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Abstract

n this paper, e stud the problem of manu-

all correcting automatic annotations of natu-
ral language in as ef cient a manner as pos-
sible. e introduce a method for automati-
call segmenting a corpus into chun s such
that man uncertain labels are grouped into
the same chun , hile human supervision
can be omitted altogether for other segments.
A tradeoff must be found for segment si es.
Choosing short segments allo s us to reduce
the number of highl con dent labels that are
supervised b the annotator, hich is useful
because these labels are often alread correct
and supervising correct labels is a aste of
effort. n contrast, long segments reduce the
cognitive effort due to conte ts itches. ur
method helps nd the segmentation that opti-
mi es supervision ef cienc b de ning user
models to predict the cost and utilit of su-
pervising each segment and solving a con-
strained optimi ation problem balancing these
contradictor ob ectives. A user stud demon-
strates noticeable gains over pre-segmented,
con dence-ordered baselines on t o natural
language processing tas s: speech transcrip-
tion and ord segmentation.

1 Introduction

an natural language processing ( LP) tas s re-
uire human supervision to be useful in practice,
be it to collect suitable training material or to meet
some desired output ualit . iven the high cost of
human intervention, ho to minimi e the supervi-
sion effort is an important research problem. Previ-
ous or sin areas such as active learning, post edit-
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(a) t asabrightcold (they) in (apron), and (a) cloc s

ere stri ing thirteen.

(b) t as a bright cold (they) in (apron), and (a) cloc s

ere stri ing thirteen.

(c) t as a bright cold (they) in (apron), and (a) cloc s

ere stri ing thirteen.

Figure 1: Three automatic transcripts of the sentence t
as a bright cold da in April, and the cloc s ere stri -
ing thirteen , ith recognition errors in parentheses. The
underlined parts are to be corrected b a human for (a)
sentences, (b) ords, or (c) the proposed segmentation.

ing, and interactive pattern recognition have inves-
tigated this uestion ith notable success (Settles,
2008; Specia, 2011; on ale -Rubio et al., 2010).

The most common frame or for ef cient anno-
tationinthe LP conte tconsists of trainingan LP
s stem on a small amount of baseline data, and then
running the s stem on unannotated data to estimate
con dence scores of the s stem s predictions (Set-
tles, 2008). Sentences ith the lo est con dence
are then used as the data to be annotated (Figure 1
(a)). o ever, it has been noted that hen the LP
s stem in uestion alread has relativel high accu-
rac , annotating entire sentences can be asteful, as
most ords 1ill alread be correct (Tomane and

ahn, 2009; eubig et al., 2011). n these cases, it
is possible to achieve much higher bene t per anno-
tated ord b annotating sub-sentential units (Fig-
ure 1 (b)).

o ever, as Settles et al. (2008) point out, sim-
pl ma imi ing the bene t per annotated instance
is not enough, as the real supervision effort varies
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®— Transcription task
*— Word segmentation task
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Figure 2: Average annotation time per instance, plotted
over different segment lengths. For both tas s, the effort
clearl increases for short segments.

greatl across instances. This is particularl impor-
tant in the conte t of choosing segments to annotate,
as human annotators heavil rel on semantics and
conte t information to process language, and intu-
itivel , a consecutive se uence of ords can be su-
pervised faster and more accuratel than the same
number of ords spread out over several locations in
a te t. This intuition can also be seen in our empiri-
cal data in Figure 2, hich sho s that for the speech
transcription and ord segmentation tas s described
later in Section 5, short segments had a longer anno-
tation time per ord. ased on this fact, e argue
it ould be desirable to present the annotator ith
a segmentation of the data into easil supervisable
chun s that are both large enough to reduce the num-
ber of conte ts itches, and small enough to prevent
unnecessar annotation (Figure 1 (c)).

n this paper, e introduce ane strateg for nat-
ural language supervision tas s that attempts to op-
timi e supervision ef cienc b choosing an appro-
priate segmentation. t relies on a user model that,
given a speci c segment, predicts the cost and the
utilit of supervising that segment. iven this user
model, the goal is to nd a segmentation that mini-
mi es the total predicted cost hile ma imi ing the
utilit . e balance these t o criteriab de ning a
constrained optimi ation problem in hich one cri-
terion is the optimi ation ob ective, hile the other
criterion is used as a constraint.  oing so allo s
specif ing practical optimi ation goals such as re-
move as man errors as possible given a limited time
budget, or annotate data to obtain some re uired
classi er accurac in as little time as possible.

Solving this optimi ation tas is computationall
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dif cult, an P-hard problem.  evertheless, e
demonstrate that b ma ing realistic assumptions
about the segment length, an optimal solution can
be found using an integer linear programming for-
mulation for mid-si ed corpora, as are common for
supervised annotation tas s. For larger corpora, e
provide simple heuristics to obtain an appro imate
solution in a reasonable amount of time.

E periments over t oe ample scenarios demon-
strate the usefulness of our method: Post editing
for speech transcription, and active learning for

apanese ord segmentation. ur model predicts
noticeable ef cienc gains, hich are con rmed in
e periments ith human annotators.

2 Problem Definition

The goal of our method is to nd a segmentation
over a corpus of ord to ens w{v that optimi es
supervision ef cienc according to some predictive
user model. The user model is denoted as a set of
functions wuy (w?) that evaluate an possible sub-
se uence w’ of to ens in the corpus according to
criteria [€ L, and supervision modes k€ K.

