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Modelling word and sentence meaning
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Formal semantics

John: j 

Mary: m 

saw: λx.λy.saw(y,x) 

John saw Mary: saw(j, m)
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Distributional hypothesis

• Word similarity 

• John is more similar to Mary that to idea. 

• Sentence similarity 

• Dogs chase cats vs. Hounds pursue kittens  
                              vs. Cats chase dogs 
                              vs. Students chase deadline
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Distributional approach

A lorry might carry sweet apples
For each target word

and a neighbouring context words
A lorry might carry sweet apples

update a co-occurrence matrix

might sweet red …

carry +1 +1 +0 …
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Similarity of two words ~ distance between vectors
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Neural word embeddings (language modelling)

Corpus: The cat is walking in the bedroom 

Unseen A dog was running in a room should be 
almost as likely, because of similar semantic and 
grammatical roles. Bengio et al., 2006 

Mikolov et al. scaled up the estimation procedure to a 
large corpus and provided a dataset to test extracted 
relations.
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Tensor based models



Representing verb as a matrix

General duality theorem: tensors are in one–one 
correspondence with multilinear maps. Bourbaki, ‘89
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In the simplest compositional models (the first
approach described above), ? is + or �, e.g. see
(Mitchell and Lapata, 2008). Grammar-based
compositional models (the third approach) are
based on a generalisation of the notion of vectors,
known as tensors. Whereas a vector �!v is an ele-
ment of an atomic vector space V , a tensor z is an
element of a tensor space V ⌦W ⌦ · · ·⌦ Z. The
number of tensored spaces is referred to by the or-
der of the space. Using a general duality theorem
from multi-linear algebra (Bourbaki, 1989), it fol-
lows that tensors are in one-one correspondence
with multi-linear maps, that is we have:

z 2 V ⌦W⌦· · ·⌦Z

⇠
=

fz : V ! W ! · · · ! Z

In such a tensor-based formalism, meanings of
nouns are vectors and meanings of predicates such
as adjectives and verbs are tensors. Meaning of a
string of words is obtained by applying the compo-
sitions of multi-linear map duals of the tensors to
the vectors. For the sake of demonstration, take
the case of an intransitive sentence “Sbj Verb”;
the meaning of the subject is a vector

�!
Sbj 2 V

and the meaning of the intransitive verb is a ten-
sor Verb 2 V ⌦ W . Meaning of the sentence is
obtained by applying fV erb to

�!
Sbj, as follows:

�����!
Sbj Verb = fV erb(

�!
Sbj)

By tensor-map duality, the above becomes
equivalent to the following, where composition
has now become the familiar notion of matrix mul-
tiplication, that is ? is ⇥:

Verb ⇥�!
Sbj

In general and for words with tensors of order
higher than two, ? becomes a generalisation of ⇥,
referred to by tensor contraction, see e.g. Kartsak-
lis and Sadrzadeh (2013). Since the creation and
manipulation of tensors of order higher than 2 is
difficult, one can work with simplified versions of
tensors, faithful to their underlying mathematical
basis; these have found intuitive interpretations,
e.g. see Grefenstette and Sadrzadeh (2011a), Kart-
saklis and Sadrzadeh (2014). In such cases, ? be-
comes a combination of a range of operations such
as ⇥, ⌦, �, and +.

Specific models In the current paper we will ex-
periment with a variety of models. In Table 2, we
present these models in terms of their composi-
tion operators and a reference to the main paper in

which each model was introduced. For the sim-
ple compositional models the sentence is a string
of any number of words; for the grammar-based
models, we consider simple transitive sentences
“Sbj Verb Obj” and introduce the following abbre-
viations for the concrete method used to build a
tensor for the verb:

1. Verb is a verb matrix computed using the for-
mula

P
i

��!
Sbji⌦

��!
Obji, where

��!
Sbji and

��!
Obji are

the subjects and objects of the verb across the
corpus. These models are referred to by rela-
tional (Grefenstette and Sadrzadeh, 2011a);
they are generalisations of predicate seman-
tics of transitive verbs, from pairs of individ-
uals to pairs of vectors. The models reduce
the order 3 tensor of a transitive verb to an
order 2 tensor (i.e. a matrix).

