Domain Adaptation for CRF-based Chinese Word Segmentation using Free Annotations

Yijia Liu†‡, Yue Zhang†, Wanxiang Che‡, Ting Liu‡, Fan Wu†

[†] Singapore University of Technology and Design [‡] Research Center for Social Computing and Information Retrieval Harbin Institute of Technology, China

Introduction

- Statistical Chinese word segmentation gains high accuracies on newswire
- Performance drops when testing domain switch from newswire to blog, computer forums and Internet literature
- There are free data which contain limited but useful segmentation information over the internet.
 - Lexicon
 - Wikipedia
- Contributions
 - adopting freely available data
 - different sources of free data are represented as partial segmentation.
 - o a variant of CRF is used to model partially annotated data.
 - https://github.com/ExpResults/partial-crfsuite

Example of Partial Data

(a) "在 (at) 狐岐山 (Huqi Mountain) 救治 (save) 碧瑶 (Biyao)", where "狐岐山" matches a lexicon word.

(b) "如 (e.g.) <u>乳铁蛋白</u> (lysozyme) 、 溶菌酶 (lactoferrin)", where "乳铁蛋白" is a hyperlink.

Experimental Results

- Free lexicon
 - CTB -> Zhuxian (A Chinese Internet novel)
 - o use the lexicon from Zhang et al. (2014), 159 entries for entity names.
 - People's Daily Corpus -> Medicine and Computer (sighan 2010 bakeoff data)
 - o use wiki page titles
 - o The model with lexicon feature (Sun and Xu, 2010) are also used as comparison.

System	Z	:X	Med	icine	Computer	
	F	Roov	F	Roov	F	Roov
Baseline	87.50	73.65	91.36	72.96	93.16	84.02
Baseline + Lexicon Feature	90.36	80.69	91.60	74.39	93.14	84.27
Baseline + PA(lex)	90.63	84.88	91.68	74.99	93.47	85.63
Zhang et al. (2014)	88.34					

- o Our method give better result than the lexicon feature method and Zhang et al.
 - o combining a lexicon with unannotated sentences is a better option than using the lexicon directly
- Free natural annotation
 - People's Daily Corpus -> Finance, Medicine, Literature, Computer
 - o using Wikipedia page as free natural annotation, perform selection against randomly selected data

Method	Finance		Medicine		Literature		Computer		Avg-F
	F	Roov	F	Roov	F	Roov	F	Roov	
Baseline	95.20	86.90	91.36	72.90	92.27	73.61	93.16	83.48	93.00
Baseline+PA(random)	95.16	87.60	92.41	78.13	92.17	75.30	93.91	83.48	93.41
Baseline+PA(selected)	95.54	88.53	92.47	78.28	92.49	76.84	93.93	87.53	93.61
Jiang et. al (2013)	93.16		93.34		93.53		91.19		92.80

- o The model incorporating selected data achieves better performance compared to the model with randomly sampled data
- Combining lexicion and natural annotation

	Medicine	Computer
	F	F
Baseline	91.36	93.16
Baseline + PA(lex)	91.68	93.47
Baseline + PA(natural)	92.47	93.93
Baseline + PA(lex+ natural)	92.63	9407

Analysis

- 1. Natural annotation on Wikipedia data contributes to the recognition of OOV words on domain adaptation;
- 2. target domains with more OOV words benefit more from Wikipedia data.
- 3. along with the positive effect on OOV recognition, Wikipedia data can also introduce noise, and hence data selection can be useful

Obtaining Partial Data

- Free lexicon
 - Forward maximum matching scheme is used to find subsequence that matches lexicon in the unlabeled data.
 - o If a lexicon entry is matched in sentence, the subsequence is tagged with the corresponding tags, and its surrounding characters are also constrained to a small set of tags.
 - o (a) in left figure illustrates this method.
- Free natural annotation
 - Natural annotation refers to word boundaries that can be inferred from URLs, fonts or colors on web pages, also result in partially annotated sentences.
 - o Problems:
 - incompatibility of segmentation standards between the annotated training data and Wikipedia.

People's	看到(saw)海南(Hainan) <u>旅游业(</u> tourist industry)充
Daily	满(full) 希望(hope)
	saw tourist industry in Hainan is full of hope
Wikipedia	主要(mainly) 是(is) <u>旅游(tourist)</u> 业(industry) 和(and) 软件(software) 产业(industry) mainly is tourist industry and software industry

o intrinsic ambiguity of segmentation

itilisic ambiguity of segmentation
《说文解字(Shuo Wen Jie Zi, a book) 段(segmented)
注(annotated)》
the segmented and annotated version of Shuo Wen
Jie Zi
每条(each) 记录(record) 被(is) 分隔(splitted) 为(into)
字段(fields)
each record is splitted into several fields

- o selection on natural annotated data is needed.
 - Any URL-tagged entry in a Wikipedia sentence matches the target domain data, the sentence is selected for training.

Modelling the partially annotated data

- CRF-based method by modeling the marginal probability over partially annotated data (Tsuboi et al. 2008).
 - Fully and partially annotated data are modeled together.
- o For each character's possible labels:
 - $\circ \quad \boldsymbol{L} = (L_1, L_2, \dots, L_T)$
- \circ Y_L be the set of all possible label sequences.
- o Probability:

$$p(Y_L|x) = \frac{1}{Z} \sum_{y \in Y_L} \exp \sum_{t=1}^T \sum_k \lambda_k f_k(y_t, y_{t-1}, x)$$

- o Likelihood:
 - $o \operatorname{let} Z_{Y_l} = \sum_{y \in Y_L} \exp \sum_{t=1}^T \sum_k \lambda_k f_k(y_t, y_{t-1}, x)$
 - $0 \quad \mathcal{L}_{Y_l} = \sum_{n=1}^{N} (\log Z_Y \log Z)$
- A modification on forward-backward algorithm is used to calculate the likelihood and its gradient.
- o L-BFGS is used to learning parameter from data.

Acknowledge

- National Key Basic Research Program of China via grant 2014CB340503
- National Natural Science Foundation of China (NSFC) via grant 61133012 and 61370164
- The Singapore Ministry of Education (MOE) AcRF
 Tier 2 grant T2MOE201301
- SRG ISTD 2012 038 from Singapore University of Technology and Design