Let us illustrate this ith an e ample. Sperber et
al. (2013) de ned a frame or for speech transcrip-
tion in hich an initial, erroneous transcript is cre-
ated using automatic speech recognition (ASR), and
an annotator corrects the transcript either b correct-
ing the ordsb e board, b respea ing the con-
tent, or b leaving the ords as is. n this case,

e could de ne K={T PE,RESPEA ,S P}, each
constant representing one of these three supervision
modes.  ur method ill automaticall determine
the appropriate supervision mode for each segment.

The user model in this e ample might evaluate ev-
er segment according tot o criteria L, a cost crite-
rion (in terms of supervision time) and a utilit cri-
terion (in terms of number of removed errors), hen
using each mode. ntuitivel , respea ing should be
assigned both lo er cost (because spea ing is faster
than t ping), but also lo er utilit than t ping on a

e board (because respea ing recognition errors can
occur). The s P mode denotes the special, unsuper-
vised mode that al a s returns O cost and O utilit .

ther possible supervision modes include mul-
tiple input modalities (Suhm et al., 2001), several
human annotators ith different e pertise and cost



( onme and Carbonell, 2008), and correction vs.
translation from scratch in machine translation (Spe-
cia, 2011). Similarl , cost could instead be e -
pressed in monetar terms, or the utilit function
could predict the improvement of a classi er hen
the resulting annotation is not intended for direct hu-
man consumption, but as training data for a classi er
in an active learning frame or .

3 Optimization Framework

iven this setting, e are interested in simulta-
neousl nding optimal locations and supervision
modes for all segments, according to the given cri-
teria. Each resulting segment 1ill be assigned e -
actl one of these supervision modes. e de-
note a segmentation of the N to ens of corpus wi’
into M <N segments b specif ing segment bound-
ar mar ers sV l=(s;=1,59,..., 501 1=N+1).
Setting a boundar mar er s;=a means that e
put a segment boundar before the a-th ord to-

en (or the end-of-corpus mar er for a=N+1).
Thus our corpus is segmented into to en se uences
[(Wsjy - e Wy 1)]]-1\/;1. The supervision modes
assigned to each segment are denoted b m;. e
favor those segmentations that minimi e the cumu-
lative value Z]Ail [t4,m, (w3 )] for each criterion L.
For an criterion here larger values are intuitivel
better, e ip the sign before de ning uy,, (w3l ™)
to maintain consistenc (e.g. negative number of er-
rors removed).

3.1 Multiple Criteria Optimization

n the case of a single criterion (|L|=1), e obtain
a simple, single-ob ective unconstrained linear opti-
mi ation problem, ef cientl solvable via d namic
programming (Ter i and Tsaparas, 2006). o ever,
in practice one usuall encounters several compet-
ing criteria, such as cost and utilit , and here e

ill focus on this more realistic setting. e balance
competing criteria b using one as an optimi ation
ob ective, and the others as constraints.! Let crite-

I'This approach is no n as the bounded objective function
method in multi-ob ective optimi ation literature ( arler and
Arora, 2004). The ver popular weighted sum method merges
criteria into a single ef cienc measure, but is problematic in
our case because the number of supervised to ens is unspec-
i ed. nless the eights are carefull chosen, the algorithm
might nd, e.g., the completel unsupervised or completel su-
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[RESPEAK:1.5/2]
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Figure 3: E cerpt of a segmentation graph for an e -
ample transcription tas similar to Figure 1 (some edges
are omitted for readabilit ). Edges are labeled ith their
mode, predicted number of errors that can be removed,
and necessar supervision time. A segmentation scheme
might prefer solid edges over dashed ones in this e am-
ple.

rion [ be the optimi ation ob ective criterion, and
let C; denote the constraining constants for the cri-
terial € L p =L\ {l}. e statethe optimi ation
problem:

M
M; Irvﬂ?mMZ [Ul',m]- (wgﬂ)}

51 my =1

M
s.t. Z [ul,mj (wi?“)} <C; (MleL yp)
j=1

This constrained optimi ation problem is dif cult
to solve. n fact, the P-hard multiple-choice nap-
sac problem (Pisinger, 1994) corresponds to a spe-
cial case of our problem in hich the number of seg-
ments is e ual to the number of to ens, impl ing
that our more general problem is P-hard as ell.

n order to overcome this problem, e refor-
mulate search for the optimal segmentation as a
resource-constrained shortest path problem in a di-
rected, ac clic multigraph.  hile still not ef cientl
solvable in theor , this problem is ell studied in
domains such as vehicle routing and cre  schedul-
ing ( rnich and esaulniers, 2005), and it is no n
that in man practical situations the problem can
be solved reasonabl ef cientl using integer linear
programming rela ations (Toth and igo, 2001).

n our formalism, the set of nodes V' represents
the spaces bet een neighboring to ens, at hich the
algorithm ma insert segment boundaries. A node

ith inde ¢ represents a segment brea before the
i-th to en, and thus the se uence of the indices in
a path directl corresponds to siw *1 Edges E de-
note the grouping of to ens bet een the respective

pervised segmentation to be most ef cient.



nodes into one segment. Edges are al a s directed
from left to right, and labeled ith a supervision
mode. n addition, each edge bet een nodes 7 and j
is assigned uy i, (w] 1), the corresponding predicted
value for each criterion [ € L and supervision mode
k € K, indicating that the supervision mode of the
Jj-th segment in a path directl corresponds to m;.
Figure 3 sho s an e ample of hat the result-
ing graph ma loo li e. wur original optimi ation
problem is no e uivalent to nding the shortest
path bet een the rst and last nodes according to
criterion [, hile obe ing the given resource con-
straints. According to a idel used formulation for
the resource constrained shortest path problem, e
cande ne FEj; as the set of competing edges bet een