2. gVerb is a verb matrix computed using the for-
mula

��!
Verb ⌦ ��!

Verb, where
��!
Verb is the distri-

butional vector of the verb. These models are
referred to by Kronecker, which is the term
sometimes used to denote the outer prod-
uct of tensors (Grefenstette and Sadrzadeh,
2011b). This models also reduces the order
3 tensor of a transitive verb to an order 2 ten-
sor.

3. The models of the last five lines of the table
use the so-called Frobenius operators from
categorical compositional distributional se-
mantics (Kartsaklis et al., 2012) to expand
the relational matrices of verbs from order 2
to order 3. The expansion is obtained by ei-
ther copying the dimension of the subject into
the space provided by the third tensor, hence
referred to by Copy-Sbj, or copying the di-
mension of the object in that space, hence re-
ferred to by Copy-Obj; furthermore, we can
take addition, multiplication, or outer product
of these, which are referred to by Frobenius-
Add, Frobenius-Mult, and Frobenius-Outer
(Kartsaklis and Sadrzadeh, 2014).

4 Semantic word spaces

Co-occurrence-based vector space instantiations
have received a lot of attention from the scientific
community (refer to (Kiela and Clark, 2014; Pola-
jnar and Clark, 2014) for recent studies). We in-
stantiate two co-occurrence-based vectors spaces
with different underlying corpora and weighting
schemes.

In a tensor based model, transitive verbs are matrices.

In the simplest compositional models (the first
approach described above), ? is + or �, e.g. see
(Mitchell and Lapata, 2008). Grammar-based
compositional models (the third approach) are
based on a generalisation of the notion of vectors,
known as tensors. Whereas a vector �!v is an ele-
ment of an atomic vector space V , a tensor z is an
element of a tensor space V ⌦W ⌦ · · ·⌦ Z. The
number of tensored spaces is referred to by the or-
der of the space. Using a general duality theorem
from multi-linear algebra (Bourbaki, 1989), it fol-
lows that tensors are in one-one correspondence
with multi-linear maps, that is we have:

z 2 V ⌦W⌦· · ·⌦Z

⇠
=

fz : V ! W ! · · · ! Z

In such a tensor-based formalism, meanings of
nouns are vectors and meanings of predicates such
as adjectives and verbs are tensors. Meaning of a
string of words is obtained by applying the compo-
sitions of multi-linear map duals of the tensors to
the vectors. For the sake of demonstration, take
the case of an intransitive sentence “Sbj Verb”;
the meaning of the subject is a vector

�!
Sbj 2 V

and the meaning of the intransitive verb is a ten-
sor Verb 2 V ⌦ W . Meaning of the sentence is
obtained by applying fV erb to

�!
Sbj, as follows:

�����!
Sbj Verb = fV erb(

�!
Sbj)

By tensor-map duality, the above becomes
equivalent to the following, where composition
has now become the familiar notion of matrix mul-
tiplication, that is ? is ⇥:

Verb ⇥�!
Sbj

In general and for words with tensors of order
higher than two, ? becomes a generalisation of ⇥,
referred to by tensor contraction, see e.g. Kartsak-
lis and Sadrzadeh (2013). Since the creation and
manipulation of tensors of order higher than 2 is
difficult, one can work with simplified versions of
tensors, faithful to their underlying mathematical
basis; these have found intuitive interpretations,
e.g. see Grefenstette and Sadrzadeh (2011a), Kart-
saklis and Sadrzadeh (2014). In such cases, ? be-
comes a combination of a range of operations such
as ⇥, ⌦, �, and +.

