual evidences to
relation instances during inference. The textual fea-
tures of a relation candidate are all lexical and sen-
timent predictor features within a surface distance
of four words from the mentions of the candidate.

163

Thus, this baseline does not need the inference con-
straints of SENTI-LSSVM for the selection of textual
evidences. To gain more insights into the model,
we also evaluate the contribution of individual fea-
tures of SENTI-LSSVM. In addition, to show if identi-
fying sentiment polarities and comparative relations
jointly works better than tackling each task on its
own, we train SENTI-LSSVM for each task separately
and combine their predictions according to compat-
ibility rules and the corresponding graph scores.

For each domain and text genre, we withheld 15%
documents for development and use the remaining
for cross validation. The hyperparameters of all sys-
tems are tuned on the development datasets. For all
experiments of SENTI-LSSVM, we use ρ = 0.0001
for the L1 regularizer in Eq.(4) and ϕ = 0.05 for
the loss function; and for SENTI-SSVM, ρ = 0.0001
and ϕ = 0.01. Since the relation type of off-topic
sentences is certainly other, we evaluate all systems
with 5-fold cross-validation only on the on-topic
sentences in the evaluation dataset. Since the same
sSoR can have several equivalent MRGs and the rela-
tion type other is not of our interest, we evaluate the
sSoRs in terms of precision, recall and F-measure.
All reported numbers are averages over the 5 folds.

9.2 Results

Table 2 shows the complete results of all sys-
tems. Here our model SENTI-LSSVM outperformed
all baselines in terms of the average F-measure
scores and recalls by a large margin. The F-measure
on movie reviews is about 14% over the best base-
line. The rule-based system has higher precision
than recall in most cases. However, simply increas-
ing the coverage of the domain independent senti-
ment polarity lexicon might lead to worse perfor-
mance (Taboada et al., 2011) because many sen-
timent oriented relations are conveyed by domain
dependent expressions and factual expressions im-
plying evaluations, such as “This camera does not
have manual control.” Compared to DING-RULE,
SENTI-SSVM performs better in the camera domain
but worse for the movies due to many misclassi-
fication of negative relation instances as other. It
also wrongly predicted more positive instances as
other than SENTI-LSSVM. We found that the recalls
of these instances are low because they often have
overly similar features with the instances of the type

other linking to the same mentions. The problem
gets worse in the movie domain since i) many sen-
tences contain no explicit sentiment-bearing words;
ii) the prior polarity of the sentiment-bearing words
do not agree with their contextual polarity in the
sentences. Consider the following example from a
forum post about the movie “Superman Returns”:
“Have a look at Superman: the Animated Series or
Justice League Unlimited . . . that is how the char-
acters of Superman and Lex Luthor should be.”. In
contrast, our model minimizes the overlapping fea-
tures by assigning them to the most likely relation
candidates. This leads to significantly better per-
formance. Although SENTI-SSVM has low recall for
both positive and negative relations, it achieves the
highest recall for the comparative relation among all
systems in the movie domain and camera reviews.
Since less than 1% of all instances are for compara-
tive relations in these document sets and all models
are trained to optimize the overall accuracy, SENTI-

LSSVM intends to trade off the minority class for the
overall better performance. This advantage disap-
pears on the camera forum posts, where the number
of instances of comparative relation is 12 times more
than that in the other data sets.

All systems perform better in predicting positive
relations than the negative ones. This corresponds
well to the empirical findings in (Wilson, 2008) that
people intend to use more complex expressions for
negative sentiments than their affirmative counter-
parts. It is also in accordance with the distribution of
these relations in our SRG corpus which is randomly
sampled from the online documents. For learning
systems, it can also be explained by the fact that the
training data for positive relations are considerably
more than those for negative ones. The comparative
relation is the hardest one to process since we found
that many corresponding expressions do not contain
explicit keywords for comparison.