1 and j, and e press this optimi ation problem ith
the follo ing integer linear program ( LP):
m}inz Z a;ijkulgk(sg 1) )
ij Vk By
s.t. Z Z ziruk(s] 1) <G
ij Vk Eyj 2)
(Vl € L l’)
D @k = ) Tk
K By K By 3)
(Vj € VA{1,n})
4
k Eyj
> i =1 (5)
iV
k E'L'n
Tijk € {O, 1} (vxijk S X) (6)

The variables x={z;;;|i,j € V,k € E;;} denote
the activation of the k£ th edge bet een nodes ¢ and
7. The shortest path according to the minimi ation
ob ective (1), that still meets the resource constraints
for the speci ed criteria (2), is to be computed. The
degree constraints (3,4,5) specif that all but the rst
and last nodes must have as man incoming as out-
going edges, hile the rst node must have e actl

one outgoing, and the last node e actl one incom-
ing edge. Finall , the integralit condition (6) forces
all edges to be either full activated or full deacti-
vated. The outlined problem formulation can solved
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directl b using off-the-shelf LP solvers, here e
emplo R ( urobi ptimi ation, 2012).

3.2 Heuristics for Approximation

n general, edges are inserted for ever supervision
mode bet eenever combination of t o nodes. The
search space can be constrained b removing some
of these edges to increase ef cienc . n this stud ,

e onl consider edges spanning at most 20 to ens.

For cases in  hich larger corpora are to be anno-
tated, or hen the acceptable dela for delivering re-
sults is small, a suitable segmentation can be found
appro imatel . The easiest a  ould be to parti-
tion the corpus, e.g. according to its individual doc-
uments, divide the budget constraints evenl across
all partitions, and then segment each partition inde-
pendentl .  ore sophisticated methods might ap-
pro imate the Pareto front for each partition, and
distribute the budgets in an intelligent a .

4 User Modeling

hile the proposed frame or is able to optimi e
the segmentation ith respect to each criterion, it
also rests upon the assumption that e can provide
user models v j, (wf 1) that accuratel evaluate ev-
er segment according to the speci ed criteria and
supervision modes. n this section, e discuss our
strategies for estimating three conceivable criteria:
annotation cost, correction of errors, and improve-
ment of a classi er.

4.1 Annotation Cost Modeling

odeling cost re uires solving a regression prob-
lem from features of a candidate segment to annota-
tion cost, for e ample in terms of supervision time.
Appropriate input features depend on the tas , but
should include notions of comple it (e.g. a con -
dence measure) and length of the segment, as both
are e pected to strongl in uence supervision time.
e propose using aussian process ( P) regres-
sion for cost prediction, a start-of-the-art nonpara-
metric a esian regression techni ue (Rasmussen
and illiams, 2006)>. As reported on a similar
tas b Cohn and Specia (2013), and con rmed b
our preliminar e periments, P regression signi -
cantl outperforms popular techni ues such as sup-

2Code available at http:/ .gaussianprocess.org/gpml/



port vector regression and least-s uares linear re-
gression. e also follo their settings for P, em-
plo ing P regression ith a s uared e ponential
ernel ith automatic relevance determination. e-
pending on the number of users and amount of train-
ing data available for each user, models ma be
trained separatel for each user (as e do here), or
in a combined fashion via multi-tas learning as pro-
posed b Cohn and Specia (2013).
t is also crucial for the predictions to be reliable

throughout the hole relevant space of segments.
f the cost of certain t pes of segments is s stem-
aticall underpredicted, the segmentation algorithm
might be misled to prefer these, possibl a large
number of times.> An effective tric to prevent such
underpredictions is to predict the log time instead of
the actual time. nthis a , errors in the critical lo
end are penali ed more strongl , and the time can
never become negative.

4.2 Error Correction Modeling

As one utilit measure, e can use the number of
errors corrected, a useful measure for post editing
tas s over automaticall produced annotations. n
order to measure ho man errors can be removed
b supervising a particular segment, e must es-
timate both ho man errors are in the automatic
annotation, and ho reliabl a human can remove
these for a given supervision mode.
ost machine learning techni ues can estimate
con dence scores in the form of posterior probabil-
ities. To estimate the number of errors, e can sum
over one minus the posterior for all to ens, hich
estimates the amming distance from the reference
annotation. This measure is appropriate for tas s in
hich the number of to ensis ed in advance (e.g.
a part-of-speech estimation tas ), and a reasonable
appro imation for tas s in hich the number of to-
ens isnot no n in advance (e.g. speech transcrip-
tion, cf. Section 5.1.1).
Predicting the particular to ens at hich a human
ill ma e a mista e is no n to be a dif cult tas
( Ison and lIson, 1990), but a simplif ing constant

3For instance, consider a model that predicts el for seg-
ments of medium si e or longer, but underpredicts the supervi-
sion time of single-to en segments. This ma lead the segmen-
tation algorithm to put ever to enintoits o nsegment, hich
is clearl undesirable.
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human error rate can still be useful. For e ample,
in the tas from Section 2, e ma suspect a certain
number of errors in a transcript segment, and predict,
sa , 95 of those errors to be removed via t ping,
butonl 85 viarespea ing.

