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Introduction

Human Language Processing

Human language processing is incremental: we update our parse of the
input for each new word that comes in.

Incrementality leads to local ambiguity, which we can observe in garden
path sentences:

(1) a. The old man the boat.
b. I convinced her children are noisy.
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Introduction

Human Language Processing

Many garden paths are not due to syntactic ambiguity alone, they also
involve semantic role ambiguity.

(2) The athlete realised her goals . . .

a. . . . at the competition.
b. . . . were out of reach.

This indicates that humans incrementally assign semantic roles.

Let’s look at this example in more detail.
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Introduction

Human Language Processing - Example

The athlete realised

A0

Semantic Triples: <[role labels], arg, pred>

〈A0,athlete,realised〉
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Introduction

Human Language Processing - Example

The athlete realised her goals

A0
A1

Semantic Triples: <[role labels], arg, pred>

〈A0,athlete,realised〉
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Introduction

Human Language Processing - Example

The athlete realised her goals were out of reach

A0

A1

A0

Semantic Triples: <[role labels], arg, pred>

〈A0,athlete,realised〉
〈A1,were,realised〉
〈A0,goals,were〉
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Introduction

Incremental Semantic Role Labeling

Determine Semantic Role Labels as the input unfolds

Given a sentence prefix and its partial syntactic structure:

1 Identify Arguments and Predicates
2 Assign correct role labels

Assign incomplete semantic roles
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Introduction

Sentence Auto-completion
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Introduction

Sentence Auto-completion
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Introduction

Non-incremental SRL

Pipeline approach
Liu and Sarkar (2007)
Màrquez et al. (2008)
Björkelund et al. (2009) (MATE)

Predicate
Identification

Argument
Identification

Argument
Labelling
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ıSRL Model

Model

Psycholinguistically
Motivated TAG

(PLTAG)
+ Semantic

Role Lexicon

Incremental Role
Propagation

Algorithm (IRPA)

Triple Identifier/
Role Label

Disambiguation
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ıSRL Model

Psycholinguistically Motivated TAG (PLTAG)

Psycholinguistically Motivated TAG (PLTAG), is a variant of tree-adjoining
grammar (Demberg et al., 2014) that supports parsing with incremental,
fully connected structures.
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ıSRL Model

Comparison with TAG

TAG derivations are not always incremental.
Example

S

VP

NP↓VP

take

NP↓

Lexicon
NP

Banks

S

VP

NP↓VP

take

NP↓

VP

VP*MD

will
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ıSRL Model

Comparison with TAG

PLTAG derivation are always incremental and fully connected.
Example

NP

Banks

Lexicon
NP

Banks

S

VP

NP↓VP

take

NP↓

VP

VP*MD

will

Sk

VPk
kNPk↓
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subst−−−−→ S1

VP1
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Lexicon
NP
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S

VP
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ıSRL Model

Comparison with TAG
PLTAG derivation are always incremental and fully connected.
Example

NP

Banks

subst−−−−→ S1

VP1
1NP1

Banks

adj
−−→

S1

VP1

VP1MD

will

NP1

Banks

verif−−−→ S

VP

VP

NP↓VP

take

MD

will

NP

Banks

Lexicon
NP

Banks

S

VP

NP↓VP

take

NP↓

VP

VP*MD

will

Sk

VPk
kNPk↓
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ıSRL Model

Semantic Roles in Lexicon

Used information for verb predicates only, derived from PropBank
(Palmer, 2005).

NP

NNS

Banks

NP

NNS

measures

VP

VP∗
{AM-MOD}

MD

will

S

VP

NP↓
{A1}

VP

VB

take

NP↓
{A0,A3}

S1

VP1
1NP1

NP↓
{A0,A1,
A2,A3}
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ıSRL Model

Incremental Role Propagation Algorithm

NP

NNS

Banks

S1

VP1NP1

NNS

Banks
{A0,A1,
A2,A3}

S1

VP1

VP

VP*
{AM-
MOD}

MD

will

NP1

NNS

Banks
{A0,A1,
A2,A3}

1. subst 2. adj

1. NP → 〈{A0,A1,A2,A3},Banks,nil〉

2. VP → 〈AM-MOD,will,nil〉
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Incremental Role Propagation Algorithm

NP

NNS

Banks

S1

VP1NP1

NNS

Banks
{A0,A1,
A2,A3}

S1

VP1

VP1
{AM-MOD}

MD

will

NP1

NNS

Banks
{A0,A1,
A2,A3}

1. subst 2. adj 3. verif

1. NP → 〈{A0,A1,A2,A3},Banks,nil〉

2. VP → 〈AM-MOD,will,nil〉

Ioannis Konstas (ILCC) ıSRL with PLTAG 26 October 2014 12 / 18



ıSRL Model

Incremental Role Propagation Algorithm

S

VP

VP

NP↓
{A1}

VP

VB

take

MD

will
{AM-
MOD}

NP

NNS

Banks
{A0,A3}

S

VP

VP

NP

NNS

measures
{A1}

VP

VB

take

MD

will
{AM-
MOD}

NP

NNS

Banks
{A0,A3}

4. verif

3. NP → 〈{A0, A1 , A2 ,A3},Banks,take〉
VP → 〈AM-MOD,will,take〉
NP → → 〈A1,nil,take〉
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ıSRL Model

