

Lexica in Social Sciences

Lexica are widely accepted and used in social sciences

- Most of them are manually curated word by word
- They are easily used, and make a lot of sense for social scientists
- LIWC (Pennebaker et al., 2001) had over 1,000 citations in 2013 only

Goal: as accurate as modern NLP techniques & as accessible as widely used social science lexica.

- Introducing weighted lexica as an alternative format for machine learning models
- Using a bottom-up approach to generate the lexica, as opposed to a top-down, manual one

Age and Gender on Social Media

Language, behavior and health correlate with age and gender

- Women tend to live longer (CDC, 2014); people, with age, tend to be more agreeable, more conscientious and less open to experience (McCrae et al. 1999)
- most social scientific studies on social media data use biased samples of age and gender

There is a need for accessible tools to predict demographic variables for social science, economic, and business applications.

Data

- 75,394 Facebook users from the MyPersonality app (Kosinski and Stillwell, 2012):
 - main test set randomly sampled 1,000 users
 - stratified test set equal proportions of 1,520 males and females across 12 four-year age bins (age 13-60), independent from the main test set
 - **training set** remaining 72,874 users

15,006 Blogger users from Schler et al. (2006):

- **test set** randomly sampled 1,000 users
- **training set** remaining 15,006 users

11,000 Twitter users, random sample from Volkova et al. (2013)

- **test set** randomly sampled 1,000 users
- **training set** remaining 10,000 users

All data sets contained users that had written a minimum of 1000 words, with age information. Gender was included for Facebook users and Bloggers.

Lexicon Creation

Goal: Simple yet effective method

 $usage_{lex} = \sum_{word \in lex} w_{lex}(word) * \frac{freq(word, doc)}{freq(*, doc)}$

where $w_{lex}(word)$: lexicon (lex) weight for the word, freq(word, doc): frequency of the word in the document (or for a given user), and freq(*, doc): total word count for that document (or user).

Linear Multivariate Regression:

Lexicon Extraction:

$$y = \left(\sum_{f \in features} w_f * x_f\right) + w_0$$

where x_f is the value for a feature (f), w_f is the feature coefficient, and w_0 is the intercept (a constant fit to shift the data such that it passes through the origin).

In the case of regression, y is the outcome value (e.g. age) while in classification, y is used to separate the classes (e.g. >= 0is female, < 0 is male).

... multivariate modeling can be seen as learning a weighted lexicon and an intercept

Developing Age and Gender Predictive Lexica over Social Media

Maarten Sap¹ Gregory Park¹ Johannes C. Eichstaedt¹ Margaret L. Kern¹ **David Stillwell³** Michal Kosinski³ Lyle H. Ungar² and H. Andrew Schwartz²

¹Department of Psychology, University of Pennsylvania ²Computer & Information Science, University of Pennsylvania ³Psychometrics Centre, University of Cambridge maarten@sas.upenn.edu

Model Comparison for Gender Prediction Across Test Sets

Limited messages

Predicting Demographics from Social Media

Prediction Performance of Lexica

Easy to use gender and age lexica are now available that ...

- are in line with state-of-the-art accuracies for age (r = .831) and gender (91.9% accuracy)
- have predictive power that generalizes accross multiple social media platforms
- maintains reasonable accuracies when the number of messages per user is limited

... can be downloaded from wwbp.org/data.html, along with instructions for use

Given that manual lexica are already extensively employed in social sciences such as psychology, economics, and business, using lexical representations of data-driven models allows the utility of our models to extend beyond the borders of the field of NLP.

Conclusion

download @ wwbp.org/data.html