A Neural Network for Factoid Question Answering over Paragraphs

code & data: http://cs.umd.edu/~miyyer/qblearn

Mohit lyyer¹, Jordan Boyd-Graber², Leonardo Claudino¹, Richard Socher³, and Hal Daumé III¹

University of Maryland, College Park¹

University of Colorado, Boulder²

Stanford University³

THE TASK: QUIZ BOWL

Quiz bowl is a trivia game where players are read paragraph-length questions and can "buzz in" at any point during the question.

Q: He left unfinished a novel whose title character forges his father's signature to get out of school and avoids the draft by feigning desire to join. A more famous work by this author tells of the rise and fall of the composer Adrian Leverkühn. Another of his novels features the jesuit Naptha and his opponent Settembrini, while his most famous work depicts the aging writer Gustav von Aschenbach. For ten points, name this German author of The Magic Mountain and Death in Venice.

A: Thomas Mann

WHY IS THIS CHALLENGING?

- Question pyramidality: earlier sentences contain harder clues than later ones
- Early sentences usually contain very few if any named entities indicative of the answer
- Have to decide when to answer the question as well as what answer to give

WHY NOT TRADITIONAL QA?

- IR systems work by querying some large knowledge base for terms similar to those in the query. But what if the query lacks informative terms?
- In such cases, we have to model the compositionality of the query.

