

# Leveraging Effective Query Modeling Techniques for Speech Recognition and Summarization

Kuan-Yu Chen, Shih-Hung Liu, Berlin Chen, Ea-Ee Jan, Hsin-Min Wang, Wen-Lian Hsu, Hsin-Hsi Chen {kychen, journey, whm, hsu}@iis.sinica.edu.tw, berlin@ntnu.edu.tw, ejan@us.ibm.com, hhchen@csie.ntu.edu.tw

## Summary

- > Statistical language modeling (LM) has long been an interesting yet challenging research area
- LM for information retrieval (IR) has enjoyed remarkable empirical success
  - An emerging stream is to employ the pseudo-relevance feedback process to enhance the representation of the input query
- This paper presents a continuation of such a general line of research and the main contribution is three-fold
  - 1) We propose a principled framework which can unify the relationships among several query formulations
  - 2) We propose an extended query modeling formulation by incorporating critical query-specific information cues to guide the model estimation
  - 3) We further adopt and formalize such a framework to the speech recognition and summarization tasks

# Query Modeling for Information Retrieval

### > Relevance Modeling (RM)

- Under the notion of relevance modeling, each query Q is assumed to be associated with an unknown relevance class  $R_Q$ , and documents that are relevant to the semantic content expressed in query are samples drawn from the relevance class  $R_Q$
- In reality, since there is no prior knowledge about  $R_Q$ , we may use the top-ranked documents  $\mathbf{D}_{Top}$  to approximate the relevance class  $R_Q$

$$P_{\text{RM}}(w|Q) = \frac{\sum_{D_r \in \mathbf{D}_{Top}} P(D_r) P(w|D_r) \prod_{w' \in Q} P(w'|D_r)}{\sum_{D_r'' \in \mathbf{D}_{Top}} P(D_r'') \prod_{w' \in Q} P(w'|D_r'')}$$

## > Simple Mixture Modeling (SMM)

- Simple mixture model (SMM) assumes that words in  $\mathbf{D}_{Top}$  are drawn from a two-component mixture model:
  - 1) One component is the query-specific topic model  $P_{SMM}(w|Q)$
  - 2) The other is a generic background model P(w|BG)

$$L = \prod_{D_r \in \mathbf{D}_{Top}} \prod_{w \in V} (\alpha \cdot P_{\text{SMM}}(w | Q) + (1 - \alpha) \cdot P(w | BG))^{c(w, D_r)}$$

#### > Regularized Simple Mixture Modeling (RSMM)

- Although the SMM modeling aims to extract extra word usage cues for enhanced query modeling, it may confront two intrinsic problems
  - 1) One is the extraction of word usage cues from  $\mathbf{D}_{Top}$  is not guided by the original query
    - This would lead to a concern for SMM to be distracted from being able to appropriately model the query of interest
  - 2) The other is that the mixing coefficient is fixed across all top-ranked documents
    - Different documents would potentially contribute different amounts of word usage cues to the enhanced query model

$$L = \prod_{w \in V} P_{\text{RSMM}}(w \mid Q)^{\mu \cdot P(w \mid Q)} \prod_{D_r \in \mathbf{D}_{Top}} \prod_{w \in V} (\alpha_{D_r} \cdot P_{\text{RSMM}}(w \mid Q) + (1 - \alpha_{D_r}) \cdot P(w \mid BG))^{c(w, D_r)}$$

# The Proposed Modeling Framework

#### > Fundamentals

- It is obvious that the major difference among the representative query models mentioned above is how to capitalize on the set of top-ranked documents and the original query
- A principled framework can be obtained to unify all of these query models by using a generalized objective likelihood function

$$L = \prod_{w \in V} \prod_{E_i \in \mathbf{E}} \left( \sum_{M_r \in \mathbf{M}} P(w \mid M_r) P(M_r) \right)^{c(w, E_i)}$$

$$s.t. \quad \sum_{M_r \in \mathbf{M}} P(M_r) = 1$$

$$M_r \in \mathbf{M}$$

where **E** represents a set of observations which we want to maximize their likelihood, and **M** denotes a set of mixture components

• Based on the proposed framework, we highlight how to infer several query modeling formulations from the unified modeling:

#### 1) Relevance modeling:

- E only consists of the user query
- M comprises a set of document models corresponding to the top-ranked (pseudo-relevant) documents
- Assume the document models are known

#### 2) Simple mixture modeling:

- M consists of two components: one component is a generic background model and the other is an unknown query-specific topic model
- □ The weight of each component is presumably fixed in advance
- $\Box$  The observations are those top-ranked documents (i.e.,  $\mathbf{E} = \mathbf{D}_{Top}$ )