4.3 Classifier Improvement Modeling

Another reasonable utilit measure is accurac of a
classi er trained on the data e choose to annotate
in an active learning frame or . Con dence scores
have been found useful for ran ing particular to ens

ith regards to ho much the ill improve a clas-
si er (Settles, 2008). ere, e ma similarl score
segment utilit as the sum of its to en con dences,
although care must be ta en to normali e and cali-
brate the to en con dences to be linearl compara-
ble before doing so.  hile the resulting utilit score
has no interpretation in absolute terms, it can still be
used as an optimi ation ob ective (cf. Section 5.2.1).

5 Experiments

n this section, e present e perimental results e -

amining the effectiveness of the proposed method

over t o tas s: speech transcription and apanese
ord segmentation.*

5.1 Speech Transcription Experiments

Accurate speech transcripts are a much-demanded

LP product, useful b themselves, as training ma-
terial for ASR, or as input for follo -up tas s li e
speech translation. ith recognition accuracies
plateauing, manuall correcting (post editing) auto-
matic speech transcripts has become popular. Com-
mon approaches are to identif  ords (Sanche -
Cortina et al., 2012) or (sub-)sentences (Sperber et
al., 2013) of lo con dence, and have a human edi-
tor correct these.

5.1.1 Experimental Setup

e conduct a user stud in hich participants
post-edited speech transcripts, given a  ed goal
ord error rate. The transcription setup as such
that the transcriber could see the ASR transcript of
parts before and after the segment that he as edit-
ing, providing conte t if needed.  hen imprecise
time alignment resulted in segment brea s that ere

*Soft are and e perimental data can be do nloaded from
http:// .msperber.com/research/tacl-segmentation/



slightl ~ off, as happened occasionall , that conte t
helped guess hat as said. The segment itself as
transcribed from scratch, as opposed to editing the
ASR transcript; besides being arguabl more ef -
cient hen the ASR transcript contains man mis-
ta es ( anoetal., 2006; A itaetal., 2009), prelim-
inar e periments also sho ed that supervision time
is far easier to predict this a . Figure 4 illustrates

hat the setup loo edli e.

e used a self-developed transcription tool to
conduct e periments. t presents our computed seg-
ments one b one, allo s convenient input and pla -
bac via e board shortcuts, and logs user interac-
tions ith their time stamps. A selection of TE
tal s> (English tal s on technolog , entertainment,
and design) served as e perimental data. hile
some of these tal s contain argon such as medi-
cal terms, the are presented b s illed spea ers,
ma ing them comparabl eas to understand. nitial
transcripts  ere created using the anus recognition
tool it (Soltau et al., 2001) ith a standard, TE -
optimi ed setup. e used confusion net or s for
decoding and obtaining con dence scores.

For reasons of simplicit , and better compara-
bilit to our baseline, e restricted our e periment
to t o supervision modes: T PE and S P. e
conducted e periments ith 3 participants, 1 ith
several ears of e perience in transcription, 2 ith
none. Each participant received an e planation on
the transcription guidelines, and a short hands-on
training to learn to use our tool. e t, the tran-
scribed a balanced selection of 200 segments of
var ing length and wualit in random order. This
data as used to train the user models.

Finall , each participant transcribed another 2

TE tal s, ith ord error rate ( ER) 19.96
(predicted: 22.33 ). e set a target (predicted)
ER of 15 as our optimi ation constraint,® and

minimi e the predicted supervision time as our ob-
ective function. oth TE tal s ere transcribed
once using the baseline strateg , and once using the
proposed strateg . The order of both strategies as
reversed bet een tal s, to minimi e learning bias
due to transcribing each tal t ice.

The baseline strateg  as adopted according to

5
6

.ted.com
epending on the level of accurac re uired b our nal
application, this target ma be set lo er or higher.
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Sperber et al. (2013): e segmented the tal into
natural, subsentential units, using atusov et al.
(2006) s segmenter, hich e tuned to reproduce
the TE subtitle segmentation, producing a mean
segment length of 8.6 ords. Segments ere added
in order of increasing average ord con dence, until
the user model predicted a ER<15%. The second
segmentation strateg as the proposed method,
similarl  ith a resource constraint of ER<15%.

Supervision time as predicted via P regres-
sion (cf. Section 4.1), using segment length, au-
dio duration, and mean con dence as input features.
The output variable as assumed sub ect to addi-
tive aussian noise ith ero mean, a variance of
5 seconds as chosen empiricall to minimi e the
mean s uared error. tilit prediction (cf. Section
4.2) as based on posterior scores obtained from
the confusion net or s. e found it important to
calibrate them, as the posteriors ere overcon dent
especiall in the upper range. To do so, e automat-
icall transcribed a development set of TE data,
grouped the recogni ed ords into buc ets accord-
ing to their posteriors, and determined the average
number of errors per ord in each buc et from an
alignment ith the reference transcript. The map-
ping from average posterior to average number of
errors as estimated via P regression. The result

as summed over all to ens, and multiplied b a
constant human con dence, separatel determined
for each participant.’

5.1.2 Simulation Results

To conve a better understanding of the poten-
tial gains afforded b our method, e rst present a
simulated e periment. e assume a transcriber ho
ma esno mista es, and needs e actl the amount of
time predicted b a user model trained on the data of
a randoml selected participant. e compare three
scenarios: A baseline simulation, in hich the base-
line segments are transcribed in ascending order of
con dence; a simulation using the proposed method,
in hich echangethe ER constraint in small in-

crements; nall , an oracle simulation, hich uses

7 ore elaborate methods for ER estimation e ist, such as
b ga aetal (2013), but if our method achieves improve-
ments using simple amming distance, incorporating more so-
phisticated measures ill li el achieve similar, or even better
accurac .