Incremental Role Propagation Algorithm

S

VP

VP

NP↓
{A1}

VP
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take

MD

will
{AM-
MOD}
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NNS

Banks
{A0,A3}

S

VP

VP

NP

NNS

measures
{A1}

VP

VB

take

MD

will
{AM-
MOD}

NP

NNS

Banks
{A0,A3}

4. subst

3. NP → 〈{A0,A3},Banks,take〉
VP → 〈AM-MOD,will,take〉

4. NP → 〈A1,measures,take〉
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ıSRL Model

Argument Identification - Role Label Disambiguation

Argument Identification

〈{A0,A3},Banks,refused〉 Bilexical Features
Syntactic Features

L2-loss support
vector classifier

Keep

Discard

Role Label Disambiguation

〈{A0,A3},Banks,refused〉 Bilexical Features
Syntactic Features

L2-regularised
logistic regres-
sion classifier

〈{A0},Banks,refused〉
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Experiments

Experiments

Propositions with verb predicates only
Gold lexicon entries during parsing - CoNLL-SRL-only task

Evaluation
Full sentence Accuracy (F1)
Unlabelled Prediction Score (UPS)

System Comparison
ıSRL-Oracle : Gold Semantic Role Labels
ıSRL: All Semantic Role Labels
Majority-Baseline
Malt-Baseline
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Experiments

Results - Full sentence

ıSRL-Oracle ıSRL Major-Baseline Malt-Baseline

20

40

60

80

100

85.29
78.38

63.92

52.5

F 1
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Experiments

Results - Incremental

5 10 15 200.2

0.4

0.6

0.8

1

words

F 1

Unlabelled Prediction Score (UPS) F1

iSRL-Oracle
iSRL

Majority-Baseline
Malt-Baseline
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Conclusions

Conclusions

New task of Incremental Semantic Role Labeling
Our system combines:

Psycholinguistically Motivated TAG (PLTAG)
Semantic Role Lexicon
Incremental Role Propagation Algorithm (IRPA)
Argument Identification, Role Disambiguation Classifiers

Outperforms baselines
Performs well incrementally: predicts (in)-complete triples early in the
sentence
Download the code from
http://homepages.inf.ed.ac.uk/ikonstas/
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Conclusions

Thank you
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Bonus Material - PLTAG

Lexicon:
Standard TAG lexicon
Predictive lexicon
(PLTAG)

Operations:
Substitution
Adjunction
Verification (PLTAG)
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Bonus Material - PLTAG

Lexicon:
Standard TAG lexicon
Predictive lexicon
(PLTAG)

Operations:
Substitution
Adjunction
Verification (PLTAG)

Example
Initial Tree: NP

Banks

S

VP

NP↓VP

take

NP↓

Auxiliary Tree: VP

VP*MD

will
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Bonus Material - PLTAG

Lexicon:
Standard TAG lexicon
Predictive lexicon
(PLTAG)

Operations:
Substitution
Adjunction
Verification (PLTAG)

Example
NP

Banks

substitutes into S

VP

NP↓VP

take

NP↓

resulting in S

VP

NP↓VP

take

NP

Banks
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Bonus Material - PLTAG

Lexicon:
Standard TAG lexicon
Predictive lexicon
(PLTAG)

Operations:
Substitution
Adjunction
Verification (PLTAG)

Example
VP

VP*MD

will

adjoins to S

VP

NP↓VP

take

NP

Banks

resulting in S

VP

VP

NP↓VP

take

MD

will

NP

Banks
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Bonus Material - PLTAG

Lexicon:
Standard TAG lexicon
Predictive lexicon
(PLTAG)

Operations:
Substitution
Adjunction
Verification (PLTAG)

Example
Prediction Tree: Sk

VPk
kNPk↓

Index k marks predicted node.
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Bonus Material - PLTAG

Lexicon:
Standard TAG lexicon
Predictive lexicon
(PLTAG)

Operations:
Substitution
Adjunction
Verification (PLTAG)

Example
S1

VP1

VP1MD

will

NP1

Banks

is verified by S

VP

NP↓VP

take

NP↓

resulting in S

VP

VP

NP↓VP

take

MD

will

NP

Banks

All nodes indexed with k have to be verified.
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