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What is Decipherment?

e Letter Substitution Cipher

plaintext
decipherment _is _the an
alysis _of _documents_ wri
tten_in_ancient _languag
es
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What is Decipherment?

e Letter Substitution Cipher

plaintext
decipherment _is _the an
alysis _of _documents_ wri
tten_in_ancient _languag
es

Encryption ciphertext

051319251214 1304 0213 1116 15
252215161413 15171117 08 03 22
2522150920150509 1907 02 13 11
22150604 251616 13 11152511 15
1711192513 11161508 17 11 03 07
17 03 13 22
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What is Decipherment?

e Letter Substitution Cipher

a 17 | o 09
plaintext b |01 |p |12
decipherment _is the an ]C 19 | q |23
alysis_of_documents_wri o e e s
tetsen_ln_anment_languag 4L> .
- ) ‘QQ t |16
neryption ciphertext \[10 |u |07
0513192512141304 02131116 15 T‘M v |24
2522151614 131517 11 17 08 03 22 | |25 |w |06
25221509201505091907 0213 11 i s [x |26
22150604 2516 16 1311 152511 15 < |21 03

17 111925131116 1508 17 11 03 07 y
17 03 13 22 | |08 |z |27
m 02 | _ 15

n 11
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Substitution Cipher and Translation

 Word Substitution Cipher

plaintext
the head of the german social democratic
party ...
Encryption Decryption

ciphertext

007834 000094 048235 007834 113485
087654 129823 032834 ...

* Word substitutions also take place in
translation
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Automatic Decipherment

* A Noisy Channel Model Approach (Knight et al.
2006)

W plaintext W _
» ciphertext
C

A model Substitute
of

plaintext
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Automatic Decipherment

* A Noisy Channel Model Approach (Knight et al.

Plaintext unrelated to Search P(c|p) to maximize
ciphertext EM
i | P(c)=y P(p)P(c!p)

p

plaintext W :

» ciphertext
c

P(p) Substitute
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Automatic Decipherment

* A Noisy Channel Model Approach (Knight et al.

Plaintext unrelated to Search P(c|p) to maximize
ciphertext EM
i | P(c)=y P(p)P(c!p)

p

plaintext W :

» ciphertext
c

P(p) Substitute

] ] N: Ciphertext length
* Time Complexity: ow-v?-R)  V:Vocabulary

R: EM iteration
(Forward-backward) 9
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Motivation

 Decipherment improves machine translation
(Dou and Knight 2013)
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Motivation

 Decipherment improves machine translation
(Dou and Knight 2013)

Initialize
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Motivation

 Decipherment improves machine translation
(Dou and Knight 2013)

Decoder

Initialize
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Motivation

* Joint Alignment and Decipherment ?

Decipherment Model
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Contributions

* Proposed a new framework to perform joint
word alignment and decipherment

* The joint framework improves both word
alignment and machine translation significantly

* Released Malagasy treebank and 15.3 million
word Malagasy news data
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Outline

* Joint Word Alignment and Decipherment
* Deciphering Malagasy
* Conclusions
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Word Alignment

* Word Alignment Model and Objective

Objective:
J
P(FIE)=2 d(a)- t(fle )
a j=1
| Alignments
d
distortion translatlon

probabilities  probabilities
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Decipherment

* Decipherment Model and Objective

(Dependency based Decipherment Dou and Knight 2013)

Objective:

P(F,,,)= Y P elez)f't(fj le,)

v
LM translation
LM: Dependency Language Model Probabilities  probabilities
(Created from dependency trees) (fixed)

18

=& USC University of
4 4 Information Sciences Institute
Southern California J




A New Objective

Word Alignment Obijective: Decipherment Objective:
J 2
P(FIE)=Y [ |da) «(f;le,) P(F,,) = S Plee)] [1(f Te)
a j=1 e j=1

wed Pararr(leter/
t(fle)
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A New Objective

Word Alignment Obijective: Decipherment Objective:
J 2
P(FIE)=Y [ |da) «(f;le,) P(F,,) = S Plee)] [1(f Te)
a j=1 e j=1

wed Pararr(]eter/
t(fle)

New Objective:

P(JOINT) = P(F | E)+aP(F,,,,)
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Learning Algorithm

* EM

5 iterations of EM on
Parallel text only

EM
Parallel
Data
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Learning Algorithm

* EM

E Step Collect expected counts for:
Non Parallel
Data t(fle)
EM
Parallel
Data
E Step Collect expected counts for:
Parallel
Data t(fle) d(a)
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Learning Algorithm