. . Baseline Proposed
(3) s P: nineteen fort si until toda ou see the green Participant ER  Time ER  Time
(4) T PE: <annotator t pes: is the traditional > P 1226 44:05 | 12.18 33:01
(5) s P: nterstate con ict P 12.75 36:19 | 12.77 29:54
(6) T PE: <annotator t pes: the ones e usedto > P 12.70 52:42 | 12.50 37:57
7 s p:... A 12.57 44:22 | 12.48 33:37
Figure 4: Result of our segmentation method (e cerpt). Table 1: Transcription tas results. For each user, the

T PE segments are displa ed empt and should be tran-
scribed from scratch. For S P segments, the ASR tran-
script is displa ed to provide conte t. hen annotating a
segment, the corresponding audio is pla ed bac .

25 - - - -
SN L L .| = = — Baseline
% I NN Proposed ||
Z : ) : : Oracle
.%0 10f o SRR T EEEEEE EEEEEES
E T IR N N RO
2 :
a7 -

0 N 1

0 10 20 30 40 50 60
Post editing time [min]

Figure 5: Simulation of post editing on e ample TE
tal . The proposed method reduces the ER consider-
abl faster than the baseline at rst, later both converge.
The much superior oracle simulation indicates room for
further improvement.

the proposed method, but uses a utilit model that
no s the actual number of errors in each segment.
For each supervised segment, e simpl replace the
ASR output ith the reference, and measure the re-
sulting ER.
Figure 5 sho s the simulation on an e ample
TE tal , based on an initial transcript ith 21.9
ER. The proposed method is able to reduce the
ER faster than the baseline, up to a certain point
here the converge. The oracle simulation is even
faster, indicating room for improvement through
better con dence scores.

5.1.3 User Study Results

Table 1 sho s the results of the user stud . First,

e note that the ER estimation b our utilit
model as off b about 2.5 hile the predicted
improvement in ER as from 22.33 to 15.0 ,
the actual improvement as from 19.96 to about
12.5 The actual resulting ER as consistent
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resulting ER after supervision is sho n, along ith
the time min the needed. The unsupervised ER as
19.96

across all users, and e observe strong, consistent
reductions in supervision time for all participants.
Prediction of the necessar supervision time as ac-
curate: Averaged over participants, 45:41 minutes
ere predicted for the baseline, 44:22 minutes mea-
sured. For the proposed method, 32:11 minutes ere
predicted, 33:37 minutes measured.  n average,
participants removed 6.68 errors per minute using
the baseline, and 8.93 errors per minute using the
proposed method, a speed-up of 25.2
ote that predicted and measured values are not
strictl comparable: n the e periments, to provide
a fair comparison participants transcribed the same
tal st ice (once using baseline, once the proposed
method, in alternating order), resulting in a notice-
able learning effect. The user model, on the other
hand, is trained to predict the case in hich a tran-
scriber conducts onl one transcription pass.

As an interesting nding, ithout being informed
about the order of baseline and proposed method,
participants reported that transcribing according to
the proposed segmentation seemed harder, as the
found the baseline segmentation more linguisticall
reasonable. o ever, this perceived increase in dif-

cult did not sho inef cienc numbers.

5.2 Japanese Word Segmentation Experiments

ord segmentation is the rst step in LP for lan-
guages that are commonl  ritten ithout ord
boundaries, such as apanese and Chinese. e ap-
pl ourmethodtoatas in hich e domain-adapta

ord segmentation classi er via active learning. n
this e periment, participants annotated hether or
nota ord boundar occurred at certain positions in
a apanese sentence. The to ens to be grouped into
segments are positions bet een ad acent characters.



5.2.1 Experimental Setup

eubig et al. (2011) have proposed a point ise
method for apanese ord segmentation that can be

trained using partiall annotated sentences, hich
ma es it attractive in combination ith active learn-
ing, as ell as our segmentation method. The

authors released their method as a soft are pac -
age Tea that e emplo ed in this user stud .
eused Tea s active learning domain adaptation
tool it} as a baseline.
For data, e used the alanced Corpus of Con-
temporar ritten apanese ( CC ), created b
ae a a (2008), ith the internet Q&A subcor-
pus as in-domain data, and the whitepaper subcor-
pus as bac ground data, a domain adaptation sce-
nario. Sentences ere dra n from the in-domain
corpus, and the manuall annotated data as then
used to train  Tea, along ith the pre-annotated
bac ground data. The goal (ob ective function) as
toimprove  Tea sclassi cation accurac on an in-
domain test set, given a constrained time budget of
30 minutes. There ere again 2 supervision modes:
A TATE and S P. ote that this is essentiall a
batch active learning setup ith onl one iteration.
e conducted e periments ith one e pert ith
several ears of e perience ith apanese ord seg-
mentation annotation, and three non-e pert native
spea ers ith no prior e perience. apanese ord
segmentation is not a trivial tas , so e provided
non-e¢ perts ith training, including e planation of
the segmentation standard, a supervised test ith
immediate feedbac and e planations, and hands-on
training to get used to the annotation soft are.
Supervision time as predicted via P regression
(cf. Section 4.1), using the segment length and mean
con dence as input features. As before, the output
variable as assumed sub ect to additive aussian
noise ith eromean and 5 seconds variance. To ob-
tain training data for these models, each participant
annotated about 500 e ample instances, dra n from
the adaptation corpus, grouped into segments and
balanced regarding segment length and dif cult .
For utilit modeling (cf. Section 4.3), e rstnor-
mali ed Teascon dence scores, hich are given
in terms of S margin, using a sigmoid function
(Platt, 1999). The normali ation parameter as se-