To understand the performance of the key fea-
ture groups in our model better, we remove each
group from the full SENTI-LSSVM system and eval-
uate the variations with movie reviews and camera
forum posts, which have relatively balanced distri-
bution of relation types. As shown in Table 3, the
features from the sentiment predictors make signif-
icant contributions for both datasets. The differ-
ent drops of the performance indicate that the po-

164

Positive Negative Comparison Micro-average
P R F P R F P R F P R F

C
am

er
a

Fo
ru

m DING-RULE 56.4 39.0 46.1 46.2 24.0 31.6 42.6 14.0 21.0 53.4 30.8 39.0
SENTI-SSVM 60.2 35.6 44.8 44.2 38.5 41.2 28.0 40.1 32.9 43.7 36.7 39.9
SENTI-LSSVM 69.2 38.9 49.8 50.8 39.3 44.3 42.6 35.1 38.5 56.5 38.0 45.4

C
am

er
a

R
e-

vi
ew

DING-RULE 83.6 69.0 75.6 68.6 38.8 49.6 30.0 16.9 21.6 81.1 58.6 68.1
SENTI-SSVM 72.6 75.4 74.0 63.9 62.5 63.2 28.0 38.9 32.5 68.1 70.4 69.3
SENTI-LSSVM 77.3 85.4 81.2 68.9 61.3 64.9 22.3 20.7 21.6 73.1 73.4 73.7

M
ov

ie
Fo

ru
m DING-RULE 63.7 37.4 47.1 27.6 34.3 30.6 8.9 5.6 6.8 48.2 35.9 41.2

SENTI-SSVM 66.2 30.1 41.3 25.6 17.3 20.7 44.2 56.7 49.7 53.3 27.9 36.6
SENTI-LSSVM 63.3 44.2 52.1 29.7 45.6 36.0 40.1 45.0 42.4 49.7 44.6 47.0

M
ov

ie
R

e-
vi

ew

DING-RULE 66.5 47.2 55.2 42.0 39.1 40.5 31.4 12.0 17.4 56.2 44.0 49.4
SENTI-SSVM 61.3 54.0 57.4 45.2 13.7 21.1 24.5 63.3 35.3 54.6 39.2 45.7
SENTI-LSSVM 59.0 79.1 67.6 53.3 51.4 52.3 28.3 34.0 30.9 57.9 68.8 62.9

Table 2: Evaluation results for DING-RULE, SENTI-SSVM and SENTI-LSSVM. Boldface figures are statistically
significantly better than all others in the same comparison group under t-test with p = 0.05.

Feature Models Movie Reviews Camera Forums
full system 62.9 45.4
¬unigram 63.2 (+0.3) 41.2 (-4.2)
¬context 54.5 (-8.4) 46.0 (+0.6)
¬co-occurrence 62.6 (-0.3) 44.9 (-0.5)
¬senti-predictors 61.3 (-1.6) 34.3 (-11.1)

Table 3: Micro-average F-measure of SENTI-LSSVM

with different feature models

larities predicted by rules are more consistent in
camera forum posts than in movie reviews. Due
to the complexity of expressions in the movie re-
views our model cannot benefit from the unigram
features but these features are a good compensation
for the sentiment predictor features in camera fo-
rum posts. The sharp drop by removing the context
features from our model on movie reviews indicates
that the sentiments in movie reviews depend highly
on the relations of the previous sentences. In con-
trast, the sentiment-oriented relations of the previ-
ous sentences could be a reason of overfitting for
camera forum data. The edge co-occurrence fea-
tures do not play an important role in our model
since the number of co-occurred sentiment-oriented
relations in the sentences with contrast conjunctions
like “but” is small. However, we found that allow-
ing the co-occurrence of any sentiment-oriented re-
lations would harm the performance of the model.

In addition, our experiments showed that the sep-

arated approach, which trains a model for senti-
ment polarities and comparative relations respec-
tively, leads to a decrease by almost 1% in terms of
the F-measure averaged over all four datasets. The
largest drop of F-measure is 3% on camera forum
posts, since this dataset contains the largest propor-
tion of comparative relations. We found that the er-
rors are increased when the trained models make
conflicting predictions. In this case, the joint ap-
proach can take all factors into account and make
more consistent decisions than the separated ap-
proaches.

10 Conclusion

We proposed SENTI-LSSVM model for extracting in-
stances of both sentiment polarities and comparative
relations. For evaluating and training the model, we
created an SRG corpus by using a lightweight an-
notation scheme. We showed that our model can
automatically find textual evidences to support its
relation predictions and achieves significantly bet-
ter F-measure scores than alternative state-of-the-art
methods.

References

Yejin Choi and Claire Cardie. 2009. Adapting a polarity
lexicon using integer linear programming for domain-
specific sentiment classification. In Proceedings of
the 2009 Conference on Empirical Methods in Natural

165

Language Processing: Volume 2 - Volume 2, EMNLP
’09, pages 590–598, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Yejin Choi and Claire Cardie. 2010. Hierarchical se-
quential learning for extracting opinions and their at-
tributes. In Proceedings of the Annual meeting of
the Association for Computational Linguistics, pages
269–274. Association for Computational Linguistics.

