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for Part-of-speech Tagging

Overview

• Using a feature combination of

• local context information and 

• corpus-wide information

• State-of-the-art POS tagging accuracies

• PTB-WSJ: 97.51% (ours) vs. 97.50% (Søggard, 2011)

• CoNLL2009: 98.02%(ours) vs. 97.84%(Bohnet and Nivre, 2012)

Learned representations
Scatter plots of verbs for all combinations between the 
first 4 principal components of the raw features and the 
activation 
of hidden 
variables.

PCA of hidden activations

A hybrid architecture
• Linear model for local context features, e.g. 

the neighborhood of the target word
– Sparse discrete vectors 

• Neural nets for corpus-wide features, e.g. the 
distribution of neighbor words 
– Dense continuous vectors

Four types of corpus-wide features
• Word embeddings (w2v and glv)

– word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)

• POS tag distribution (pos)
– Pr(pos | wt); Pr(pos | affixt); Pr(pos | spellingt)

• Supertag distribution (stag) 
– Pr(stag | wt); Supertags are dependency labels and 

directions of parent/children, e.g. “nn/L” (Ouchi et al., 2014)

• Context word distribution(cw)
– Pr(wt-1 | wt); Pr(wt+1 | wt); (Schnabel and Sch¨utze, 2014)

Why neural net. for continuous features?
• The non-linearity of discrete features has been 

exploited by the simple conjunction of the 
discrete features. 

• In contrast, the non-linear feature design of 
continuous features is not intuitive.

Activation Functions
• Let v be a linear filter:  

• Rectified Linear Units (ReLUs)

• Maxout networks (MAXOUT) 

• Normalized Lp pooling (Lp)
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Online learning of a left-to-right tagger
• Deterministically predicts each tag using 

prediction history (Choi and Palmer, 2012) 

– Binary features: N-grams, affix, spelling types, etc.

• A variant of the on-the-fly example generation 
algorithm (Goldberg and Nivre, 2012)

– Using the prediction of the previously learned model 
as prediction history to overcome error propagation.

• FTRLProximal algorithm (McMahan, 2011) with Adagrad 
(Duchi et al., 2010)

– Multi-class hinge loss + L1/L2 regularization terms

• Random hyper-parameter searches 
(Bergstra and Bengio, 2012)

– Initial weights; initial weight range; momentum;
learning rate; regularization, epoch to start the 
regularizations, etc. (256 initial weights are tried!)

Feature engineering using linear model 
• Evaluation results of corpus-wide features on 

dev. set.
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Results on Penn Treebank (PTB-WSJ)
• Evaluation of the hybrid model
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