Specific models In the current paper we will ex-
periment with a variety of models. In Table 2, we
present these models in terms of their composi-
tion operators and a reference to the main paper in

which each model was introduced. For the sim-
ple compositional models the sentence is a string
of any number of words; for the grammar-based
models, we consider simple transitive sentences
“Sbj Verb Obj” and introduce the following abbre-
viations for the concrete method used to build a
tensor for the verb:

Verb =

X

i

��!
Sbji ⌦

��!
Obji

1. Verb is a verb matrix computed using the for-
mula

P
i

��!
Sbji⌦

��!
Obji, where

��!
Sbji and

��!
Obji are

the subjects and objects of the verb across the
corpus. These models are referred to by rela-
tional (Grefenstette and Sadrzadeh, 2011a);
they are generalisations of predicate seman-
tics of transitive verbs, from pairs of individ-
uals to pairs of vectors. The models reduce
the order 3 tensor of a transitive verb to an
order 2 tensor (i.e. a matrix).

2. gVerb is a verb matrix computed using the for-
mula

��!
Verb ⌦ ��!

Verb, where
��!
Verb is the distri-

butional vector of the verb. These models are
referred to by Kronecker, which is the term
sometimes used to denote the outer prod-
uct of tensors (Grefenstette and Sadrzadeh,
2011b). This models also reduces the order
3 tensor of a transitive verb to an order 2 ten-
sor.

3. The models of the last five lines of the table
use the so-called Frobenius operators from
categorical compositional distributional se-
mantics (Kartsaklis et al., 2012) to expand
the relational matrices of verbs from order 2
to order 3. The expansion is obtained by ei-
ther copying the dimension of the subject into
the space provided by the third tensor, hence
referred to by Copy-Sbj, or copying the di-
mension of the object in that space, hence re-
ferred to by Copy-Obj; furthermore, we can
take addition, multiplication, or outer product
of these, which are referred to by Frobenius-
Add, Frobenius-Mult, and Frobenius-Outer
(Kartsaklis and Sadrzadeh, 2014).

4 Semantic word spaces

Co-occurrence-based vector space instantiations
have received a lot of attention from the scientific

Relational

Kronecker

In the simplest compositional models (the first
approach described above), ? is + or �, e.g. see
(Mitchell and Lapata, 2008). Grammar-based
compositional models (the third approach) are
based on a generalisation of the notion of vectors,
known as tensors. Whereas a vector �!v is an ele-
ment of an atomic vector space V , a tensor z is an
element of a tensor space V ⌦W ⌦ · · ·⌦ Z. The
number of tensored spaces is referred to by the or-
der of the space. Using a general duality theorem
from multi-linear algebra (Bourbaki, 1989), it fol-
lows that tensors are in one-one correspondence
with multi-linear maps, that is we have:

z 2 V ⌦W⌦· · ·⌦Z

⇠
=

fz : V ! W ! · · · ! Z

In such a tensor-based formalism, meanings of
nouns are vectors and meanings of predicates such
as adjectives and verbs are tensors. Meaning of a
string of words is obtained by applying the compo-
sitions of multi-linear map duals of the tensors to
the vectors. For the sake of demonstration, take
the case of an intransitive sentence “Sbj Verb”;
the meaning of the subject is a vector

�!
Sbj 2 V

and the meaning of the intransitive verb is a ten-
sor Verb 2 V ⌦ W . Meaning of the sentence is
obtained by applying fV erb to

�!
Sbj, as follows:

�����!
Sbj Verb = fV erb(

�!
Sbj)

By tensor-map duality, the above becomes
equivalent to the following, where composition
has now become the familiar notion of matrix mul-
tiplication, that is ? is ⇥:

Verb ⇥�!
Sbj

In general and for words with tensors of order
higher than two, ? becomes a generalisation of ⇥,
referred to by tensor contraction, see e.g. Kartsak-
lis and Sadrzadeh (2013). Since the creation and
manipulation of tensors of order higher than 2 is
difficult, one can work with simplified versions of
tensors, faithful to their underlying mathematical
basis; these have found intuitive interpretations,
e.g. see Grefenstette and Sadrzadeh (2011a), Kart-
saklis and Sadrzadeh (2014). In such cases, ? be-
comes a combination of a range of operations such
as ⇥, ⌦, �, and +.

