NaturalLI: Natural Logic Inference for Common Sense Reasoning

Gabor Angeli, Chris Manning

Stanford University

October 26, 2014

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 0 / 22

Natural Logic Inference for Common Sense Reasoning

Kittens play with yarn

Kittens play with computers

Natural Logic Inference for Common Sense Reasoning

Kittens play with yarn

Kittens play with computers

The city refused the demonstrators a permit because they feared violence.

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 2 / 22

The city refused the demonstrators a permit because they feared violence. a city fears violence demonstrators fear violence

The city refused the demonstrators a permit because they feared violence. a city fears violence demonstrators fear violence

I ate the cake with a cherry vs. I ate the cake with a fork cakes come with cherries cakes are eaten using cherries

The city refused the demonstrators a permit because they feared violence. a city fears violence demonstrators fear violence

I ate the cake with a cherry vs. I ate the cake with a fork cakes come with cherries cakes are eaten using cherries

Put a sarcastic comment in your talk. That's a great idea. Sarcasm in your talk is a great idea

Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Baseball is played underwater

Baseball is played on grass

Prior Work on Common Sense Reasoning

Old School AI: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Prior Work on Common Sense Reasoning

Old School AI: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Textual Entailment: Rich inference; small data.

- RTE Challenges.
- Episodic Logic (Schubert, 2002).

Prior Work on Common Sense Reasoning

Old School AI: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Textual Entailment: Rich inference; small data.

- RTE Challenges.
- Episodic Logic (Schubert, 2002).

Information Extraction: Shallow inference, large data.

- OpenIE (Yates et al., 2007), NELL (Carlson et al., 2010).
- Extraction of facts from a large corpus; fuzzy lookup.

Start with a large knowledge base

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 5 / 22

Start with a large knowledge base

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 5 / 22

A 10

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 5 / 22

Infer new facts...on demand from a query...

5/22

... Using text as the meaning representation...

...Without aligning to any particular premise.

Lookup in 270 million entry KB...

...by lemmas12% recall...with NaturalLI49% recall (91% precision)

Lookup in 270 million entry KB...

...by lemmas12% recall...with NaturalLI49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Lookup in 270 million entry KB...

...by lemmas 12% recall ...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Maintain good properties of fuzzy lookup.

- Fast.
- Minimal pre-processing of query.
- Minimal pre-processing of knowledge base.

Lookup in 270 million entry KB...

...by lemmas 12% recall ...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Maintain good properties of fuzzy lookup.

- Fast.
- Minimal pre-processing of query.
- Minimal pre-processing of knowledge base.

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse (all mice are rodents) Some cat ate a **rodent**

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

· .

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse (all mice are rodents) : Some cat ate a **rodent**

Cognitively easy inferences are easy:

- Most cats eat mice
- ... Most cats eat rodents

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse (all mice are rodents) : Some cat ate a **rodent**

Cognitively easy inferences are easy:

- Most cats eat mice
- ... Most cats eat rodents

• "All students who know a foreign language learned it at university."

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse (all mice are rodents) : Some cat ate a **rodent**

Cognitively easy inferences are easy:

- Most cats eat mice
- ... Most cats eat rodents

0

- "All students who know a foreign language learned it at university."
 - :. "They learned it at school."

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse (all mice are rodents) : Some cat ate a **rodent**

Cognitively easy inferences are easy:

Most cats eat mice

... Most cats eat rodents

• "All students who know a foreign language learned it at university."

:. "They learned it at school."

Facts are text; inference is lexical mutation

Treat hypernymy as a partial order.

Treat hypernymy as a partial order.

Treat hypernymy as a partial order.

Treat hypernymy as a partial order.

Treat hypernymy as a partial order.

Treat hypernymy as a partial order.

Natural Logic and Polarity

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

Natural Logic and Polarity

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Mutations must respect polarity.

Inference is reversible.

✓ Computationally fast during inference.

- "Semantic" parse of query is just syntactic parse.
- Inference is lexical mutations / insertions / deletions.

Computationally fast during inference.

- "Semantic" parse of query is just syntactic parse.
- Inference is lexical mutations / insertions / deletions.
- ✓ Computationally fast during pre-processing.
 - Plain text!

10/22

October 26, 2014

Computationally fast during inference.

- "Semantic" parse of query is just syntactic parse.
- Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!
- ✓ Still captures common inferences.
 - We make these types of inferences regularly and instantly.

10/22

October 26, 2014

✓ Computationally fast during inference.

- "Semantic" parse of query is just syntactic parse.
- Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!

✓ Still captures common inferences.