Shttp:// .phontron.com/ tea/active.html
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lected so that the mean con dence on a development
set corresponded to the actual classi er accurac .
e derive our measure of classi er improvement for
correcting a segment b summing over one minus
the calibrated con dence for each of its to ens. To
anal e ho ell this measure describes the actual
training utilit , e trained  Tea using the bac -
ground data plus dis oint groups of 100 in-domain
instances ith similar probabilities and measured
the achieved reduction of prediction errors. The cor-
relation bet een each group s mean utilit and the
achieved error reduction as 0.87. ote that e ig-
nore the deca ing returns usuall observed as more
data is added to the training set. Also, e did not
attempt to model user errors. Emplo ing a con-
stant base error rate, as in the transcription scenario,
ould change segment utilities onl b a constant
factor, ithout changing the resulting segmentation.
After creating the user models, e conducted the
main e periment, in hich each participant anno-
tated data that as selected from a pool of 1000
in-domain sentences using t o strategies. The rst,
baseline strateg  as as proposed b eubig et al.
(2011).  ueries are those instances ith the lo -
est con dence scores. Each uer is then e tended
to the left and right, until a ord boundar is pre-
dicted. This strateg follo s similar reasoning as
as the premise to this paper: To decide hether or
not a position in a te t corresponds toa ord bound-
ar , the annotator has to ac uire surrounding conte t
information. This conte t ac uisition is relativel
time consuming, so he might as ell label the sur-
rounding instances ith little additional effort. The
second strateg  as our proposed, more principled
approach.  ueries of both methods ere shuf ed
to minimi e bias due to learning effects. Finall , e
trained  Tea using the results of both methods, and
compared the achieved classi er improvement and
supervision times.

5.2.2 User Study Results

Table 2 summari es the results of our e peri-
ment. tsho s that the annotations b each partic-
ipant resulted in a better classi er for the proposed
method than the baseline, but also too up consider-
abl more time, a less clear improvement than for
the transcription tas . n fact, the total error for
time predictions as as high as 12.5 on average,



Participant . Baseline ‘Proposed
Time Acc. | Time Acc.
E pert 25:50 96.17 | 32:45 96.55
onE p; 22:05 95.79 | 26:44 9598
onE p, 23:37 96.15 | 31:28 96.21
onE p; 25:23 96.38 | 33:36  96.45
Table 2: ord segmentation tas results, for our e -

pert and 3 non-e pert participants. For each participant,
the resulting classi er accurac after supervision is
sho n, along iththe time min the needed. The unsu-
pervised accurac  as 95.14

here the baseline method tended ta e less time than
predicted, the proposed method more time. This is
in contrast to a much lo er total error ( ithin 1 )

hen cross-validating our user model training data.
This is li el due to the fact that the data for train-
ing the user model as selected in a balanced man-
ner, as opposed to selecting dif cult e amples, as
our method is prone to do. Thus, e ma e pect
much better predictions hen selecting user model
training data that is more similar to the test case.

Plotting classi er accurac over annotation time
dra s a clearer picture. Let us rst anal e the re-
sults for the e pert annotator. Figure 6 (E.1) sho s
that the proposed method resulted in consistentl
better results, indicating that time predictions ere
still effective. ote that this comparison ma put the
proposed method at a slight disadvantage b com-
paring intermediate results despite optimi ing glob-
all .

For the non-e perts, the improvement over the
baseline is less consistent, as can be seen in Fig-
ure 6 ( .1) for one representative. According to
our anal sis, this can be e plained b t o factors:
(1) The non-e perts annotation error (6.5 on av-
erage) as much higher than the e perts (2.7 ),
resulting in a some hat irregular classi er learn-
ing curve. (2) The variance in annotation time
per segment as consistentl higher for the non-
e perts than the e pert, indicated b an average
per-segment prediction error of 71  vs. 58 rela-
tive to the mean actual value, respectivel . nfor-
mall spea ing, non-e perts made more mista es,
and ere more strongl in uenced b the dif cult
of a particular segment ( hich as higher on av-
erage ith the proposed method, as indicated b a
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Figure 6: Classi er improvement over time, depicted for
the e pert (E) and a non-e pert ( ). The graphs sho

numbers based on (1) actual annotations and user mod-
els as in Sections 4.1 and 4.3, (2) error-free annotations,
(3) measured times replaced b predicted times, and (4)
both reference annotations and replaced time predictions.

lo er average con dence).’

n Figures 6 (2-4) e present a simulation e peri-
mentin hich e rstpretend as if annotators made
no mista es, then as if the needed e actl as much
time as predicted for each segment, and then both.
This cheating e periment or s in favor of the pro-
posed method, especiall for the non-e pert. e
ma conclude that our segmentation approach is ef-
fective for the ord segmentation tas , but re uires
more accurate time predictions. etter user models

ill certainl help, although for the presented sce-
nario our method ma be most useful for an e pert
annotator.

? ote that the non-e pert inthe gure annotated much faster

than the e pert, hich e plains the comparable classi cation
result despite ma ing more annotation errors. This is in contrast
to the other non-e perts, ho ereslo er.