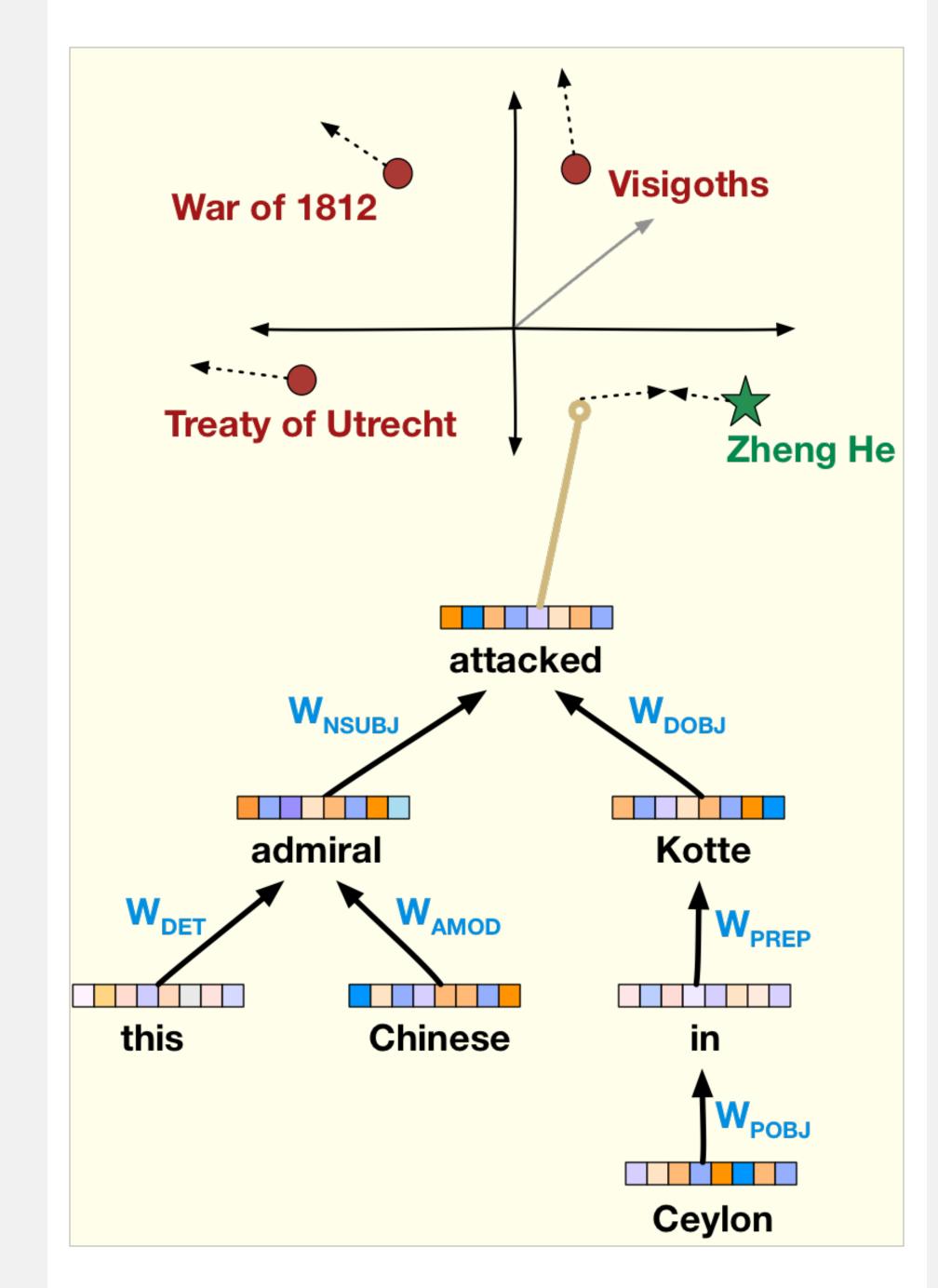
CONTRIBUTIONS OF OUR WORK

- A dependency-tree recursive neural network model, QANTA, that computes distributed question representations to predict answers.
- QANTA outperforms multiple strong baselines and defeats human quiz bowl players when combined with IR methods.

MOTIVATING THE MODEL

caption image mapping.

HOW DOES IT WORK?



- Each word is associated with a vector x_w
- Each dependency relation r is associated with a matrix W_r
- The hidden representation **h**_n at node **n** is:

$$f(W_v \cdot x_w + b + \sum_{k \in K(n)} W_{R(n,k)} \cdot h_k)$$

• Paragraph representations are computed by averaging sentence representations.

HOW IS IT TRAINED?

- We want to push a computed question representation h_q close to its answer and far away from incorrect answers.
- We randomly sample *j* incorrect answers for each question and minimize a contrastive max-margin objective.
- The WARP loss proposed in Weston et al. (IJCAI, 2011) significantly improves accuracy.

EXPERIMENTAL MODELS:

- BoW, BoW-DT unigram bag-of-words logistic regression baseline
- IR-QB, IR-WIKI uses Whoosh, an IR engine, to search a knowledge base of training QA pairs and Wikipedia with BM-25 term weighting, query expansion, and fuzzy queries.
- QANTA, FIXED QANTA our DT-RNN model, trained only on QA pairs, vary answer training
- QANTA + IR-WIKI combines DT-RNN features with IR scores, our best model

DATA:

- Data was provided by NAQT (naqt.com).
- History dataset: 4,460 questions (16,985 sentences), literature dataset: 5,685 questions (21,549 sentences).

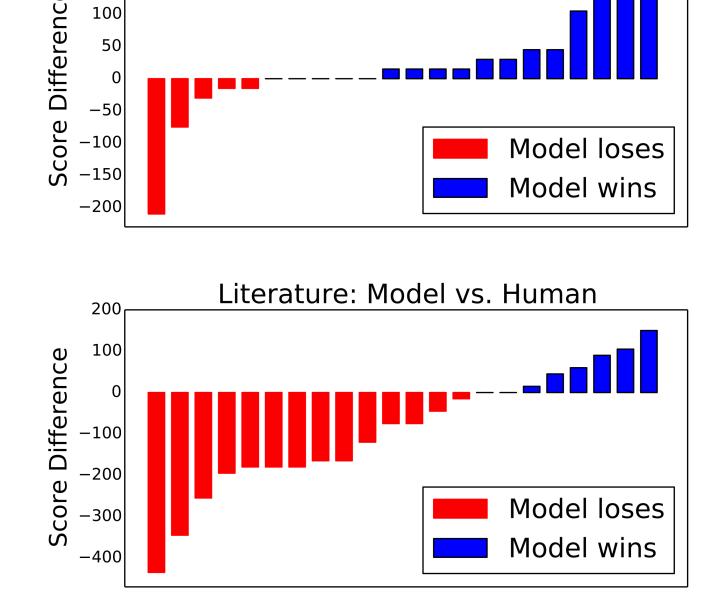
RESULTS:

