Neural Networks Leverage Corpus-wide Information for Part-of-speech Tagging

Yuta Tsuboi <yutat@jp.ibm.com>
IBM Research – Tokyo

Overview

- Using a feature combination of
 - local context information and
 - corpus-wide information
- State-of-the-art POS tagging accuracies
 - PTB-WSJ: 97.51% (ours) VS. 97.50% (Søggard, 2011)
 - CoNLL2009: 98.02%(ours) VS. 97.84%(Bohnet and Nivre, 2012)

Four types of corpus-wide features

- Word embeddings (w2v and glv)
 - word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)
- POS tag distribution (pos)
 - Pr(pos | w_t); Pr(pos | affix_t); Pr(pos | spelling_t)
- Supertag distribution (stag)
 - Pr(stag | w_t); Supertags are dependency labels and directions of parent/children, e.g. "nn/L" (Ouchi et al., 2014)
- Context word distribution(cw)
 - $-Pr(w_{t-1} \mid w_t); Pr(w_{t+1} \mid w_t);$ (Schnabel and Sch¨utze, 2014)

Activation Functions

- Let v be a linear filter: $\mathbf{v} = \mathbf{\theta}^T \mathbf{x}$
- Rectified Linear Units (ReLUs)

 $h = \max(v_1, v_2, \dots, v_n)$

Normalized L_p pooling (L_p)

Results on Penn Treebank (PTB-WSJ)

Evaluation of the hybrid model

Neural Network Settings			Development Set		Test Set	
Activation functions	#Hidden	Group size (G)	All	Unk.	All	Unk.
Linear model	-	-	97.45	90.22	97.46	91.39
ReLUs	384	1	97.45	90.87	97.42	91.04
$L_p(p=2)$	48	8	97.52	90.91	97.51	91.64
$L_p(p=3)$	32	8	97.51	90.91	97.51	91.53
MAXOUT	48	8	97.50	90.89	97.50	91.67
$L_p(p=2)$ (w/o linear part)	48	8	97.39	91.18	97.40	91.23

Feature engineering using linear model

• Evaluation results of corpus-wide features on dev. set.

All token accuracy (%), /

A hybrid architecture

- Linear model for **local context features**, e.g. the neighborhood of the target word
 - Sparse discrete vectors
- Neural nets for corpus-wide features, e.g. the distribution of neighbor words
 - Dense continuous vectors

Why neural net. for continuous features?

- The non-linearity of discrete features has been exploited by the simple conjunction of the discrete features.
- In contrast, the non-linear feature design of continuous features is **not intuitive**.

Online learning of a left-to-right tagger

- Deterministically predicts each tag using prediction history (Choi and Palmer, 2012)
 - Binary features: N-grams, affix, spelling types, etc.
- A variant of the on-the-fly example generation algorithm (Goldberg and Nivre, 2012)
 - Using the prediction of the previously learned model as prediction history to overcome error propagation.
- FTRLProximal algorithm (McMahan, 2011) with Adagrad (Duchi et al., 2010)
 - Multi-class hinge loss + L1/L2 regularization terms
- Random hyper-parameter searches (Bergstra and Bengio, 2012)
 - Initial weights; initial weight range; momentum;
 learning rate; regularization, epoch to start the regularizations, etc. (256 initial weights are tried!)

Learned representations

Scatter plots of verbs for all combinations between the first 4 principal components of the raw features and the

