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• Labeled training in NLP is heavily biased	


• Importance Weighting is one way to address data bias 	


• However, only few applications in NLP and mixed results   

(Jiang & Zhai, 2007; Foster et al. 2010; Søgaard & Haulrich, 2011; Plank & Moschitti, 2013)

Motivation
• Does importance weighting work for unsupervised domain 

adaptation of POS taggers?

Research Question Results

Conclusions & Future Work

• A negative result about importance weighting for unsupervised domain 
adaptation of POS taggers.	



• None of the examined weightings lead to significant improvements	


• Most errors due to unseen words (high OOV rate):	



• average word form ambiguity and POS bigram KL divergence low; 
thus, little space here for improvement for IW	



• Instead, robust improvements by using  Wiktionary-based  
type constraints (Täckström et al., 2013)	



• Future work: further weight functions, data sets, NLP tasks. 
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Sample Selection Bias

Off-the-shelf POS tagger

The/DT share/NN  rose/VBD  to/TO  10/CD  $/$  a/DT  unit/NN ./. 

May/NNP  I/PRP  brrow/VBP  10bucks/UH 
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(Søgaard & Haulrich, 2011)

Token-based domain classifier

on test sets;  results were similar for other representations (Brown, Wiktionary)
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baseline 1-gram 2-gram 3-gram 4-gram

avg tag ambiguity  1.09           1.07           1.07              1.05          1.05           
KL-div:                  0.05           0.04           0.03              0.01          0.01 
OOV:                    27.7           29.5           29.9              22.1          23.1
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• English Web Treebank:	


• Source: Ontonotes WSJ	


• Target domains (5):  

answers, emails, reviews, weblogs, newsgroups 

• Weighted structured perceptron 

• Code available:  
https://bitbucket.org/bplank/importance-weighting-exp 
https://github.com/coastalcph/rungsted  

Weight functions

a) domain classifier

b) randomly sampled weights

Random weightings

Cross-Domain Gulf

https://bitbucket.org/bplank/importance-weighting-exp
https://github.com/coastalcph/rungsted

