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Self-repairs

“But one of the, the two things that I’m really. . .”

“Our situation is just a little bit, kind of the opposite of
that”

“and you know it’s like you’re, I mean, employments are
contractual by nature anyway”

[Switchboard examples]
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Self-repairs: Annotation scheme

John [ likes
︸ ︷︷ ︸

reparandum

+ {uh}
︸︷︷︸

interregnum

loves ]
︸ ︷︷ ︸

repair

Mary

[Shriberg, 1994, onwards]

Terminology: edit terms, interruption point (+), repair
onset
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Self-repairs: classes

“But one of [ the, + the ] two things that I’m really. . .”
[repeat]

“Our situation is just [ a little bit, + kind of the opposite ] of
that”

[substitution]

“and you know it’s like [ you’re + {I mean} ] employments
are contractual by nature anyway”

[delete]

[Switchboard examples]
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Self-repair detection: why do we care?

Dialogue systems (parsing speech)
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Self-repair detection: why do we care?

Interpreting self-repair

Preserving the reparandum and repair structure

Evidence: [Brennan and Schober, 2001] showed subjects
use the reparandum to make faster decisions:

“Pick the yell-purple square” faster

“Pick the uhh-purple square”
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Self-repair detection: Incrementality

Non-incremental vs. Incremental Dialogue Systems

[Schlangen and Skantze, 2011]
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Self-repair detection: Incrementality

We want good incremental performance:

Timing

- Low latency, short time to detect repairs

Evolution over time

- Responsiveness of the detection (incremental accuracy)

- Stability of the output (low jitter)

Computational complexity

- Minimal processing overhead (fast)
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Self-repair detection

Problem statement

A system that achieves:

Interpretation of repair

- repair structure tags rather than just reparandum words

Strong incrementality

- Give the best results possible as early as possible

- Computationally fast

Controllable trade-off between incrementality and overall
accuracy
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Previous approaches: Noisy channel model

Best coverage generative model
[Zwarts et al., 2010, Johnson and Charniak, 2004]

S-TAG exploits (‘rough copy’) dependency with string
alignment

[Zwarts et al., 2010] utterance-final F-score = 0.778
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Previous approaches: Noisy channel model

Best coverage generative model
[Zwarts et al., 2010, Johnson and Charniak, 2004]

S-TAG exploits (‘rough copy’) dependency with string
alignment

[Zwarts et al., 2010] utterance-final F-score = 0.778

Two incremental measures:

- Time-to-detection: 7.5 words from reparandum onset

- 4.6 words from repair onset

- Delayed accuracy: slow rise up to 6 words back

Complexity O(n5)
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Previous approaches: Noisy channel model

Why poor incremental performance?
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Previous approaches: Noisy channel model

Why poor incremental performance?

- Inherently non-incremental string-alignment

- Utterance global (c.f. spelling correction)

- Sparsity of alignment forms [Hough and Purver, 2013]
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SOLUTION: Information theory and strong incrementality

Local measures of fluency for minimum latency in
detection

Does not just rely on string alignment

Information theoretic measures of language models
[Keller, 2004, Jaeger and Tily, 2011]

Minimal complexity
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STIR: Strongly Incremental Repair Detection

John [ likes
︸ ︷︷ ︸

reparandum

+ {uh}
︸︷︷︸

interregnum

loves ]
︸ ︷︷ ︸

repair

Mary

...[rmstart ...rmend + {ed} rpstart ...rpend ]...
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STIR: Strongly Incremental Repair Detection

...[rmstart ...rmend + {ed} rpstart ...rpend ]...

...{ed}...
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STIR: Strongly Incremental Repair Detection
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STIR: Strongly Incremental Repair Detection

“John”

S0 S1
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STIR: Strongly Incremental Repair Detection
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S0 S1 S2
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STIR: Strongly Incremental Repair Detection

“John” “likes” “uh”

S0 S1 S2 S3
ed

ed
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STIR: Strongly Incremental Repair Detection

“John” “likes” “uh” “loves”

S0 S1 S2 S3
ed

?

S4

rpstart

ed rpstart
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STIR: Strongly Incremental Repair Detection

“John” “likes” “uh” “loves”

S0 S1

S2
rmend

S3
ed

?