Yejin Choi, Eric Breck, and Claire Cardie. 2006. Joint
extraction of entities and relations for opinion recog-
nition. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 431–
439, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Jacob Cohen. 1968. Weighted Kappa: Nominal Scale
Agreement Provision for Scaled Disagreement or Par-
tial Credit. Psychological bulletin, 70(4):213.

Xiaowen Ding, Bing Liu, and Philip S. Yu. 2008. A
holistic lexicon-based approach to opinion mining. In
Proceedings of the 2008 International Conference on
Web Search and Data Mining, pages 231–240, New
York, NY, USA. ACM.

Xiaowen Ding, Bing Liu, and Lei Zhang. 2009. Entity
discovery and assignment for opinion mining applica-
tions. In Proceedings of the ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, pages
1125–1134.

John Duchi and Yoram Singer. 2009. Efficient online
and batch learning using forward backward splitting.
The Journal of Machine Learning Research, 10:2899–
2934.

Murthy Ganapathibhotla and Bing Liu. 2008. Mining
opinions in comparative sentences. In Proceedings of
the 22nd International Conference on Computational
Linguistics - Volume 1, pages 241–248, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Namrata Godbole, Manjunath Srinivasaiah, and Steven
Skiena. 2007. Large-scale sentiment analysis for
news and blogs (system demonstration). In Proceed-
ings of the International AAAI Conference on Weblogs
and Social Media.

John E Hopcroft and Richard M Karp. 1973. An nˆ5/2
algorithm for maximum matchings in bipartite graphs.
SIAM Journal on computing, 2(4):225–231.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, Proceedings of the
ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pages 168–177, New York, NY,
USA. ACM.

Wei Jin, Hung Hay Ho, and Rohini K. Srihari. 2009.
Opinionminer: a novel machine learning system for

web opinion mining and extraction. In Proceedings
of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1195–
1204, New York, NY, USA. ACM.

Nitin Jindal and Bing Liu. 2006. Mining comparative
sentences and relations. In Proceedings of the 21st In-
ternational Conference on Artificial Intelligence - Vol-
ume 2, AAAI’06, pages 1331–1336. AAAI Press.

Richard Johansson and Alessandro Moschitti. 2011.
Extracting opinion expressions and their polarities–
exploration of pipelines and joint models. In Proceed-
ings of the Annual meeting of the Association for Com-
putational Linguistics, volume 11, pages 101–106.

Jason S. Kessler, Miriam Eckert, Lyndsie Clark, and
Nicolas Nicolov. 2010. The 2010 icwsm jdpa sent-
ment corpus for the automotive domain. In 4th Inter-
national AAAI Conference on Weblogs and Social Me-
dia Data Workshop Challenge (ICWSM-DWC 2010).

Soo-Min Kim and Eduard Hovy. 2006. Extracting opin-
ions, opinion holders, and topics expressed in online
news media text. In Proceedings of the Workshop on
Sentiment and Subjectivity in Text, SST ’06, pages 1–8,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of the 41st An-
nual Meeting on Association for Computational Lin-
guistics - Volume 1, ACL ’03, pages 423–430, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006.
Opinion extraction, summarization and tracking in
news and blog corpora. In AAAI Spring Sympo-
sium: Computational Approaches to Analyzing We-
blogs, pages 100–107.

Bing Liu, Minqing Hu, and Junsheng Cheng. 2005.
Opinion observer: analyzing and comparing opinions
on the web. In Proceedings of the 14th international
conference on World Wide Web, pages 342–351, New
York, NY, USA. ACM.

André L. Martins, Noah A. Smith, and Eric P. Xing.
2009. Concise integer linear programming formula-
tions for dependency parsing. In Proceedings of the
Annual meeting of the Association for Computational
Linguistics, pages 342–350.

Ryan T. McDonald, Kerry Hannan, Tyler Neylon, Mike
Wells, and Jeffrey C. Reynar. 2007. Structured mod-
els for fine-to-coarse sentiment analysis. In Proceed-
ings of the Annual meeting of the Association for Com-
putational Linguistics.

Bo Pang and Lillian Lee. 2007. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1-2):1–135.

