Syntactic SMT Using a Discriminative Text Generation Model

Yue Zhang	Kai Song	Linfeng Song	Jingbo Zhu	Qun Liu
SUTD, Singapore	NEU, China	ICT/CAS, China	NEU, China	CNGL, Ireland
yue_zhang@sutd.edu.sg	songkai.sk@alibaba-inc.com	songlinfeng@ict.ac.cn	zhujingbo@mail.neu.edu.cn	qliu@computing.dcu.ie

Introduction

- Syntactic Machine Translation
 - o Translation by *parsing* (traditional)
 - Translation rules
 - Encode target order
 - Advantage:
 - Efficient

- **Synthesis**
- Based on Zhang (2013)
- Search
 - o Learning guided search
- Model
 - Scaled linear model

- Disadvantage:
 - On adequacy:
 - noise, coverage, rules
 - On fluency:
 - no free ordering
- o Translation by *generation* (this work)
 - No translation rules
 - parse \rightarrow transfer \rightarrow synthesis
 - Advantage:
 - More psycho-linguistically motivated
 - No hard rules
 - Soft source constraints in target synthesis
 - Disadvantage:
 - complexity
- Our work
 - o Preliminary study on translation by generation
 - o Based on recent work: syntactic linearization (Zhang, 2013)
 - Perform word selection
 - o Add bilingual features

 $Score(e) = \frac{\vec{\theta} \cdot \Phi(e)}{|e|}$

...

• Features

• Base monolingual features

dependency syntax $WORD(h) \cdot POS(h) \cdot NORM(size)$ $WORD(h) \cdot NORM(size), POS(h) \cdot NORM(size)$ $POS(h) \cdot POS(m) \cdot POS(b) \cdot dir$ $POS(h) \cdot POS(h_l) \cdot POS(m) \cdot POS(m_r) \cdot dir (h > m),$ $POS(h) \cdot POS(h_r) \cdot POS(m) \cdot POS(m_l) \cdot dir (h < m)$ $WORD(h) \cdot POS(m) \cdot POS(m_l) \cdot dir,$ $WORD(h) \cdot POS(m) \cdot POS(m_r) \cdot dir$ $POS(h) \cdot POS(m) \cdot POS(m_1) \cdot dir$, $POS(h) \cdot POS(m_1) \cdot dir, POS(m) \cdot POS(m_1) \cdot dir$ $WORD(h) \cdot POS(m) \cdot POS(m_1) \cdot POS(m_2) \cdot dir,$ $POS(h) \cdot POS(m) \cdot POS(m_1) \cdot POS(m_2) \cdot dir$,

surface string patterns (B—bordering index) $WORD(B-1) \cdot WORD(B), POS(B-1) \cdot POS(B),$ $WORD(B-1) \cdot POS(B), POS(B-1) \cdot WORD(B),$ $WORD(B-1) \cdot WORD(B) \cdot WORD(B+1),$ $WORD(B-2) \cdot WORD(B-1) \cdot WORD(B),$ $POS(B-1) \cdot POS(B) \cdot POS(B+1),$

o New bilingual features

bilingual syntactic features (LEN $(path) \le 3$) $Pos(th) \cdot Pos(tm) \cdot dir \cdot LABELS(path),$ $WORD(th) \cdot POS(tm) \cdot dir \cdot LABELS(path),$ $Pos(th) \cdot WORD(tm) \cdot dir \cdot LABELS(path),$ $WORD(th) \cdot WORD(tm) \cdot dir \cdot LABELS(path),$ $WORD(sh) \cdot WORD(sm) \cdot dir \cdot LABELS(path),$ $WORD(sh) \cdot WORD(th) \cdot dir \cdot LABELS(path),$ $WORD(sm) \cdot WORD(tm) \cdot dir \cdot LABELS(path),$ $Pos(th) \cdot Pos(tm) \cdot dir \cdot LABELSPOS(path),$ $WORD(th) \cdot POS(tm) \cdot dir \cdot LABELSPOS(path),$ $Pos(th) \cdot WORD(tm) \cdot dir \cdot LABELSPOS(path),$ $WORD(th) \cdot WORD(tm) \cdot dir \cdot LABELSPOS(path),$ $WORD(sh) \cdot WORD(sm) \cdot dir \cdot LABELSPOS(path),$ $WORD(sh) \cdot WORD(th) \cdot dir \cdot LABELSPOS(path),$ $WORD(sm) \cdot WORD(tm) \cdot dir \cdot LABELSPOS(path),$

dependency syntax for completed words $WORD(h) \cdot POS(h) \cdot WORD(h_l) \cdot POS(h_l),$ $POS(h) \cdot POS(h_l),$ $WORD(h) \cdot POS(h) \cdot POS(h_l),$ $POS(h) \cdot WORD(h_l) \cdot POS(h_l)$, $WORD(h) \cdot POS(h) \cdot WORD(h_r) \cdot POS(h_r),$ $POS(h) \cdot POS(h_r),$

surface string patterns for complete sentences $WORD(0), WORD(0) \cdot WORD(1),$ WORD(size -1), $WORD(size - 1) \cdot WORD(size - 2),$ $POS(0), POS(0) \cdot POS(1),$ $POS(0) \cdot POS(1) \cdot POS(2),$

phrase translation	on features
$PHRASE(m) \cdot PH$	RASE(t), P(trans),
bilingual syntact	ic features
$Pos(th) \cdot Pos(tr$	$n) \cdot dir \cdot \text{LEN}(path),$
$WORD(th) \cdot Pos$	$(tm) \cdot dir \cdot \text{LEN}(path),$
$Pos(th) \cdot WORD$	$(tm) \cdot dir \cdot \text{LEN}(path),$
$WORD(th) \cdot WO$	$RD(tm) \cdot dir \cdot LEN(path).$

Approach

Source sentence

• Source parser: ZPar (Zhang and Nivre, 2011)

$WORD(sh) \cdot WORD(sm) \cdot dir \cdot LEN(path),$ $WORD(sh) \cdot WORD(th) \cdot dir \cdot LEN(path),$ $WORD(sm) \cdot WORD(tm) \cdot dir \cdot LEN(path),$

Experiments

- Dataset
 - o IWSLT 2010 Chinese-English
- Baselines (traditional syntactic)
 - o String to tree (S2T)
 - o Tree to string (T2S)
 - o Tree to tree (T2T)
- Results

System	T2S	S2T	T2T	OURS
BLEU	32.65	36.07	28.46	34.24

References

- Lexical transfer
 - o IBM model 4 alignment
 - o Consistent and cohesive phrase extracted
 - o Target projective span
 - o Filter translation options by probability
- Synthesis
 - o Input: translation options
 - o Mutually exclusive by source coverage
 - o Output: target dependency tree

o Yue Zhang, 2013. Partial-Tree Linearization: Generalized Word Ordering for Text Synthesis. In proceedings of IJCAI. o Yue Zhang and Joakim Nivre, 2011. Transition-Based Dependency Parsing with Rich Non-Local Features. In proceedings of ACL.

Acknowledgement

The work has been supported by the Singapore Ministration of Education Tier 2 project T2MOE201301 and the startup grant SRG ISTD 2012 038 from SUTD.