S4

rpstart

rmend ed rpstart
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STIR: Strongly Incremental Repair Detection

“John” “likes” “uh” “loves”

S0 S1

S2

rmstart

rmend
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S4
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STIR: Strongly Incremental Repair Detection

“John” “likes” “uh” “loves” “Mary”

S0 S1

S2

rmstart

rmend
S3

ed

S4

rpstart

rpsubend

S5

rmstart rmend ed rpstart rpsubend
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STIR: fluency modelling using enriched n-gram LMs

s(wi−2,wi−1,wi)
(surprisal)

WML(wi−2,wi−1,wi)
(syntactic fluency)

H(θ(w | c))
(entropy)

KL(θ(w | ca), θ(w | cb))
(distribution divergence)
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STIR: fluency modelling using enriched n-gram LMs

s(wi−2,wi−1,wi)
(surprisal)

WML(wi−2,wi−1,wi)
(syntactic fluency)

H(θ(w | c))
(entropy)

KL(θ(w | ca), θ(w | cb))
(distribution divergence)

plex (word) and ppos (POS) models

Does not use lexical or POS values, but information
theoretic measures

[Keller, 2004, Jaeger and Tily, 2011, Clark et al., 2013]
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STIR: fluency modelling using enriched n-gram LMs

rpstart local deviation from fluency: drop in WMLlex

i havent had any good really very good experience with child care−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

W
M
L
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STIR: fluency modelling using enriched n-gram LMs

Extend ‘rough copy’ dependency
[Johnson and Charniak, 2004] to gradient measures

Information content = entropy

Parallelism = distributional similarity
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STIR: fluency modelling using enriched n-gram LMs

Extend ‘rough copy’ dependency
[Johnson and Charniak, 2004] to gradient measures

Information content = entropy

Parallelism = distributional similarity

Repair-Reparandum correspondence = gradient

parallelism
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STIR: fluency modelling using enriched n-gram LMs

‘Fluent’ Language Model: Trigram, Switchboard
training data cleaned of disfluency (600K words)

‘Edit term’ Language Model: Bigram, edit terms from
Switchboard training data (40K words)
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STIR: Classifiers
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STIR: ed detection

“John” “likes” “uh”

S0 S1 S2 S3
ed

ed
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STIR: ed detection

Edit term detection helps repair detection considerably

Based on WML of words in edit term LM Vs. WML in
fluent LM
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STIR: ed detection

Edit term detection helps repair detection considerably

Based on WML of words in edit term LM Vs. WML in
fluent LM

Good performance: F-score 0.938 on ed words

“I mean” and “you know” sometimes misclassified
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STIR: rpstart detection

“John” “likes” “uh” “loves”

S0 S1 S2 S3
ed

?

S4

rpstart

ed rpstart
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STIR: rpstart detection

rpstart local deviation from fluency: drop in WMLlex

i havent had any good really very good experience with child care−1.4
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STIR: rpstart detection

23 features

Best Features (ranking):

average merit average rank attribute
0.139 1 Hpos

0.131 2 WMLpos

0.126 3.4 WMLlex

0.125 4 spos

0.122 5.9 wi−1 = wi

0.122 5.9 BestWMLBoostlex

LM features more useful than alignment in general

Higher cost functions for false negs = higher recall
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STIR: rmstart detection

“John” “likes” “uh” “loves”

S0 S1

S2

rmstart

rmend
S3

ed

S4

rpstart

rmstart rmend ed rpstart
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STIR: rmstart detection

32 features

Noisy channel intuition correct:

- WMLboost:

0.223 (sd=0.267) for rmstart

-0.058 (sd=0.224) for other words in 6-word history

- highest ranked feature is ∆WMLboost

Parallelism:

- KL divergence between θpos(w | rmstart , rmstart−1) and
θpos(w | rpstart , rpstart−1) second most useful feature
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STIR: rmstart detection

Only allows backwards search to 7 words back

Adds hypothesis to stack if rmstart found

Complexity linear O(n), in practice for most short
utterances triangular O(n2)
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STIR: rmstart detection

Only allows backwards search to 7 words back

Adds hypothesis to stack if rmstart found

Complexity linear O(n), in practice for most short
utterances triangular O(n2)

Control complexity increase with stack capacity:

- 1-best rmstart per rpstart = O(n2)

- 2-best rmstart per rpstart = O(n3)
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STIR: rpend detection

“John” “likes” “uh” “loves”

S0 S1

S2

rmstart

rmend
S3

ed

S4

rpstart

rpsubend

rmstart rmend ed rpstart rpsubend
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rpend detection

23 features

Parallelism:

- ReparandumRepairDifference : difference between WML

of utterance with reparandum phase replacing repair and
WML of utterance cleaned of reparandum

WML(“John loves Mary”)−WML(“John likes Mary”)

- In both the POS and word model the best feature
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rpend detection

23 features

Parallelism:

- ReparandumRepairDifference : difference between WML

of utterance with reparandum phase replacing repair and
WML of utterance cleaned of reparandum

WML(“John loves Mary”)−WML(“John likes Mary”)

- In both the POS and word model the best feature

Structural classification (repair extent)
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Evaluation

Accuracy

- Normal evaluation F-score on rm words (Frm)
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Evaluation

