Type-based MCMC for Sampling Tree Fragments from Forests

Overview
e We apply type-based MCMC to learning SCFG rules.

— Assume fixed word alignment.

— Learn SCFG rules consistent with alignment, each SCFG
rule is a tree fragment in the phrase decomposition forest.

— We assume fragment sizes (as in TSG learning) as well as
bracketing structures (extending TSG learning)

¢ We investigate the impact of type-based method on the like-
lihood of the Markov Chain in this setting.

— Token-based and block-based MCMC: do not deal with the
coupling issue of variables.

— Type-based MCMC: grouping strongly coupled variables
as the same type.

e We present an innovative way of storing the type information.

— Reduce the amount of bookkeeping by indexing on partial
type information.

— Additional steps to filter nodes with full type information.

e We replace the two-stage sampling schedule of Liang et al.
(2010) with a simpler and faster one-stage method.

e Parallel programming with inexact type-based MCMC

Sample Tree Fragments from Forests

e Chung et al. (2014) present a schedule to learn Hiero-style
SCFG rules from phrase decomposition forests

— Build a phrase decomposition forest from bottom up
— MCMC sampling from top down: sample cut, sample edge.
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Type-based MCMC

e Two cut sites are of the same type if the composed rules we
get are exactly the same when assigning same cut value to

them:
def
type(t, n) = (r, r, r3)

e We calculate the joint probability of an assignment having m
cut sites:

def
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e [he posterior probability of all assignments having m cut sites
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e We sample m according to this equation. Then we choose m
sites among the n variables to be cut with uniform distribution.

Bookkeeping Strategy

e Unlike PTSG: the internal structure of each rule type is ab-
stracted away.

e Strategy: build a small index at the cost of additional compu-
tation:

— We only key on the rule types turned on in the current cho-
sen derivation

— We key on a single rule type and index only the root of
each rule type

Optimization

e One-stage sampling schedule: build real m greedily.
n
P(zs|N) =] P(zilN'™)
i=1

e Inexact type-based MCMC with parallel programming:

— Split the data into subsets, communicate local counts.

— The local bookkeeping of each subset is not communi-
cated.

Experimental Results

e Type-based sampling converges to a much better result than
non-type-based top-down sampling and escapes some local
optima that are hard for token-based methods to escape:

Log likelihood: type-based vs non-type-base vs simulated annealing
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e The better likelihood of our Markov Chain using type-based
MCMC also results in better translation:

Sampling Schedule | iteration dev | test

Non-type-based averaged (0-90) 125.62 24.98
Type-based averaged (0-100) |25.88 | 25.20
Parallel Type-based | averaged (0-90) [25.7525.04

e When using a parallel programming approximation, the like-
lihood finally converges to the same likelihood result as non-
parallel type-based MCMC:

parallel vs nonparallel likelihood
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