5.3 Computational Efficiency

Since our segmentation algorithm does not guar-
antee pol nomial runtime, computational ef cienc

as a concern, but did not turn out problematic.

n a consumer laptop, the solver produced seg-
mentations ithin a fe seconds for a single docu-
ment containing several thousand to ens, and ithin
hours for corpora consisting of several do en doc-
uments. Runtime increased roughl  uadraticall

ith respect to the number of segmented to ens. e
feel that this is acceptable, considering that the time
needed for human supervision 1ill li el dominate
the computation time, and reasonable appro ima-
tions can be made as noted in Section 3.2.

6 Relation to Prior Work

Ef cient supervision strategies have been studied
across a variet of LP-related research areas, and
received increasing attention in recent ears. E -
amples include post editing for speech recogni-
tion (Sanche -Cortina et al., 2012), interactive ma-
chine translation ( on ale -Rubio et al., 2010), ac-
tive learning for machine translation ( affari et al.,
2009; on ale -Rubio et al., 2011) and man other
LPtas s( lIsson,2009), to name buta fe studies.
t has also been recogni ed b the active learn-
ing communit that correcting the most useful parts
rst is often not optimal in terms of ef cienc , since
these parts tend to be the most dif cult to manuall
annotate (Settles et al., 2008). The authors advocate
the use of a user model to predict the supervision ef-
fort, and select the instances ith best bang-for-the-
buc . This prediction of supervision effort as suc-
cessful, and as further re nedin other LP-related
studies (Tomane et al., 2010; Specia, 2011; Cohn
and Specia, 2013). ur approach to user modeling
using P regression is inspired b the latter.
ost studies on user models consider onl super-
vision effort, hile neglecting the accurac of hu-
man annotations. The vie on humans as a perfect
oracle has been critici ed ( onme and Carbonell,
2008), since human errors are common and can
negativel affect supervision utilit . Research on
human-computer-interaction has identi ed the mod-
eling of human errors as ver dif cult ( lson and
Ison, 1990), depending on factors such as user e -
perience, cognitive load, user interface design, and
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fatigue. evertheless, even the simple error model
used in our post editing tas  as effective.

The active learning communit has addressed the
problem of balancing utilit and cost in some more
detail. The previousl reported bang-for-the-buc
approach is a ver simple, greed approach to com-
bine both into one measure. A more theoreticall
founded scalar optimi ation ob ective is the net ben-
e t (utilit minus costs) as proposed b ia a-
narasimhan and rauman (2009), but unfortunatel
is restricted to applications here both can be e -
pressed in terms of the same monetar unit. ia a-
narasimhan et al. (2010) and onme and Carbonell
(2008) use a more practical approach that speci es a
constrained optimi ation problem b allo ing onl
a limited time budget for supervision. ur approach
is a generali ation thereof and allo s either specif -
ing an upper bound on the predicted cost, or alo er
bound on the predicted utilit .

The main novelt of our presented approach is
the e plicit modeling and selection of segments of
various si es, such that annotation ef cienc 1is opti-
mi ed according to the speci ed constraints.  hile
some or s (Sassano and urohashi, 2010; eubig
et al., 2011) have proposed using subsentential seg-
ments, e are nota are of an previous or that
e plicitl optimi es that segmentation.

7 Conclusion

e presented a method that can effectivel choose
a segmentation of a language corpus that optimi es
supervision ef cienc , considering not onl the ac-
tual usefulness of each segment, but also the anno-
tation cost. e reported noticeable improvements
over strong baselines int o user studies. Future user
e periments ith more participants ould be desir-
able to verif our observations, and allo further
anal sis of different factors such as annotator e -
pertise. Also, future research ma improve the user
modeling, hich ill be bene cial for our method.

Acknowledgments

The research leading to these results has received

funding from the European nion Seventh Frame-
or Programme (FP7/2007-2013) under grant

agreement n 287658  ridges Across the Language
ivide (E - R E).



References

u a A ita, asato imura, and Tatsu a a ahara.
2009. Automatic Transcription S stem for eetings
of the apanese ational Congress. n Interspeech,
pages 84-87, righton,

Trevor Cohn and Lucia Specia. 2013.  odelling Anno-
tator ias ith wulti-tas  aussian Processes: An Ap-
plication to  achine Translation wualit Estimation.
n Association for Computational Linguistics Confer-
ence (ACL), So a, ulgaria.

Pinar onme and aime Carbonell. 2008. Proactive
Learning : Cost-Sensitive Active Learning ith ul-
tiple mperfect racles. n Conference on Information
and Knowledge Management (CIKM), pages 619-628,

apa alle ,CA, SA.
esus on ale -Rubio, aniel rti - art ne , and Fran-
cisco Casacuberta. 2010. alancing ser Effort and
Translation Error in nteractive achine Translation
ia Con dence easures. n Association for Compu-
tational Linguistics Conference (ACL), Short Papers
Track, pages 173—177, ppsala, S eden.
esus on ale -Rubio, aniel rti - art ne , and Fran-
cisco Casacuberta. 2011. An active learning scenario
for interactive machine translation. n International
Conference on Multimodal Interfaces (ICMI), pages
197-200, Alicante, Spain.

urobi ptimi ation. 2012. urobi ptimi er Refer-
ence anual.
holamre a affari, a im Ro , and Anoop Sar ar.

2009. Active Learning for Statistical Phrase-based

achine Translation. n North American Chapter
of the Association for Computational Linguistics -
Human Language Technologies Conference (NAACL-
HLT), pages 415-423, oulder, C , SA.

