Evaluating Neural Word Representations in Tensor-Based Compositional Settings

Dmitrijs Milajevs^{QM}, Dimitri Kartsaklis^{OX}, Mehrnoosh Sadrzadeh^{QM}, Matthew Purver^{QM}

QMQueen Mary University of London School of Electronic Engineering and Computer Science Mile End Road, London, UK OXUniversity of Oxford
Department of Computer Science
Parks Road, Oxford, UK

Modelling word and sentence meaning

Formal semantics

John: j

Mary: m

saw: λx.λy.saw(y,x)

John saw Mary: saw(j, m)

Distributional hypothesis

- Word similarity
 - John is more similar to Mary that to idea.
- Sentence similarity
 - Dogs chase cats vs. Hounds pursue kittens
 vs. Cats chase dogs
 vs. Students chase deadline

Distributional approach

For each target word

A lorry might carry sweet apples

and a neighbouring context words

A lorry *might* carry sweet apples

update a co-occurrence matrix

	might	sweet	red	
carry	+1	+1	+0	

Similarity of two words ~ distance between vectors

Neural word embeddings (language modelling)

Corpus: The cat is walking in the bedroom

Unseen A dog was running in a room should be almost as likely, because of similar semantic and grammatical roles. Bengio et al., 2006

Mikolov et al. scaled up the estimation procedure to a large corpus and provided a dataset to test extracted relations.

Tensor based models

Representing verb as a matrix

General duality theorem: tensors are in one-one correspondence with multilinear maps. Bourbaki, '89

$$\overline{z} \in V \otimes W \otimes \cdots \otimes Z \cong f_{\overline{z}} \colon V \to W \to \cdots \to Z$$

In a tensor based model, transitive verbs are matrices.

Relational

$$\overline{\mathrm{Verb}} = \sum_{i} \overrightarrow{\mathrm{Sbj}}_{i} \otimes \overrightarrow{\mathrm{Obj}}_{i}$$

Kronecker

$$\widetilde{\text{Verb}} = \overrightarrow{\text{Verb}} \otimes \overrightarrow{\text{Verb}}$$

Compositional models for (Obj, Verb, Sbj)

Mitchell and Lapata '08

Kartsaklis et al. '12

Addition

Copy object: $\overrightarrow{Sbj} \odot (\overrightarrow{Verb} \times \overrightarrow{Obj})$

Multiplication

Copy subject: $\overrightarrow{Obj} \odot (\overrightarrow{Verb}^T \times \overrightarrow{Sbj})$

Grefenstette and Sadrzadeh '11

Kartsaklis and Sadrzadeh '14

Relational: $\overrightarrow{Verb} \odot (\overrightarrow{Sbj} \otimes \overrightarrow{Obj})$

Frobenius addition

Kronecker: $\widetilde{\text{Verb}} \odot (\overrightarrow{\text{Sbj}} \otimes \overrightarrow{\text{Obj}})$

Frobenius multiplication

Frobenius outer

Experiments

Vector spaces

GS11: BNC, lemmatised, 2000 dimensions, PPMI

KS14: ukWaC, lemmatised, 300 dimensions, LMI, SVD

NWE: Google news, 300 dimensions, word2vec

Disambiguation

satisfies

System **meets** specification

visits

Similarity of sentences

System satisfies specification

System **meets** specification

System visits specification

Verb only baseline

satisfy

System meets specification

visit

Disambiguation results

Method	GS11	KS14	NWE
Verb only	0.212	0.325	0.107
Addition	0.103	0.275	0.149
Multiplication	0.348	0.041	0.095
Kronecker	0.304	0.176	0.117
Relational	0.285	0.341	0.362
Copy subject	0.089	0.317	0.131
Copy object	0.334	0.331	0.456
Frobenius add.	0.261	0.344	0.359
Frobenius mult.	0.233	0.341	0.239
Frobenius out.	0.284	0.350	0.375

Sentence similarity

Kartsaklis, Sadrzadeh, Pulman (CoNLL '12) Kartsaklis, Sadrzadeh (EMNLP '13)

panel discuss issue

project present problem

man shut door

gentleman close eye

paper address question

study pose problem

Sentence similarity

Method	GS11	KS14	NWE
Verb only	0.491	0.602	0.561
Addition	0.682	0.732	0.689
Multiplication	0.597	0.321	0.341
Kronecker	0.581	0.408	0.561
Relational	0.558	0.437	0.618
Copy subject	0.370	0.448	0.405
Copy object	0.571	0.306	0.655
Frobenius add.	0.566	0.460	0.585
Frobenius mult.	0.525	0.226	0.387
Frobenius out.	0.560	0.439	0.662

Paraphrasing

- MS Paraphrasing corpus
- Compute similarity of a pair of sentences
- Choose a threshold similarity value on training data
- Evaluate on the test set

Paraphrase results

Method	GS11	KS14	NWE
Addition	0,62 (0,79)	0,70 (0,80)	0,73 (0,82)
Multiplication	0,52 (0,58)	0,66 (0,80)	0,42 (0,34)

Dialogue act tagging

Switchboard: telephone conversation corpus.

- 1. Utterance-feature matrix
- $\overline{\mathsf{I}} \oplus \mathsf{wonder} \oplus \overline{\mathsf{if}} \oplus \mathsf{that} \oplus \mathsf{worked} \oplus \overline{\mathsf{.}}$
- 2. Utterance vectors are reduced using SVD to 50 dimensions

$$M \approx U \tilde{\Sigma} V^T = \tilde{M}$$

3. k-nearest neighbours classification

Dialogue act tagging results

Method	GS11	KS14	NWE lemmatised	NWE
Addition	0,35 (0,35)	0,40 (0,35)	0,44 (0,40)	0,63 (0,60)
Multiplication	0,32 (0,16)	0,39 (0,33)	0,43 (0,38)	0,58 (0,53)

Discussion

"context-predicting models obtain a thorough and resounding victory against their count-based counterparts" Baroni et al. (2014)

"analogy recovery is not restricted to neural word embeddings [...] a similar amount of relational similarities can be recovered from traditional distributional word representations" Levy et al. (2014)

"shallow approaches are as good as more computationally intensive alternatives on phrase similarity and paraphrase detection tasks" Blacoe and Lapata (2012)

Improvement over baselines

Task	GS11	KS14	NWE
Disambiguation	+	+	+
Sentence similarity	+	_	+
Paraphrase	_	+	+
Dialog act tagging	_	_	+

Conclusion

- The choice of compositional operator seems to be more important than the word vector nature and more task specific.
- Tensor-based composition does not yet always outperform simple compositional operators.
- Neural word embeddings are more successful than the cooccurrence based alternatives.
 - Corpus size might contribute a lot.