Exploiting Social Relations and Sentiment for Stock Prediction
Jianfeng Si”, Arjun Mukherjee®, Bing Liuf, Sinno Jialin Pan™, Qing Li+, Huayi Li?

g - * Institute for Infocomm Research, Singapore
| rDepartment of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
#Department of Computer Science, City University of Hong Kong

."
b |

Institute for
Infocamm Research

A*STAR

\_ /

$wfc $ms $if) 0.8
Abstract $pg 0.7
* The Web has seen a tremendous rise in social media. " $jpm
* [nformation in social media text (e.g., Twitter, Facebook ) not $x°;.is Y74 $ko 00 NS Litg o aPts
only contains Opinion, but also Relations. - sbac ¥9¢ . - 0. M fmﬁ(\wf LN % o
* The goal of this paper Is to exploit social relations and social i e 0.4  +p* /ﬁj\):\/v dell)+P* S(aapl)+P*
sentiment for stock market prediction. shpq sg&?f Seffizn  Swmt
« We build a Semantic Stock Network (SSN) from the co- ¢ & & g - 0.3 =S(goog)+P* ~S(aapl_goog)+P* = S(msft)+P*
occurrence statistics of cash-tags in Twitter messages. This SSN W2 .gu, SHBM b, i 0.2 l l l l l l l l l l l

summarized discussion topics about stocks and stock relations.

» Experimental results demonstrate that topic sentiments from
close neighbours are able to help improve the prediction of a
stock markedly.

Key Tasks
» Data collection.
» Build the stock network.
» Derive the topics over nodes and edges.

» Regress stock price with sentiment time-series derived from the
network In an autoregressive framework for market prediction.

Data Col

* Collected streaming tweets using Twitter’s REST API.

* Query

* $APPL, $GOOG, $AMZN, $SMSFT...
o ““$AAPL Is loosing customers. everybody is buying
android phones! $GO0G.”

Tweets In Relation to the Stock Market
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Figure 3. An example stock network.

Figure 4. Tweet label design.

The Semantic Stock Network (SSN)
* \We define the stock network as an undirected graph: G = {V, E'}.

* IV comprises stocks.
* e, € E stands for the edge between stock nodes u and v.

* For a tweet, d with three cash-tags: {v,, v,, v3}, we annotate d
with the label setas Ly = {vq,v,,v3,€12,€13, €33}

* E.Q. ey, Is“aapl_goog” If v, Is “aapl”, and v, Is “goog”
* Further apply the Labeled-LDA on this labeled data set.

lection

keywords: ticker symbols from S&P100 stocks.
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Figure 1. Tweet Activity around $aapl’s earnings

o S(k) = Z'V‘V/':lﬁk,w [(w), S(k) € [-1,1], L(w) Is the opinion
polarity of word w.
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report date on Jan.23 2013.

Stock Market Prediction

0.1
- Two-dimensional ({x;}, {y;}) vector autoregression model (VAR)
00 * Regress Yy on x using least square regression in R.
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| Time (hourly) »  Experiment with different window sizes and lags.
Figure 2. Tweet volume distribution in our data .

Evaluate prediction accuracy of Price (T/l) movement.

over hours averaged across each day.
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Figure 5. Prediction on $apple on lag 2. (x- axis is training
window size, y- axis Is the accuracy.)
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Table 1. Average and best (in parentheses) prediction accuracies (over
window sizes of [15, 60]) of some other cases with different covariates,
cell of dis(0.96) means “$dis” takes the maximum price correlation

strength of 0.96 with “$goog” (similar for others in column CSN). The
best performances are highlighted in bold.

Conclusion & Future Work

* SSN Is robust to find stock pairs with real-world relationship.

» Sentiment based approaches perform better than all price based
ones. Furthermore, sentiment of the neighbors in SSN performs
best in general.

* The business of offline companies like Target Corp. ($tgt) and Wal-
Mart Stores Inc. ($wmt) are highly affected by online business like

$amzn.

* Future Work:
* Fully exploit the network power.
* Connect social media text to financial reports.



