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1. Task 2. Current Method

3. Proposed Framework

This work 
proposed
new framework
for here

We want to know which words 
this learner know.
Application: reading support

Problems:

　️dog
　cat

　catastrophe

✔️
✔️

×

a) Cannot handle multiple corpora directly
b) Cannot create domain-specific test

…

Predict the remainder of vocabulary
using sampled words as training data 

  Making                 groups of n words and sample k words from each
=Making complete graphs of n nodes and sample k nodes from each

Non-interactive graph-based active learning
                                      [Ji et al., 2012] [Gu and Han, 2012]
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Default classifier of Gu and Han's algorithm: LLGC (a label propagation 
Method by Zhou et al. 2004)
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1. Fix a corpus.

2. Rank words in the corpus in descending order of its frequency.

3. Tune ranking heuristically and manually (especially easiest words)

[Meara and Buxton, 1987], [Nation, 2007]

2. Rank words in the corpus in descending order of its frequency.
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4. Group words by 1,000 words

…

Level 1 Level 2 Level 3

5. Randomly sample 10 words from each level

2 4

1 6
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A Graph

Label Propagation [Zhou et al., 2004]

Cluster Assumption:
A cluster of nodes connected heavily 
each other have similar labels.

INPUT: a weighted graph, labeled nodes for training labeled nodes
OUTPUT: labels of the rest of the nodes (i.e., unlabeled nodes)

A Graph

How to determine seed nodes?

Intuitive workflow of this algorithm:

1) Choose representative nodes in a cluster
2) With avoiding sampling from neighbors 
    of previously chosen nodes.

Numbers show the order in which nodes are sampled.

labeled nodes

+1-1

-1

unlabeled nodes

Level 4

…

Level 1 Level 2 Level 3 Level 4

Extension: by merging weighted graphs sharing nodes

Merging solves the problems a), b):
a) merge graphs from multiple corpora
b) merge graphs from corpora
   and graphs representing 
   membership of words in a domain.

Setting:

Name # of 
samples

Examples

BNC 0 -
BNC+domain 5 Input, client, field, 

background, register
BNC+COCA 0 -
BNC+domain+COCA 3 drive, client, command

Classifiers: LLGC is used unless specified by ().

a) Enabled use of multiple corpora 
increased accuracy.

b) A test specific to  computer domain was 
successfully created without decreasing 
accuracy over general words. Thus, we can 
measure both general and domain-specific 
vocabulary of learners.

Generalization

Vocabulary Prediction  [Ehara et al., COLING 2012]
                                                                                          

Contribution:
We formalized the current method as graph-based active learning problem.
This formalization enables extending graphs so that problems a) and b) 
be solved.

BNC Current method. Baseline.
Multi-complete graph created from 
BNC corpus.

COCA Multi-complete graph created from 
COCA corpus.

domain We extracted all words in computer 
domain from the WordNet 3.0 and 
transformed the words into a complete 
graph. 

Repeatedly propagate labels of the nodes to their connected nodes

INPUT:      a weighted graph ONLY
OUTPUT:  seed nodes

Sample words from the 
entire vocabulary

Test learners 
with the 
sampled words

For Prediction:

For Sampling:

Graph created
 from Corpus1

From another corpus
or from domain info. Merged Graph

Sampled

Remaining

To be sampled 
in the next step
(proved in Thm. 3.1)

Nodes: words
Labeled: know/don't knowIn this task:.

(=Baseline)
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4. Results

…

Multi-complete graph 

 [Ehara et al., ACM TIST 2013]
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