
Type-based MCMC for Sampling Tree Fragments from Forests

Xiaochang Peng, Daniel Gildea
University of Rochester

Overview

• We apply type-based MCMC to learning SCFG rules.

– Assume fixed word alignment.

– Learn SCFG rules consistent with alignment, each SCFG

rule is a tree fragment in the phrase decomposition forest.

– We assume fragment sizes (as in TSG learning) as well as

bracketing structures (extending TSG learning)

• We investigate the impact of type-based method on the like-

lihood of the Markov Chain in this setting.

– Token-based and block-based MCMC: do not deal with the

coupling issue of variables.

– Type-based MCMC: grouping strongly coupled variables

as the same type.

• We present an innovative way of storing the type information.

– Reduce the amount of bookkeeping by indexing on partial

type information.

– Additional steps to filter nodes with full type information.

• We replace the two-stage sampling schedule of Liang et al.

(2010) with a simpler and faster one-stage method.

• Parallel programming with inexact type-based MCMC

Sample Tree Fragments from Forests

• Chung et al. (2014) present a schedule to learn Hiero-style

SCFG rules from phrase decomposition forests

– Build a phrase decomposition forest from bottom up

– MCMC sampling from top down: sample cut, sample edge.

([0 1], [0 1])

X ���, I

([4 5], [1 2])

X ���, have

([5 6], [3 4])

X ����, date

([2 3], [4 5])

X ���, with

([3 4], [5 6])

X ���, her

([2 4], [4 6])

X ��X��X�, X��X�

([4 6], [1 4])

X ��X��X�, X��a X�

([1 4], [4 7])

X ��X��X�, X��X�

([2 6], [1 6])

X ��X��X�, X��X�

([1 6], [1 7])

X ��X��X�, X��X� X ��X��X�, X��X�

([0 6], [0 7])

X ��X��X�, X��X�

([1 2], [6 7])

X ����, today

Type-based MCMC

• Two cut sites are of the same type if the composed rules we

get are exactly the same when assigning same cut value to

them:

type(t, n)
def
= (r1, r2, r3)

• We calculate the joint probability of an assignment having m

cut sites:

P(zS |N) ∝

n−m
∏

i=1

P(r1|N
i−1)

m
∏

i=1

P(r2|N̄
i−1)P(r3|N̂

i−1)
def
= g(m)

• The posterior probability of all assignments having m cut sites

is:

p(m|N) ∝
∑

zS :m=
∑

i zi

p(zS |N) =

(

n

m

)

g(m)

• We sample m according to this equation. Then we choose m

sites among the n variables to be cut with uniform distribution.

Bookkeeping Strategy

• Unlike PTSG: the internal structure of each rule type is ab-

stracted away.

• Strategy: build a small index at the cost of additional compu-

tation:

– We only key on the rule types turned on in the current cho-

sen derivation

– We key on a single rule type and index only the root of

each rule type

Optimization

• One-stage sampling schedule: build real m greedily.

P(zS |N) =
n
∏

i=1

P(zi |N
i−1)

• Inexact type-based MCMC with parallel programming:

– Split the data into subsets, communicate local counts.

– The local bookkeeping of each subset is not communi-

cated.

Experimental Results

• Type-based sampling converges to a much better result than

non-type-based top-down sampling and escapes some local

optima that are hard for token-based methods to escape:

0 10 20 30 40 50 60
Iteration #

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

lo
g
lik

e
lih

o
o
d
 (

*1
0

^
6

)

Log likelihood: type-based vs non-type-base vs simulated annealing

type-based + simulated annealing
type-based
non-type-based

• The better likelihood of our Markov Chain using type-based

MCMC also results in better translation:

Sampling Schedule iteration dev test

Non-type-based averaged (0-90) 25.62 24.98

Type-based averaged (0-100) 25.88 25.20

Parallel Type-based averaged (0-90) 25.75 25.04

• When using a parallel programming approximation, the like-

lihood finally converges to the same likelihood result as non-

parallel type-based MCMC:

0 10 20 30 40
Iteration #

−5.5

−5.0

−4.5

−4.0

lik
e
lih

o
o
d
 (

*^
6

)

parallel vs nonparallel likelihood

parallel cut-type based
nonparallel cut-type based