- We make these types of inferences regularly and instantly.
- We expect *readers* to make these inferences instantly.

10/22

October 26, 2014

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 11 / 22

Nodes

(fact, truth maintained \in {true, false})

Nodes

(fact, truth maintained \in {true, false})

Start Node End Nodes (query fact, true) any known fact

Nodes

(fact, truth maintained \in {true, false})

Start Node End Nodes (query fact, true) any known fact

Edges Mutations of the current fact

Nodes

(fact, truth maintained \in {true, false})

Start Node End Nodes (query fact, true) any known fact

EdgesMutations of the current factEdge CostsHow "wrong" an inference step is (learned)

Search mutates opposite to polarity

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 12 / 22

Truth maintained:

true

12/22

< E

October 26, 2014

Truth maintained:

false

Shorthand for a node:

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 13 / 22

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 13 / 22

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 13 / 22

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 13 / 22

An Example Search (with edges)

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

< A >
An Example Search (with edges)

TemplateInstanceEdgeOperator Negate $No \rightarrow The$

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 14 / 22

< A >

An Example Search (with edges)

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 14 / 22

Edge Templates

Template

Hypernym Hyponym Antonym Synonym

Add Word Delete Word Instance

 $\begin{array}{l} \text{animal} \rightarrow \text{cat} \\ \text{cat} \rightarrow \text{animal} \\ \text{good} \rightarrow \text{bad} \\ \text{cat} \rightarrow \text{true cat} \end{array}$

 $cat \rightarrow \cdot \\ \cdot \rightarrow cat$

Operator Weaken Operator Strengthen Operator Negate Operator Synonym

Nearest Neighbor

 $some \rightarrow all$ $all \rightarrow some$ $all \rightarrow no$ $all \rightarrow every$

 $cat \rightarrow dog$

イロト イポト イラト イラト

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 15 / 22

Want to make likely (but not certain) inferences.

• Same motivation as Markov Logic, Probabilistic Soft Logic, etc.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: $cat \rightarrow feline$ **vs.** $cup \rightarrow container$.
- Nearest neighbors distance.
- Each edge instance has a distance f.

16/22

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among edge instances of a template.

- WordNet: $cat \rightarrow feline$ **vs.** $cup \rightarrow container$.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$.

16/22

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among edge instances of a template.

- WordNet: $cat \rightarrow feline$ **vs.** $cup \rightarrow container$.
- Nearest neighbors distance.
- Each edge instance has a distance f.

```
Cost of an edge is\theta_i \cdot f_i.Cost of a path is\theta \cdot f.
```


16/22

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among edge instances of a template.

- WordNet: $cat \rightarrow feline$ **vs.** $cup \rightarrow container$.
- Nearest neighbors distance.
- Each edge instance has a distance f.

```
Cost of an edge is\theta_i \cdot f_i.Cost of a path is\theta \cdot f_i.Can learn parameters \theta.
```


16/22

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 17 / 22

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

- nocturnal \xrightarrow{l} diurnal, all $\xrightarrow{\lambda}$ not all
 - \therefore all bats are nocturnal $\xrightarrow{?}$ not all bats are diurnal

17/22

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

• nocturnal $\xrightarrow{\downarrow}$ diurnal, all $\xrightarrow{\scriptscriptstyle{\lambda}}$ not all

 \therefore all bats are nocturnal $\xrightarrow{?}$ not all bats are diurnal

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

• nocturnal \xrightarrow{l} diurnal, all $\xrightarrow{\lambda}$ not all

 \therefore all bats are nocturnal $\xrightarrow{?}$ not all bats are diurnal

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

• nocturnal \xrightarrow{l} diurnal, all $\xrightarrow{\lambda}$ not all

 \therefore all bats are nocturnal $\xrightarrow{?}$ not all bats are diurnal

Natural Logic Analog of Transitivity:

- State Fact Mutation
 - \Rightarrow all bats are nocturnal,

Natural Logic Analog of Transitivity:

State	Fact	Mutation
\Rightarrow	all bats are nocturnal,	(nocturnal $\stackrel{ }{ ightarrow}$ diurnal)

Natural Logic Analog of Transitivity:

Natural Logic Analog of Transitivity:

- \Rightarrow all bats are nocturnal,
- $\Rightarrow \neg$ all bats are diurnal,

Mutation

(nocturnal $\xrightarrow{1}$ diurnal) (all $\xrightarrow{\lambda}$ not all)

Natural Logic Analog of Transitivity:

- \Rightarrow all bats are nocturnal,
- $\Rightarrow \neg$ all bats are diurnal,
 - \Rightarrow not all bats are diurnal

Mutation

(nocturnal $\xrightarrow{\uparrow}$ diurnal) (all $\xrightarrow{\rightarrow}$ not all)

Natural Logic Analog of Transitivity:

$$\Rightarrow \neg$$
 all bats are diurnal,

$$\Rightarrow$$
 not all bats are diurnal

Mutation

(nocturnal $\xrightarrow{\uparrow}$ diurnal) (all $\xrightarrow{\land}$ not all)

• Complex *join table* can be reduced to tracking a simple binary distinction.