Accuracy

- Normal evaluation F-score on rm words (Frm)

- Also interested in repair structure assignment (Fs)

Timing

- Time-to-detection rmstart and rpstart [Zwarts et al., 2010]
(TD)

Evolution over time

- Delayed accuracy (of Frm) [Zwarts et al., 2010] (DA)

- Edit overhead (stability) [Baumann et al., 2011] (EO)

Computational complexity

- Processing overhead (number of classifications per word)
(PO)
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Evaluation: Edit Overhead

Input and current repair labels edits

John

John likes

rm rp
(⊕rm) (⊕rp)

John likes uh

ed
(⊖rm) (⊖rp) ⊕ed

John likes uh loves

rm ed rp
⊕rm ⊕rp

John likes uh loves Mary

rm ed rp

% of bad output edits

Repair gold standard does not penalise rm before rpstart

Therefore minimum (ideal) EO = 0
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Experiments

Training data (SWBD PTB): 650k words

Heldout data (SWBD PTB): 49K words

Test data (SWBD PTB): 48K words
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Experiments

Cost functions: 320 different settings used

Stack capacity: 1-best rmstart and 2-best rmstart

investigated
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Results

Accuracy

- Frm = 0.779 for best setting

- Marginally improves [Zwarts et al., 2010]
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- Fs = 0.736

- Novel metric. Repair structure assignment difficult for
humans!
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Results

Accuracy

- Frm = 0.779 for best setting

- Marginally improves [Zwarts et al., 2010]

- Fs = 0.736

- Novel metric. Repair structure assignment difficult for
humans!

Timing

- TD 1 word from rpstart , 2.6 words from rmstart , much
improved
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Results

Evolution over time

- EO varies, best very stable at 0.864%
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Results

Evolution over time

- EO varies, best very stable at 0.864%

- DA greatly improves:
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Results

Computational complexity

- Limited to O(n2) and O(n3) in each stack setting a priori

- In practice very fast

- PO = 1.229 per word in best setting
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Results: trade-off

In best final accuracy setting, high EO and PO (unstable
and slower)

- Requires high recall in rpstart classifier

In most efficient and stable settings overall accuracy
suffers
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Results: trade-off

In best final accuracy setting, high EO and PO (unstable
and slower)

- Requires high recall in rpstart classifier

In most efficient and stable settings overall accuracy
suffers

Good trade-off setting found for incrementality and final
accuracy

- Fairly good Frm = 0.754

- Very low (good) EO = 0.931

- Very low (good) PO = 1.255
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Conclusions

STIR can experiment with final accuracy and
incrementality trade-offs

Achieves state-of-the-art latency and incremental
performance in detection

Detects entire repair structures - does not delete the
reparandum!

Does not use lexical or POS values, but information
theoretic measures
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Conclusions

STIR can experiment with final accuracy and
incrementality trade-offs

Achieves state-of-the-art latency and incremental
performance in detection

Detects entire repair structures - does not delete the
reparandum!

Does not use lexical or POS values, but information
theoretic measures

STIR strongly incremental; useful for dialogue systems

Currently being integrated with incremental ASR (DUEL
project)
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Thanks!

especially to:

- EPSRC DTA (Queen Mary University of London)

- DUEL project (Bielefeld University and Paris 7, DFG and
ANR)
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STIR: fluency modelling using enriched n-gram LMs

Fluency: insights from grammaticality modelling
[Clark et al., 2013]- Kneser-Ney smoothed trigram model

s(wi−2,wi−1,wi) = −log2pkn(wi | wi−2,wi−1)

Approx. to syntactic fluency: Weighted Mean Logprob
(WML) [Clark et al., 2013]

WML(wi ..wn) =
log2p

TRIGRAM
kn (〈wi ..wn〉)

−log2pUNIGRAM
kn (〈wi+2..wn〉)
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STIR: fluency modelling using enriched n-gram LMs

Subsume rough copy dependency
[Johnson and Charniak, 2004] with gradient measures
Quantifying uncertainty of continuing word through
Shannon entropy:

H(w | c) = −
∑

w∈Vocab

pkn(w | c) log2 pkn(w | c) (1)

Quantifying parallelism between reparandum and repair
phases through KL divergence KL(θ(wa | ca), θ(wb | cb))

Information content = entropy

Parallelism = distributional similarity
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STIR: Classifiers

MetaCost error functions [Domingos, 1999] for false
negatives

Allows trade-off between incremental performance and
final accuracy

(
rp

hyp
start F hyp

rp
gold
start 0 8

F gold 1 0

)
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Results: stack capacity

Frm Fs EO

1-best rmstart 0.745 0.707 3.780
2-best rmstart 0.758 0.721 4.319

Table : Comparison of performance of systems with different
stack capacities
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