* EM

E Step Collect expected counts for:
Non Parallel '\
Data t(fle)

EM Sum up
Parallel > expected
Data counts

E Step Collect expected counts for:
Parallel -/
Data t(fle) d(a)
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Learning Algorithm

* EM

E Step
Non Parallel
Data

EM
[ Parallel Update parameters

Data
t(fle) d(a)

E Step
Parallel
Data
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Learning Algorithm

* EM

E Step E Step
Non Parallel Non Parallel
Data Data
EM
Parallel
Data
E Step E Step
Parallel Parallel
Data Data
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E Step

* On Parallel Data
(Brown et al. 1993, Vogel and Ney 1996)
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E Step

* On Parallel Data
(Brown et al. 1993, Vogel and Ney 1996)

* On Non-parallel Data
Time complexity: OW:-V*-R)
V: Vocabulary size N: Ciphertext length

* Not Scalable when V ~10°,N ~10’
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E Step

* On Non-parallel Data
Use samples to collect expected counts:

cipher bigram sample bigram
) x P(f le) P(f,le,) P(ee,)
A ke
Slice Sampling

Let N be total number of samples we draw
And €€, be one of them:

Expected _Count(f,,e,) = Expected _Count(f,,e,) = % ~count(f,, f,)
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Word Alignment Experiment

e Data (Size in tokens)

Spanish English
Parallel 10.3k 9.9k
Non Parallel 80 million 400 million
TreeBank 0.4 million 1.0 million
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Decipherment Improves Alignment

Spanish - English

Baseline
Joint

0 o

Model 1 HMM

A A
. N\ A\
| | | | | | | | | | | | | |
2 3 4 5 6 7 8 9 10 11 12 13 14 15

) 30
lterations
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Outline

* Deciphering Malagasy
* Conclusions
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The Malagasy Language

* |s official Language of Madagascar
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The Malagasy Language

* |s official Language of Madagascar
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The Malagasy Language

* |s official Language of Madagascar
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The Malagasy Language

* |s official Language of Madagascar

e Although spoken in African, Malagasy has its
root in southeast Asia.
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The Malagasy Language

* |s official Language of Madagascar

e Although spoken in African, Malagasy has its
root in southeast Asia.

 Has 18 million native speakers
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The Malagasy Language

* |s official Language of Madagascar

e Although spoken in African, Malagasy has its
root in southeast Asia.

 Has 18 million native speakers

* |s head initial with V-O-S word order. (English:
S-V-0)
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Malagasy Dependency Parser

* Data

Training 120 sentences, 20k tokens
Testing 48 sentences, 7k tokens

Spanish parser trained on 400k tokens

* Result on Malagasy
72.4 % directed attachment accuracy
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Malagasy Dependency Parser

* More Training Data

Parallel

retrain
Manual Project -©

Dependency

* Result
Improved to 80.0 % from 72.4%
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Malagasy-English MT

* Data (In tokens)

Parallel Train (GV) 0.9 million 0.8 million
Tune (GV) 22.2k 20.2k
Test (GV) 23k 21k
Test (Web) 2.2k 2.1k

Non Parallel GigaWord N/A 834 million
Web 15.3 million 396 million

GV: Global Voices, multilingual international news website
40
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Malagasy-English MT

* Baseline
Phrase-based MT system with Moeses

Model1: 10 iterations
HMM: 5 iterations

(Model 3 and Model 4 doesn’t improve BLEU)

Align in 2 directions and used grow-diag-final to extract phrases
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Malagasy-English MT

 Joint

Model1: 5 iterations (parallel only)
Nata 5 iterations (Joint)
HMM: 5 iterations (Joint)

Align and extract phrases only on one direction P(English | Malagasy)
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Malagasy-English MT

* Disjoint

Alignment

Initialize

43

=& USC University of
\&8Y / p Information Sciences Institute
Southern Calif f



Results on Global Voices

19.5

19

18.5

18 « Baseline

BLEU

Disjoint

17.5
& Joint

17

16.5

16

Tune (GV) Test (GV)
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Results on Local News

12
10
8
@ “ Baseline
m 6 Disjoint
“ Joint
4
2
0 |
Test (Web) 45
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Conclusion

* Proposed a framework for joint alighment and
decipherment

* The joint process improves both alignment and
machine translation quality

* Released a mini Malagasy treebank and 15m
tokens news data
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Thank You!
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