Incremental Semantic Role Labeling with Tree Adjoining Grammar

Ioannis Konstas*, Frank Keller*, Vera Demberg[†] and Mirella Lapata*

*: Institute for Language, Cognition and Computation University of Edinburgh

†: Cluster of Excellence Multimodal Computing and Interaction, Saarland University

26 October 2014

Human language processing is *incremental*: we update our parse of the input for each new word that comes in.

Human language processing is *incremental:* we update our parse of the input for each new word that comes in.

Incrementality leads to local ambiguity, which we can observe in *garden path sentences:*

- (1) a. The old man the boat.
 - b. I convinced her children are noisy.

Many garden paths are not due to syntactic ambiguity alone, they also involve *semantic role ambiguity*.

Many garden paths are not due to syntactic ambiguity alone, they also involve *semantic role ambiguity*.

- (2) The athlete realised her goals ...
 - a. ... at the competition.
 - b. ... were out of reach.

This indicates that humans *incrementally* assign semantic roles.

Many garden paths are not due to syntactic ambiguity alone, they also involve *semantic role ambiguity*.

(2) The athlete realised her goals ...

- a. ... at the competition.
- b. ... were out of reach.

This indicates that humans *incrementally* assign semantic roles.

Let's look at this example in more detail.

Human Language Processing - Example

Semantic Triples: <[role labels], arg, pred>

 $\langle A0, athlete, realised \rangle$

Human Language Processing - Example

Semantic Triples: <[role labels], arg, pred> $\langle A0,athlete,realised \rangle$ $\langle [A1,A2],nil,realised \rangle$

Human Language Processing - Example

Semantic Triples: <[role labels], arg, pred> (A0,athlete,realised)

 $\langle A1, goals, realised \rangle$

Human Language Processing - Example

Semantic Triples: <[role labels], arg, pred> (A0,athlete,realised)

```
\langle A1, were, realised \rangle
```

 $\langle A0, goals, were \rangle$

Incremental Semantic Role Labeling

• Determine Semantic Role Labels as the input unfolds

- Determine Semantic Role Labels as the input unfolds
- Given a sentence prefix and its partial syntactic structure:

- Determine Semantic Role Labels as the input unfolds
- Given a sentence prefix and its partial syntactic structure:
 - Identify Arguments and Predicates

- Determine Semantic Role Labels as the input unfolds
- Given a sentence prefix and its partial syntactic structure:
 - Identify Arguments and Predicates
 - 2 Assign correct role labels

- Determine Semantic Role Labels as the input unfolds
- Given a sentence prefix and its partial syntactic structure:
 - Identify Arguments and Predicates
 - Assign correct role labels
- Assign incomplete semantic roles

Google	the criminal arrested	Q
U	the sims 3 criminal arrested	
	the doctor with arrested criminal girl	

Press Enter to search.

Google

the criminal arrested the sims 3 criminal arrested

the doctor with arrested criminal girl

Press Enter to search.

,0,

Q

Google	the police officer arrested	Ŷ	Q
	the police officer arrested	Remove	
	the police officer arrested two burglars		
	why did the police officer arrest the turkey		
	what happened to the police officers who arrested		
	karunanidhi		

Google

the police officer arrested the police officer arrested the police officer arrested **two burglars** why did the police officer arrest the turkey what happened to the police officers who arrested karunanidhi

0

Remove

Non-incremental SRL

Pipeline approach

- Liu and Sarkar (2007)
- Màrquez et al. (2008)
- Björkelund et al. (2009) (MATE)

Model

Psycholinguistically Motivated TAG (PLTAG)

Psycholinguistically Motivated TAG (PLTAG), is a variant of tree-adjoining grammar (Demberg et al., 2014) that supports parsing with incremental, fully connected structures.

TAG derivations are not always incremental.

TAG derivations are not always incremental.

TAG derivations are not always incremental.

Semantic Roles in Lexicon

Used information for verb predicates *only*, derived from PropBank (Palmer, 2005).

1. $\mathsf{NP} \rightarrow \langle \{\mathsf{A0}, \mathsf{A1}, \mathsf{A2}, \mathsf{A3}\}, \mathsf{Banks}, \mathsf{nil} \rangle$

1. NP
$$\rightarrow \langle \{A0,A1,A2,A3\},Banks,nil \rangle$$

2. $VP \rightarrow \langle AM-MOD, will, nil \rangle$

1. NP $\rightarrow \langle \{A0,A1,A2,A3\},Banks,nil \rangle$

2. VP \rightarrow (AM-MOD,will,nil)

Incremental Role Propagation Algorithm

3. NP $\rightarrow \langle \{A0, A1, A2, A3\}, Banks, take \rangle$ VP $\rightarrow \langle AM-MOD, will, take \rangle$ NP $\rightarrow \rightarrow \langle A1, nil, take \rangle$

Incremental Role Propagation Algorithm

Argument Identification - Role Label Disambiguation

Argument Identification

Argument Identification - Role Label Disambiguation

Argument Identification

Role Label Disambiguation

Experiments

- Propositions with verb predicates only
- Gold lexicon entries during parsing CoNLL-SRL-only task

Experiments

- Propositions with verb predicates only
- Gold lexicon entries during parsing CoNLL-SRL-only task

Evaluation

- Full sentence Accuracy (F₁)
- Unlabelled Prediction Score (UPS)

Experiments

- Propositions with verb predicates only
- Gold lexicon entries during parsing CoNLL-SRL-only task

Evaluation

- Full sentence Accuracy (F₁)
- Unlabelled Prediction Score (UPS)

System Comparison

- *i*SRL-Oracle : Gold Semantic Role Labels
- *i***SRL**: All Semantic Role Labels
- Majority-Baseline
- Malt-Baseline

Results - Full sentence

Ioannis Konstas (ILCC)

Results - Incremental

Unlabelled Prediction Score (UPS) F₁

Conclusions

- New task of Incremental Semantic Role Labeling
- Our system combines:
 - Psycholinguistically Motivated TAG (PLTAG)
 - Semantic Role Lexicon
 - Incremental Role Propagation Algorithm (IRPA)
 - Argument Identification, Role Disambiguation Classifiers
- Outperforms baselines
- Performs well incrementally: predicts (in)-complete triples early in the sentence
- Download the code from http://homepages.inf.ed.ac.uk/ikonstas/

Conclusions

Thank you

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

Operations:

- Substitution
- Adjunction
- Verification (PLTAG)

Example Prediction Tree: S_k $NP^k \downarrow VP_k^k$ Index k marks predicted node.

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