#### 3) Regularized simple mixture modeling:

- □ The weight of each component is required to be estimated
- □ A Dirichlet prior is placed on the enhanced query model

#### > Query-specific Mixture Modeling (QMM)

- The SMM model and the RSMM model are intended to extract useful word usage cues from  $\mathbf{D}_{top}$ 
  - Relevant to the original query Q and external to those already captured by the generic background model

#### We argue that

- 1) The "generic information" should be carefully crafted for each query due to that users' information needs may be very diverse
  - To crystallize the idea, a query-specific background model  $P_Q(w|BG)$  for each query Q can be derived from  $\mathbf{D}_{Top}$  directly
- 2) Since the original query model P(w|Q) cannot be accurately estimated, thus it may not necessarily be the best choice for use in defining a conjugate Dirichlet prior
  - We propose to use the RM model as a prior to guide the estimation of the enhanced query model

$$\begin{split} L &= \prod_{w \in V} P_{\text{QMM}}(w|Q)^{\mu \cdot P_{\text{RM}}(w|Q)} \times \\ &\prod_{D_r \in \mathbf{D}_{Top}} \prod_{w \in V} (\alpha_{D_r} \cdot P_{\text{QMM}}(w|Q) + (1 - \alpha_{D_r}) \cdot P_Q(w|BG))^{c(w,D_r)} \end{split}$$

## **Experiments**

## > Query Modeling for Speech Recognition

- Language modeling is a critical and integral component in any large vocabulary continuous speech recognition (LVCSR) system
- The role of language modeling in LVCSR can be interpreted as calculating the conditional probability P(w|H), in which H is a search history, usually expressed as a sequence of words  $H=h_1, h_2, ..., h_L$ , and w is one of its possible immediately succeeding words
- For a search history H, we can conceptually regard it as a query and each of its immediately succeeding words w as a (single-word) document
- We notice three particularities from the experimental results
  - □ There is more fluctuation in the CER results of SMM than RM
  - □ The other interesting observation is that RSMM only achieves a comparable (even worse) result when compared to SMM
  - □ It is evident that the proposed QMM is the best-performing method among all the query models compared in the paper

|          | 16    | 32    | 64    | 128   |  |  |  |
|----------|-------|-------|-------|-------|--|--|--|
| Baseline | 20.08 |       |       |       |  |  |  |
| Cache    | 19.86 |       |       |       |  |  |  |
| LDA      | 19.29 | 19.30 | 19.28 | 19.15 |  |  |  |
| RM       | 19.26 | 19.26 | 19.26 | 19.26 |  |  |  |
| SMM      | 19.19 | 19.00 | 19.14 | 19.10 |  |  |  |
| RSMM     | 19.18 | 19.14 | 19.15 | 19.19 |  |  |  |
| QMM      | 19.05 | 18.97 | 19.00 | 18.99 |  |  |  |

#### > Query Modeling for Speech Summarization

- Extractive speech summarization aims at producing a concise summary by selecting salient sentences or paragraphs from the original spoken document
- This task could be framed as an ad-hoc IR problem
  - □ The spoken document is treated as an information need
  - Each sentence of the document is regarded as a candidate information unit to be retrieved
- Two noteworthy observations can be drawn from the results
  - □ All these query models can considerably improve the summarization performance of the KLM (baseline) method
  - □ QMM is the best-performing one among all the formulations studied in this paper for both the TD and SD cases

|      | Manual Transcripts (TD) |         |         | ASR Transcripts (SD) |         |         |
|------|-------------------------|---------|---------|----------------------|---------|---------|
|      | ROUGE-1                 | ROUGE-2 | ROUGE-L | ROUGE-1              | ROUGE-2 | ROUGE-L |
| VSM  | 0.347                   | 0.228   | 0.290   | 0.342                | 0.189   | 0.287   |
| MMR  | 0.407                   | 0.294   | 0.358   | 0.381                | 0.226   | 0.331   |
| KLM  | 0.411                   | 0.298   | 0.361   | 0.364                | 0.210   | 0.307   |
| RM   | 0.453                   | 0.335   | 0.403   | 0.382                | 0.239   | 0.331   |
| SMM  | 0.439                   | 0.320   | 0.388   | 0.383                | 0.229   | 0.327   |
| RSMM | 0.472                   | 0.365   | 0.423   | 0.381                | 0.235   | 0.329   |
| QMM  | 0.486                   | 0.382   | 0.435   | 0.395                | 0.256   | 0.349   |