Stefan rnich and u  esaulniers. 2005. Shortest Path
Problems ith Resource Constraints. n Column Gen-
eration, pages 33—65. Springer  S.

iuo ae a a. 2008. alanced Corpus of Contem-
porar  ritten apanese. n International Joint Con-
ference on Natural Language Processing (IJCNLP),
pages 101-102,  derabad, ndia.

R. Timoth  arler and asbir S. Arora. 2004. Surve
of multi-ob ective optimi ation methods for engineer-
ing. Structural and Multidisciplinary Optimization,
26(6):369-395, April.

Evgen atusov, Arne auser,and ermann e . 2006.

Automatic Sentence Segmentation and Punctuation
Prediction for Spo en Language Translation. n Inter-
national Workshop on Spoken Language Translation
(IWSLT), pages 158-165, oto, apan.
iroai ano, u a A ita, and Tatsu a a ahara.
2006. Computer Assisted Speech Transcription S s-
tem for Ef cient Speech Archive. n Western Pacific
Acoustics Conference (WESPAC), Seoul, orea.

179

raham eubig, osu e a ata, and Shinsu e ori.
2011. Point ise Prediction for Robust , Adapt-
able apanese orphological Anal sis. n Associa-
tion for Computational Linguistics: Human Language
Technologies Conference (ACL-HLT), pages 529-533,

Portland, R, SA.

Atsunori ga a, Ta aai ori, and Atsushi a a-
mura. 2013. iscriminative Recognition Rate Esti-
mation For - estList and ts Application To - est

Rescoring. n International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 6832—

6836, ancouver, Canada.
udith Reitman 1Ison and ar Ison. 1990. The
ro th of Cognitive odeling in uman-Computer

nteraction Since S. Human-Computer Interac-
tion, 5(2):221-265, une.

Fredri  Isson. 2009. A literature surve of active ma-
chine learning in the conte t of natural language pro-
cessing. Technical report, S CS S eden.

avid Pisinger. 1994. A  inimal Algorithm for the
ultiple-Choice napsac Problem. European Jour-
nal of Operational Research, 83(2):394-410.

ohn C. Platt. 1999. Probabilistic utputs for Sup-
port ector achines and Comparisons to Regulari ed
Li elihood ethods. n Advances in Large Margin

Classifiers, pages 61-74. T Press.

Carl E. Rasmussen and Christopher illiams. 2006.
Gaussian Processes for Machine Learning. T
Press, Cambridge, A, SA.

saias Sanche -Cortina, icolas Serrano, Alberto San-
chis, and Alfons uan. 2012. A protot pe for nter-
active Speech Transcription alancing Error and Su-
pervision Effort. n International Conference on Intel-
ligent User Interfaces (IUI), pages 325-326, Lisbon,
Portugal.
anabu Sassano and Sadao urohashi. 2010.  sing
Smaller Constituents Rather Than Sentences in Ac-
tive Learning for apanese ependenc Parsing. n
Association for Computational Linguistics Conference
(ACL), pages 356-365, ppsala, S eden.

urr Settles, ar Craven, and Le is Friedland. 2008.
Active Learning ith Real Annotation Costs. n
Neural Information Processing Systems Conference
(NIPS) - Workshop on Cost-Sensitive Learning, La e
Tahoe, , nited States.
urr Settles. 2008. An Anal sis of Active Learning
Strategies for Se uence Labeling Tas s. n Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1070-1079, onolulu, SA.
agen Soltau, Florian et e, Christian Fugen, and Ale
aibel. 2001. A ne-Pass ecoder ased on Pol -
morphic Linguistic Conte t Assignment. n Auto-
matic Speech Recognition and Understanding Work-



shop (ASRU), pages 214-217, adonna di Campiglio,
tal .

Lucia Specia. 2011. E ploiting b ective Annota-
tions for easuring Translation Post-editing Effort. n
Conference of the European Association for Machine
Translation (EAMT), pages 73-80, ice, France.
atthias Sperber, raham eubig, Christian Fugen,
Satoshi a amura, and Ale aibel. 2013. Ef cient
Speech Transcription Through Respea ing. n Inter-
speech, pages 1087-1091, L on, France.

ernhard Suhm, rad ers, and Ale aibel. 2001.

ultimodal error correction for speech user inter-
faces. Transactions on Computer-Human Interaction,
8(1):60-98.

Evimaria Ter i and Pana iotis Tsaparas. 2006. Ef cient
algorithms for se uence segmentation. n SIAM Con-
ference on Data Mining (SDM), ethesda, , SA.

atrin Tomane and do ahn. 2009. Semi-Supervised
Active Learning for Se uence Labeling. n Interna-
tional Joint Conference on Natural Language Process-
ing (IJCNLP), pages 1039-1047, Singapore.
atrin Tomane , do ahn, and Steffen Lohmann.
2010. A Cognitive Cost  odel of Annotations ased
on E e-Trac ing ata. n Association for Compu-
tational Linguistics Conference (ACL), pages 1158—
1167, ppsala, S eden.

Paolo Toth and aniele igo. 2001. The Vehicle Routing
Problem. Societ for ndustrial Applied athemat-
ics (S A ), Philadelphia.

Sudheendra ia anarasimhan and risten rauman.
2009. hats t oing to Cost ou : Predicting Ef-
fort vs. nformativeness for ulti-Label mage Anno-
tations. n Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2262-2269, iami

each, FL, SA.

Sudheendra i a anarasimhan, Pratee ain, and risten

rauman. 2010. Far-sighted active learning on a bud-
get for image and video recognition. n Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 3035-3042, San Francisco, CA, SA, une.

180