Experiments

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 P: At least three commissioners spend a lot of time at home.
 H: At least three commissioners spend time at home.
 P: At most ten commissioners spend a lot of time at home.
 H: At most ten commissioners spend time at home.
- 9 focused sections; 3 in scope for this work.

18/22

Experiments

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 P: At least three commissioners spend a lot of time at home.
 H: At least three commissioners spend time at home.
 P: At most ten commissioners spend a lot of time at home.
 H: At most ten commissioners spend time at home.
- 9 focused sections; 3 in scope for this work.

Not a blind test set!

"Can we make deep inferences without knowing the premise a priori?"

18/22

FraCaS Results

Systems

- M07: MacCartney and Manning (2007)
- M08: MacCartney and Manning (2008)
 - Classify entailment after aligning premise and hypothesis.
- N: NaturalLI (this work)
 - Search blindly from hypothesis for the premise.

FraCaS Results

Systems

- M07: MacCartney and Manning (2007)
- M08: MacCartney and Manning (2008)
 - Classify entailment after aligning premise and hypothesis.

N: NaturalLI (this work)

• Search blindly from hypothesis for the premise.

§	Category	Accuracy		
		M07	M08	Ν
1	Quantifiers	84	97	95
5	Adjectives	60	80	73
6	Comparatives	69	81	87

FraCaS Results

Systems

- M07: MacCartney and Manning (2007)
- M08: MacCartney and Manning (2008)
 - Classify entailment after aligning premise and hypothesis.

N: NaturalLI (this work)

• Search blindly from hypothesis for the premise.

§	Category	Accuracy		
		M07	M08	Ν
1	Quantifiers	84	97	95
5	Adjectives	60	80	73
6	Comparatives	69	81	87
Applicable (1,5,6)		76	90	89

Experiments

ConceptNet:

 A semi-curated collection of common-sense facts. not all birds can fly noses are used to smell nobody wants to die music is used for pleasure

- Negatives: ReVerb extractions marked false by Turkers.
- Small (1378 train / 1080 test), but fairly broad coverage.

Experiments

ConceptNet:

- A semi-curated collection of common-sense facts. not all birds can fly noses are used to smell nobody wants to die music is used for pleasure
- Negatives: ReVerb extractions marked false by Turkers.
- Small (1378 train / 1080 test), but fairly broad coverage.

Our Knowledge Base:

• 270 million lemmatized Ollie extractions.

Systems

Direct Lookup: Lookup by lemmas. **NaturalLI**: Our system.

Systems

Direct Lookup: Lookup by lemmas. NaturalLI: Our system. NaturalLI Only: Use only inference (prohibit exact matches).

21/22

October 26, 2014

Systems

Direct Lookup: Lookup by lemmas. NaturalLI: Our system. NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1

21/22

October 26, 2014

Systems

Direct Lookup: Lookup by lemmas. NaturalLI: Our system. NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1
NaturalLI Only	88.8	40.1
NaturalLI	90.6	49.1

Systems

Direct Lookup: Lookup by lemmas. NaturalLI: Our system. NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1
NaturalLI Only	88.8	40.1
NaturalLI	90.6	49.1

• 4x improvement in recall.

21/22

Conclusions

Takeaways

- *Deep* inferences from a *large* knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

22 / 22

Conclusions

Takeaways

- *Deep* inferences from a *large* knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Strictly better than querying a knowledge base.

- 12% recall \rightarrow 49% recall @ 91% precision.
- Checks logical entailment (not just fuzzy query).

Conclusions

Takeaways

- *Deep* inferences from a *large* knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Strictly better than querying a knowledge base.

- 12% recall \rightarrow 49% recall @ 91% precision.
- Checks logical entailment (not just fuzzy query).

Complexity doesn't grow with knowledge base size.

22/22

Thanks!

Gabor Angeli, Chris Manning (Stanford) NaturalLI: Natural Logic Inference for Com

October 26, 2014 22 / 22