Specific models In the current paper we will ex-
periment with a variety of models. In Table 2, we
present these models in terms of their composi-
tion operators and a reference to the main paper in

which each model was introduced. For the sim-
ple compositional models the sentence is a string
of any number of words; for the grammar-based
models, we consider simple transitive sentences
“Sbj Verb Obj” and introduce the following abbre-
viations for the concrete method used to build a
tensor for the verb:

Verb =

X

i

��!
Sbji ⌦

��!
Obji

gVerb =

��!
Verb ⌦��!

Verb

1. Verb is a verb matrix computed using the for-
mula

P
i

��!
Sbji⌦

��!
Obji, where

��!
Sbji and

��!
Obji are

the subjects and objects of the verb across the
corpus. These models are referred to by rela-
tional (Grefenstette and Sadrzadeh, 2011a);
they are generalisations of predicate seman-
tics of transitive verbs, from pairs of individ-
uals to pairs of vectors. The models reduce
the order 3 tensor of a transitive verb to an
order 2 tensor (i.e. a matrix).

2. gVerb is a verb matrix computed using the for-
mula

��!
Verb ⌦ ��!

Verb, where
��!
Verb is the distri-

butional vector of the verb. These models are
referred to by Kronecker, which is the term
sometimes used to denote the outer prod-
uct of tensors (Grefenstette and Sadrzadeh,
2011b). This models also reduces the order
3 tensor of a transitive verb to an order 2 ten-
sor.

3. The models of the last five lines of the table
use the so-called Frobenius operators from
categorical compositional distributional se-
mantics (Kartsaklis et al., 2012) to expand
the relational matrices of verbs from order 2
to order 3. The expansion is obtained by ei-
ther copying the dimension of the subject into
the space provided by the third tensor, hence
referred to by Copy-Sbj, or copying the di-
mension of the object in that space, hence re-
ferred to by Copy-Obj; furthermore, we can
take addition, multiplication, or outer product
of these, which are referred to by Frobenius-
Add, Frobenius-Mult, and Frobenius-Outer
(Kartsaklis and Sadrzadeh, 2014).

4 Semantic word spaces

Co-occurrence-based vector space instantiations
have received a lot of attention from the scientific



Compositional models for (Obj, Verb, Sbj)
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Addition
Multiplication

Relational:
Kronecker:

Method Sentence Linear algebraic formula Reference

Addition w1w2 · · ·wn
�!w1 +

�!w2 + · · ·+�!wn Mitchell and Lapata (2008)
Multiplication w1w2 · · ·wn

�!w1 ��!w2 � · · ·��!wn Mitchell and Lapata (2008)

Relational Sbj Verb Obj Verb � (
�!
Sbj ⌦�!

Obj) Grefenstette and Sadrzadeh (2011a)
Kronecker Sbj Verb Obj gVerb � (

�!
Sbj ⌦�!

Obj) Grefenstette and Sadrzadeh (2011b)

Copy object Sbj Verb Obj
�!
Sbj � (Verb ⇥�!

Obj) Kartsaklis et al. (2012)
Copy subject Sbj Verb Obj

�!
Obj � (VerbT ⇥�!

Sbj) Kartsaklis et al. (2012)
Frob. add. Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj)) + (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. mult. Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj))� (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. outer Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj))⌦ (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)

Table 2: Compositional methods.

GS11 Our first word space is based on a typ-
ical configuration that has been used in the past
extensively for compositional distributional mod-
els (see below for details), so it will serve as a
useful baseline for the current work. In this vec-
tor space, the co-occurrence counts are extracted
from the British National Corpus (BNC) (Leech et
al., 1994). As basis words, we use the most fre-
quent nouns, verbs, adjectives and adverbs (POS
tags SUBST, VERB, ADJ and ADV in the BNC
XML distribution2). The vector space is lemma-
tized, that is, it contains only “canonical” forms of
words.

