

Dependency-Based Bilingual Language Models for Reordering in SMT

Ekaterina Garmash

Christof Monz

University of Amsterdam

Informatics Institute, University of Amsterdam

Contributions

- capture reordering as an order of a sequence of translation events
- characterize translation events with their source and target syntactic features
- simple alternative to tree-based models
- up to +0.98 BLEU improvement for Chinese-English and +0.4 BLEU improvement for Arabic-English over lexicalized BiLM

Motivation

Background: bilingual language models (BiLMs)

- n-gram model of sequences of elementary translation events
- elementary translation event a pair of source and target words
- we adopt the definition of Niehues et al. (2011) of a **bilingual token**: (given word alignment) a target word and all the source words aligned to it

corresponding sequence of bilingual tokens

Reordering with BiLMs

How well do various labelings differentiate between correct and incorrect reorderings?

correct reordering

incorrec

expressiveness

lexical-based BiLMs are too sparse to capture reordering regularities

VS.

generality

• Niehues et al. (2011): bilingual tokens substituted with the words' POS tags

Approach

Dependency-based BiLMs

- dependency grammar is commonly used in NLP to formalise role-based relations between words
- to label bilingual tokens, we try out combinations of different properties based on a source dependency parse
- generalized definition of a labeling for a bilingual token sequence $t_1 \dots t_n$

$$\mathbf{t}_i = \langle e_i, \{ContF(f)|f \in A(e_i)\} \rangle$$

where e_i is the i-th target word, $A: E \to \mathcal{P}(F)$ is an alignment function, F and E — source and target sentences, ContF and ContE - **contextual functions**

Contextual functions

Return a word's sentential context (source or target).

We focus on ContF's, since they allow for a richer set of definitions in the MT setting (source side fully given) than ContE's.

Proposed contextual functions return:

- the word itself (designation: Lex)
- POS tag of the word (designation: Pos)
- POS tag of the word's parent (see below)
- POS tag of the word's grandparent (see below)

Notation

We use the proposed contextual functions in combinations to define individual BiLMs.

- " " horizontally connects source (left) and target (right) contextual functions
 - Lex Lex is a BiLM with lexicalized tokens
 - Pos●Pos is a BiLM with words in tokens substituteted with their POS tags
- "→"connects parent (left) and child (right) from a dependency tree

Pos→Pos→Pos is a combination of functions returning the word's POS tag, its parent's POS tag and its grandparent's POS tag

Example

Sequence of bilingual tokens produced by a Pos→Pos→Pos•Lex after translating three words of the source sentence:

Implementation and Experiments

Implementation and integration into PBSMT decoder

- employed tools: Chinese Stanford dependency parser (Chang et a. 2009), Arabic Stanford constituency parser (Green and Manning, 2010) + extract dependencies based on Collins (1999), English Stanford POS-tagger (Toutanova et al., 2003)
- n-gram model training: 5-gram model with Kneser-Ney smoothing using SRILM (Stolke et al., 2011)
- dependency-based BiLMs are integrated as a feature in a log-linear model
- for each phrase pair, its most likely internal word alignment and target-side POS labelling is stored in the phrase table

Basic experimental setup

- phrase-based decoder
- distortion limit: 5
- lexicalized distortion model included in the log-linear interpolation
- compare performance of the original BiLMs (Niehues et al. 2011) and the dependency-based BiLMs

Statistical significance notation

- significant improvement over Lex•Lex at p < .01
- — significant improvement over Lex
 Lex at p < .05

Arabic-English experiments

	MT08+MT09 test set		
	BLEU	TER	
PBSMT baseline	46.57	45.60	
Lex●Lex	46.98	45.96	
Pos→Pos●Pos	$47.25^{\triangle} + 0.27$	45.40 [▲]	
Pos→Pos→Pos●Pos	47.30△ +0.32	46.21 ^{^}	
Lex●Lex + Pos→Pos→Pos●Pos	47.38 [▲] +0.4	45.63 ⁴	

Chinese-English experiments

	MI06+MI08 test set		
	BLEU	TER	
PBSMT baseline	28.99	59.14	
Lex●Lex	29.69	58.72	
Pos→Pos●Pos	29.78 +0.09	58.36▲	
Pos→Pos→Pos●Pos	30.05 [▲] +0.36	58.54	
Lex●Lex + Pos→Pos→Pos●Pos	30.28 ▲ +0.59	58.30 ▲	

Reordering potential of the model

Distortion limit extended to 10 words.

	Arabic-English MT08+MT09 test set		Chinese-English MT06+MT08 test set	
	BLEU	TER	BLEU	TER
Lex●Lex	46.72	45.97	29.79	58.38
Pos→Pos→Pos●Pos	47.12 [▲] +0.4	45.52	30.77 +0.98	57.82 ⁴

This research was funded in part by the Netherlands Organization for Scientific Research (NWO) under project numbers 639.022.213 and 612.001.218

