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e Minimum Viterb1 Margin (MVYM)

We experimentally investigate the behavior of several AL strategies for sequence SMVM(t x) = p(y;k
labeling tasks (in a partially-labeled scenario) tailored on Partially-Labeled Condli-
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tional Random Fields, on four sequence labeling tasks: phrase chunking, part-of-
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speech tagging, named-entity recognition, and bio-entity recognition. STE(t,x) = Zjey ply: = jlx, L) °p(Yyt:j‘X7 L)
e Minimum Expectation Difference (MED)
SYMEP(t,x) = SMH(t, x) — p(y*[x, L)

The Random (RAND) strategy samples random tokens without any external information.

INTRODUCTION

RESULTS

One of the main problem of machine leaning approaches lies in their need of large human-
annotated training data. The process of active learning (AL) asks human annotators to label
new samples which are supposed to be the most informative in the creation of a new clas-

sifier. In this work we focus on AL strategies for partially labeled sequences adopting the 7 0oF
single token, instead of the entire sequence, as annotation unit and Partially-Labeled CRFs
. . 0.90}
(PL-CRFs) [2] as learning algorithm. o8
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The marginal probability p(y; = j|x, L) is calculated as: p(y; = j|x, L) = AT where \, e e ||
L denotes a partially labeled information about a sequence. [ MVM
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The most probable sequence assignment y™ 1s calculated by the Viterbi algorithm. ' — meo ||
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0 T T; e MTM, MVM, and MVP, perform very good 1n all the tasks.

e ME strategy i1s always above the average and it 1s the best strategy in the Bio-NER task.

e For each iteration through the update batch 55, the most informative element ngb), accord-

. , e The AL strategies applied on the NER task suffer of some “random” drop of performance.
ing to the AL strategy &, is chosen.

This ph ' bably due to the missed cl t[1].
e [; is the set that contains the tokens automatically labeled by the classifier ®; and the * This phenomenon 1s probably due to the missed class efject |1]

information (e.g., confidence) associated to them.

e After the choice of the most informative token, the sets £, I/, and 7 are updated.

Greedy Strategies CONCLUSIONS
Select the most informative tokens regardless of the assignment performed by the Viterbi
algorithm.
We have presented several AL strategies tailored for PL-CRFs in a pool-based scenario.
¢ Minimum Token Probability (MTP) We have tested the proposed strategies on four different datasets for four different sequence

SMTP@7 X) = max;ey ply: = j|x, L) labeling tasks. Differently from f)ther similar WOﬂ.( in the field of AL, in this study we ha.ve
¢ Maximum Token Entropy (MTE ) shown that margin-based strategies constantly achieve good performance on four tasks with

MTE . , very different data characteristics.
SYHE(t, x) = ey p(ys = jIx, L) - log p(y; = j|x, L)
e Minimum Token Margin (MTM)

SYIM (¢ x) = max;ey p(yr = jlx, L) — max;ey p(y: = j|x, L)
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