

JOINT RELATIONAL EMBEDDINGS FOR KNOWLEDGE-BASED QUESTION ANSWERING

MIN-CHUL YANG[†], NAN DUAN[‡], MING ZHOU[‡], AND HAE-CHANG RIM[†] MCYANG@NLP.KOREA.AC.KR / †KOREA UNIVERSITY, SEOUL, KOREA / †MICROSOFT RESEARCH ASIA, BEIJING, CHINA

Motivation

- Fundamental Issues in KB-QA
 - Given a natural language question,
 - 1. How to identify entity spans of the question?
 - 2. How to map the question to its corresponding logical
- ✓ Solution: Jointly train semantic relations between a question context and logical properties of KB (entities and logical predicates) in the same embedding space.

Relational Components for KB-QA

- Question context (C): represented as n-grams
- Entity type (T): abstract expression of target entities
- Logical predicate (P): canonical form of NL relation phrases

NLE-KB Pair Extraction

- NLE-KB pair: semantically associated tuples for training relational embeddings between NL and KB space
 - <Relation Mention, Predicate> pair (MP)

- - $\gt S(m,p) = \mathsf{PMI}(e_m;e_p) + \mathsf{PMI}(u_m;u_p)$
- <Question Pattern, Predicate> pair (QP)
 - Frequent lexical patterns starting with 5W1H words in Web-query logs (Bao et al., 2014)

Joint Relational Embedding Learning

- · Construction of training instances
 - 1. Each NLE-KB pair → multiple training triplets
 - Training triplet w = [C, t, p] (C: NLE, t and p: KB)
 - 2. Each training triplet → 3 training pairs
 - Training pairs: $\mathbb{R} = \{\mathbb{C} t, \mathbb{C} p, t p\}$
 - ✓ In C, the placeholder "<entity>" for a target entity is left
- · Ranking loss-based learning (Weston et al., 2010)
- ✓ Assumption: similarity scores of observed pairs in the training set should be higher than those of any other pairs
 - $\Rightarrow \forall i, \forall y' \neq y_i, Sim(x_i, y_i) > 1 + Sim(x_i, y')$
 - Similarity score: $Sim(a,b) = Sim(r_{ab}) = \mathbb{E}(a)^{\mathsf{T}}\mathbb{E}(b)$
- Embeddings of C, T, and P are trained under the SGD by the above criterion
 - $\forall i, \forall y' \neq y_i, \max(0, 1 Sim(x_i, y_i) + Sim(x_i, y'))$

KB-QA using Embedding Models

Given a natural language question α (single-related question).

- 1. Make all possible decoding triplets W^q , like a training triplet
 - C: n-grams of q (entity span is replaced with "<entity>")
 - to one of all available entity types via Search API on KB with all string spans in q (candidate entities; s)
 - p: one of all items in P (candidate logical predicates)
 - $\checkmark w_i^q = [C_i^q, t_i^q, p_i^q]$ is directly linked to KB-query $k_i^q =$ $[s_i^q, p_i^q, *]$, any entities on "*" can be potential answers
- 2. Score W^q through embedding space
 - \triangleright Similarities of $\mathbb{R}^q = \{ C_i^q t_i^q, C_i^q p_i^q, t_i^q p_i^q \}$ are computed
 - $Sim_{q2k}(q,k^q) = \sum_{m_0} Z(Sim(r))$ normalization
 - $\hat{k}(q) = \arg\max_{q \in \mathbb{R}^q} Sim_{q2k}(q, k) \longrightarrow \text{corresponding KB-query}$
- Multi-related question (# target entities = 2)
 - Heuristic rule: transformed to single-related question
 - > If a pre-defined pair of entity types is detected, they are combined into a concatenated entity type
 - > The concatenated entity is regarded as one of the candidate entities
 - Who plays gandalf in the lord of the rings? character film → character-in-film
- Example question: where is the city of david?

Experimental Evaluation

- · Resource: Satori KB / 4.4 M Wikipedia articles
- Features: 71,310 n-grams (uni-, bi-, tri-) / 990 entity types / 660 logical predicates (72,960 embeddings)
- Embedding learning: dimension=100, learning rate=0.00001
- · Evaluation data: publicly released QA data sets
 - Free917: 276 QA-pairs (Cai et al., 2013)
 - WebQuestions: 2,032 QA-pairs (Berant et al., 2013)
- Accuracy on evaluation data

•		
Methods	Free917	WebQ.
Cai and Yates (2013)	59.00%	N/A
Berant et al. (2013)	62.00%	31.40%
Bao et al. (2014)	N/A	37.50%
Our method	71.38%	41.34%

Accuracy: average of F₁ scores over all of test questions

- Accuracies of the other methods are from their papers
- Impacts of relationship types

Methods	Free917	WebQ.	
Our method	71.38%	41.34%	
w/o T-P	70.65%	40.55%	
w/o C - T	67.03%	38.44%	
w/o C - \mathcal{P}	31.16%	19.24%	\rightarrow Crucial role in KB-QA

- Problems to be solved
 - Complex questions requiring multiple stages to detect their target entities
 - Uncommon questions consisting of rare n-grams