In order to weight the raw co-occurrence counts,
we use positive point-wise mutual information
(PPMI). The component value for a target word
t and a context word c is given by:

PPMI(t, c) = max

✓
0, log

p(c|t)
p(c)

◆

where p(c|t) is the probability of word c given t

in a symmetric window of length 5 and p(c) is the
probability of c overall.

Vector spaces based on point-wise mutual in-
formation (or variants thereof) have been success-
fully applied in various distributional and compo-
sitional tasks; see e.g. Grefenstette and Sadrzadeh
(2011a), Mitchell and Lapata (2008), Levy et al.
(2014) for details. PPMI has been shown to
achieve state-of-the-art results (Levy et al., 2014)
and is suggested by the review of Kiela and Clark
(2014). Our use here of the BNC as a corpus
and the window length of 5 is based on previ-
ous use and better performance of these param-
eters in a number of compositional experiments
(Grefenstette and Sadrzadeh, 2011a; Grefenstette

2
http://www.natcorp.ox.ac.uk/

and Sadrzadeh, 2011b; Mitchell and Lapata, 2008;
Kartsaklis et al., 2012).

KS14 In this variation, we train a vector space
from the ukWaC corpus3 (Ferraresi et al., 2008),
originally using as a basis the 2,000 content words
with the highest frequency (but excluding a list of
stop words as well as the 50 most frequent content
words since they exhibit low information content).
The vector space is again lemmatized. As context
we consider a 5-word window from either side of
the target word, while as our weighting scheme we
use local mutual information (i.e. point-wise mu-
tual information multiplied by raw counts). In a
further step, the vector space was normalized and
projected onto a 300-dimensional space using sin-
gular value decomposition (SVD).

In general, dimensionality reduction produces
more compact word representations that are robust
against potential noise in the corpus (Landauer and
Dumais, 1997; Schütze, 1997). SVD has been
shown to perform well on a variety of tasks similar
to ours (Baroni and Zamparelli, 2010; Kartsaklis
and Sadrzadeh, 2014).

Neural word embeddings (NWE) For our neu-
ral setting, we used the skip-gram model of
Mikolov et al. (2013b) trained with negative sam-
pling. The specific implementation that was tested
in our experiments was a 300-dimensional vec-
tor space learned from the Google News corpus
and provided by the word2vec

4 toolkit. Fur-
thermore, the gensim library (Řehůřek and So-
jka, 2010) was used for accessing the vectors.
On the contrary with the previously described co-

3
http://wacky.sslmit.unibo.it/

4
https://code.google.com/p/word2vec/

Method Sentence Linear algebraic formula Reference

Addition w1w2 · · ·wn
�!w1 +

�!w2 + · · ·+�!wn Mitchell and Lapata (2008)
Multiplication w1w2 · · ·wn

�!w1 ��!w2 � · · ·��!wn Mitchell and Lapata (2008)

Relational Sbj Verb Obj Verb � (
�!
Sbj ⌦�!

Obj) Grefenstette and Sadrzadeh (2011a)
Kronecker Sbj Verb Obj gVerb � (

�!
Sbj ⌦�!

Obj) Grefenstette and Sadrzadeh (2011b)

Copy object Sbj Verb Obj
�!
Sbj � (Verb ⇥�!

Obj) Kartsaklis et al. (2012)
Copy subject Sbj Verb Obj

�!
Obj � (VerbT ⇥�!

Sbj) Kartsaklis et al. (2012)
Frob. add. Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj)) + (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. mult. Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj))� (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. outer Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj))⌦ (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)

Table 2: Compositional methods.

GS11 Our first word space is based on a typ-
ical configuration that has been used in the past
extensively for compositional distributional mod-
els (see below for details), so it will serve as a
useful baseline for the current work. In this vec-
tor space, the co-occurrence counts are extracted
from the British National Corpus (BNC) (Leech et
al., 1994). As basis words, we use the most fre-
quent nouns, verbs, adjectives and adverbs (POS
tags SUBST, VERB, ADJ and ADV in the BNC
XML distribution2). The vector space is lemma-
tized, that is, it contains only “canonical” forms of
words.

