Aligning English Strings with Abstract Meaning Representation Graphs Nima Pourdamghani Yang Gao Ulf Hermjakob Kevin Knight Information Sciences Institute University of Southern California

Overview

Abstract Meaning Representation (AMR) [1]:

- Logical meaning of sentences
- Directed acyclic graphs with labeled edges

The boy wants to go (w / want-01 instance (w / want-01) arg (b / boy) arg (g / go-01) instance (g / go-0

- Find alignment links between English tokens and AMR concepts
- Alignments are required for: Semantic parsing English generation

Approach

- Similar to Statistical Machine Translation
- Linearize AMR graph (not obvious how)
- Use string / string alignment
- · Easier than SMT

AMR and English are highly cognate

Harder

AMR is a graph with unordered nodes Much less training data than in SMT

Corpus

- 13050 public AMR/English sentence pairs
- Hand Aligned 200 100 dev, 100 test
- Ratio of aligned tokens in the gold data English: ~3/4 AMR: ~ 1/2

AMR role tokens: ~ 1/4

	train	dev	test
Sent. pairs	13050	100	100
ENG tokens	248 K	2.3 K	1.7 K
AMR tokens	465 K	3.8 K	2.3 K
AMR role tokens	226 K	1.9 K	1.1 K

The process

Preprocess

The boy wants to go (w / want-01 :arg0 (b / boy) :arg1 (g / go-01 :arg0 b))

- Linearize AMR: w/want-01 :arg0 b/ boy :arg1 g/go-01 :arg0 b
- Remove stopwords
 English: boy wants go
 AMR: want-01 boy go-01
- Remove word sense indicator, etc. in AMR want boy go
- Stem both English and AMR to first four letters

Precision, Recall, F-measure

• Experiment setup (Model 4+):

Model

HMM

Model 1

Model 4

Model 4+

Model 1

Model 4

Model 4+

Test set was intrinsically harder

dev and test sets on Model 4

HMM

We used Mgiza++ as implementation of IBM models

5 × Model 1 + 5 × HMM + 4 × symmetrized Model 4

precision recall

70.9

87.6

89.7

94.1

74.8

83.8

85.8

92.4

Symmetrization increased F-measure by 1.7 and 3.1 points for

English: boy want go AMR: want boy go

Experiments

Dev

Test

Extend Parallel Corpus

- Tokens that look the same after stemming boy boy want want go go
- English tokens that map to multiple AMR ones higher high :degree more biggest big :degree most november :month 11

Training

F score

71.1

80.1

80.4

80.0

71.8

73.8

74.9

75.6

71.0

83.7

84.8

86.5

73.2

78.5

80.0

83.1

- Based on IBM word alignment models [2]
- Use EM to maximize likelihood:
- Generating AMR from English $\theta_{A|E} = argmax L_{\theta_{A|E}}(A|E)$
- Or, generating English from AMR $\theta_{E|A} = argmax L_{\theta_{E|A}}(E|A)$
- Decoding: get the most probable alignments given parameters using Viterbi algorithm

Symmetrized EM

- · Word alignment is symmetric
- · Training should be symmetric as well
- New objective:

 $\theta_{A,E} = argmax \left(L_{\theta_{A|E}}(A|E) + L_{\theta_{E|A}}(E|A) \right)$ Subject to: $\theta_{A|E}\theta_{E} = \theta_{E|A}\theta_{A} = \theta_{A,E}$

- Approximate solution:
 - 1- optimize $\theta_{A|E} = argmax L_{\theta_{A|E}}(A|E)$
 - 2- satisfy constraint, initialize $\theta_{E|A} \propto \theta_{A|E}$
 - 3- optimize $\theta_{E|A} = argmax \ L_{\theta_{E|A}}(E|A)$ 4- satisfy constraint, initialize $\theta_{A|E} \propto \theta_{E|A}$
 - 4- satisfy constraint, initialize $\theta_{A|E} \propto \theta_{E|A}$ 5- Iterate
- · Steps 1 and 3: EM (IBM models)
- Steps 2,4: simple initialization
- No extra code needed

Postprocess

- Goal: rebuild the aligned AMR graph
- Restore stopwords, change alignments
- Rebuild graph using recorded original structure

Error Sourcesperformance breakdown for AMR role and non-role tokens

	token type	precision	recall	F score
Dev	role	77.1	48.7	59.7
	non-role	97.2	88.2	92.5
	all	94.1	80.0 (34%)	86.5
Test	role	71	37.8	49.3
	non-role	95.5	84.7	89.8
	all	92.4	75.6 (36%)	83.1

Most of the error is on role tokens

role tokens don't have a specific translation in English some hardly get aligned to any English word :unit. :value. ...

some can align to many different English words :manner to most of the adverbs

they can match to part of an English word :polarity to **un**popular

or the connection might be very implicit

(t / thank-01 :arq0 (i / i) :arq1 (y / you)) to thanks

About 35% of recall loss is due to removing aligned stop words

Conclusions Future Work

We have presented:

- The first set of manually aligned English/AMR pairs (available in amr.isi.edu)
- The first system, and a strong baseline, for learning alignments between English sentences and AMR graphs
- The system is adaptable to any domain and any language
- First step for parsing AMR from English and generating English from AMR

References

[1] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight, P. Koehn, M. Palmer, and N. Schneider. 2013. Abstract meaning representation for sembanking. Linguistic Annotation Workshop (LAW VII-ID), ACL.

[2] P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and R. L. Mercer. 1993. The mathematics of statistical machine translation: Parameter estimation. Computational linguistics, 19(2):263–311

Acknowledgements

This work was supported by DARPA contracts HR0011-12-C-0014 and FA-8750-13-2-0045. The authors would like to thank David Chiang, Tomer Levinboim, and Ashish Vaswani for their comments and suggestions.

John Lennon Wall, Prague.
Thanks to: J. Flanigan, C. Wang, and Y. Zhang!