	History			Literature		
Model	Pos 1	Pos 2	Full	Pos 1	Pos 2	Full
BOW	27.5	51.3	53.1	19.3	43.4	46.7
BOW-DT	35.4	57.7	60.2	24.4	51.8	55.7
IR-QB	37.5	65.9	71.4	27.4	54.0	61.9
FIXED-QANTA	38.3	64.4	66.2	28.9	57.7	62.3
QANTA	47. 1	72. 1	73.7	36.4	68.2	69.1
IR-WIKI	53.7	76.6	77.5	41.8	74.0	73.3
QANTA+IR-WIKI	59.8	81.8	82.3	44.7	78.7	76.6

HUMAN EVALUATION:

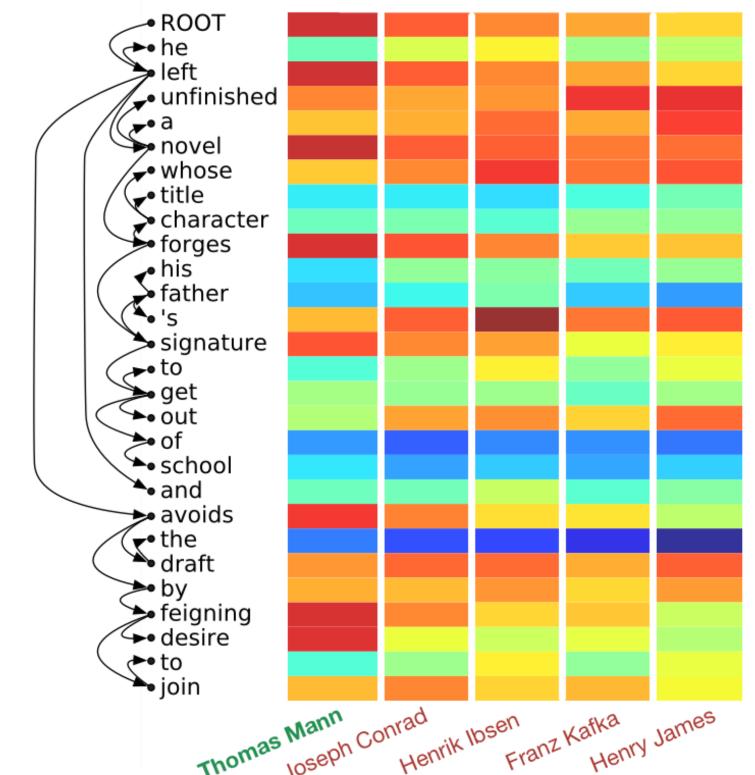
We compare our model to 22 skilled quiz bowl players on both datasets; we beat the average human at history questions.

History: Model vs. Human



LEARNING ATTRIBUTES

QANTA IN ACTION:



QANTA builds on the DT-RNN model

george, washington john_adams frankin_plerce andrew jackson john_adams ellerson john_adams ellerson john_adams ellerson john_adams ellerson andrew jackson millard_willshif_henry_harrison grover_cleveland benjamin_harrison ronald_reagan jimmy_carter woodrow_wilson martin_van_buren william_mckinley calvin_coolidge william_howard_taft herbert_noover Wars, rebellions, and battles U.S. presidents Prime ministers Explorers & emperors Policies Other

FUTURE WORK:

 demo QANTA at the 2015 NAQT High School National Championships

questions and answers in the same vector space.

The key difference: we train both the

introduced by Socher et al. (TACL, 2014) for

- Why is this useful? We don't want to treat answers as independent of one another.
 - The *Battle of the Bulge* may occur in questions about *World War II*, and vice versa.
- The bag-of-words model of Boyd-Graber et al. (EMNLP, 2012) lost to human players because it was unable to answer quickly.