166

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, HLT ’05, pages 339–346, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Lizhen Qu, Georgiana Ifrim, and Gerhard Weikum.
2010. The bag-of-opinions method for review rat-
ing prediction from sparse text patterns. In Chu-Ren
Huang and Dan Jurafsky, editors, Proceedings of the
23rd International Conference on Computational Lin-
guistics (Coling 2010), ACL Anthology, pages 913–
921, Beijing, China. Tsinghua University Press.

Lizhen Qu, Rainer Gemulla, and Gerhard Weikum. 2012.
A weakly supervised model for sentence-level seman-
tic orientation analysis with multiple experts. In Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 149–159,
Jeju Island, Korea, July. Proceedings of the Annual
meeting of the Association for Computational Linguis-
tics.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of the Conference on Empirical Methods in Natu-
ral Language Processing, pages 1201–1211.

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In Proceedings of
the Joint conference of the 47th Annual Meeting of the
Association for Computational Linguistics and the 4th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, pages 226–234.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly D. Voll, and Manfred Stede. 2011. Lexicon-
based methods for sentiment analysis. Computational
Linguistics, 37(2):267–307.

Oscar Täckström and Ryan McDonald. 2011. Discov-
ering fine-grained sentiment with latent variable struc-
tured prediction models. In Proceedings of the 33rd
European conference on Advances in information re-
trieval, ECIR’11, pages 368–374, Berlin, Heidelberg.
Springer-Verlag.

Cigdem Toprak, Niklas Jakob, and Iryna Gurevych.
2010. Sentence and expression level annotation of
opinions in user-generated discourse. In Proceedings
of the 48th Annual Meeting of the Association for
Computational Linguistics, ACL ’10, pages 575–584,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vec-

tor machine learning for interdependent and structured
output spaces. In Proceedings of the International
Conference on Machine Learning, pages 104–112.

Wei Wei and Jon Atle Gulla. 2010. Sentiment learn-
ing on product reviews via sentiment ontology tree. In
Proceedings of the Annual meeting of the Association
for Computational Linguistics, pages 404–413.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions in
language. Language Resources and Evaluation, 39(2-
3):165–210.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the confer-
ence on Human Language Technology and Empirical
Methods in Natural Language Processing, HLT ’05,
pages 347–354, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Theresa Ann Wilson. 2008. Fine-grained subjectivity
and sentiment analysis: recognizing the intensity, po-
larity, and attitudes of private states. Ph.D. thesis,
UNIVERSITY OF PITTSBURGH.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2011. Structural opinion mining for graph-based sen-
timent representation. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1332–1341.

Ainur Yessenalina and Claire Cardie. 2011. Composi-
tional matrix-space models for sentiment analysis. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 172–182.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural svms with latent variables. In Pro-
ceedings of the International Conference on Machine
Learning, page 147.

Ning Yu and Sandra Kübler. 2011. Filling the gap:
Semi-supervised learning for opinion detection across
domains. In Proceedings of the Fifteenth Conference
on Computational Natural Language Learning, pages
200–209. Association for Computational Linguistics.

167

168

	Program
	Training Deterministic Parsers with Non-Deterministic Oracles
	Joint Incremental Disfluency Detection and Dependency Parsin
	A Crossing-Sensitive Third-Order Factorization for Dependency Parsing
	Exploring the Role of Stress in Bayesian Word Segmentation using Adaptor Grammars
	FLORS: Fast and Simple Domain Adaptation for Part-of-Speech Tagging
	A Tabular Method for Dynamic Oracles in Transition-Based Parsing
	Temporal Annotation in the Clinical Domain
	Entity Linking meets Word Sense Disambiguation: a Unified Approach
	Data-Driven Metaphor Recognition and Explanation
	Grounded Compositional Semantics for Finding and Describing Images with Sentences
	Parallel Algorithms for Unsupervised Tagging
	Heterogeneous Networks and Their Applications: Scientometrics, Name Disambiguation, and Topic Modeling
	Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut
	Segmentation for Efficient Supervised Language Annotation with an Explicit Cost-Utility Tradeoff
	The Language Demographics of Amazon Mechanical Turk
	Cross-lingual Projected Expectation Regularization for Weakly Supervised Learning
	Back to Basics for Monolingual Alignment: Exploiting Word Similarity and Contextual Evidence
	From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
	Senti-LSSVM: Sentiment-Oriented Multi-Relation Extraction with Latent Structural SVM