In order to weight the raw co-occurrence counts,
we use positive point-wise mutual information
(PPMI). The component value for a target word
t and a context word c is given by:

PPMI(t, c) = max

✓
0, log

p(c|t)
p(c)

◆

where p(c|t) is the probability of word c given t

in a symmetric window of length 5 and p(c) is the
probability of c overall.

Vector spaces based on point-wise mutual in-
formation (or variants thereof) have been success-
fully applied in various distributional and compo-
sitional tasks; see e.g. Grefenstette and Sadrzadeh
(2011a), Mitchell and Lapata (2008), Levy et al.
(2014) for details. PPMI has been shown to
achieve state-of-the-art results (Levy et al., 2014)
and is suggested by the review of Kiela and Clark
(2014). Our use here of the BNC as a corpus
and the window length of 5 is based on previ-
ous use and better performance of these param-
eters in a number of compositional experiments
(Grefenstette and Sadrzadeh, 2011a; Grefenstette

2
http://www.natcorp.ox.ac.uk/

and Sadrzadeh, 2011b; Mitchell and Lapata, 2008;
Kartsaklis et al., 2012).

KS14 In this variation, we train a vector space
from the ukWaC corpus3 (Ferraresi et al., 2008),
originally using as a basis the 2,000 content words
with the highest frequency (but excluding a list of
stop words as well as the 50 most frequent content
words since they exhibit low information content).
The vector space is again lemmatized. As context
we consider a 5-word window from either side of
the target word, while as our weighting scheme we
use local mutual information (i.e. point-wise mu-
tual information multiplied by raw counts). In a
further step, the vector space was normalized and
projected onto a 300-dimensional space using sin-
gular value decomposition (SVD).

In general, dimensionality reduction produces
more compact word representations that are robust
against potential noise in the corpus (Landauer and
Dumais, 1997; Schütze, 1997). SVD has been
shown to perform well on a variety of tasks similar
to ours (Baroni and Zamparelli, 2010; Kartsaklis
and Sadrzadeh, 2014).

Neural word embeddings (NWE) For our neu-
ral setting, we used the skip-gram model of
Mikolov et al. (2013b) trained with negative sam-
pling. The specific implementation that was tested
in our experiments was a 300-dimensional vec-
tor space learned from the Google News corpus
and provided by the word2vec

4 toolkit. Fur-
thermore, the gensim library (Řehůřek and So-
jka, 2010) was used for accessing the vectors.
On the contrary with the previously described co-

3
http://wacky.sslmit.unibo.it/

4
https://code.google.com/p/word2vec/

Copy object:
Copy subject:

Method Sentence Linear algebraic formula Reference

Addition w1w2 · · ·wn
�!w1 +

�!w2 + · · ·+�!wn Mitchell and Lapata (2008)
Multiplication w1w2 · · ·wn

�!w1 ��!w2 � · · ·��!wn Mitchell and Lapata (2008)

Relational Sbj Verb Obj Verb � (
�!
Sbj ⌦�!

Obj) Grefenstette and Sadrzadeh (2011a)
Kronecker Sbj Verb Obj gVerb � (

�!
Sbj ⌦�!

Obj) Grefenstette and Sadrzadeh (2011b)

Copy object Sbj Verb Obj
�!
Sbj � (Verb ⇥�!

Obj) Kartsaklis et al. (2012)
Copy subject Sbj Verb Obj

�!
Obj � (VerbT ⇥�!

Sbj) Kartsaklis et al. (2012)
Frob. add. Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj)) + (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. mult. Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj))� (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. outer Sbj Verb Obj (

�!
Sbj � (Verb ⇥�!

Obj))⌦ (
�!
Obj � (VerbT ⇥�!

Sbj)) Kartsaklis and Sadrzadeh (2014)

Table 2: Compositional methods.

GS11 Our first word space is based on a typ-
ical configuration that has been used in the past
extensively for compositional distributional mod-
els (see below for details), so it will serve as a
useful baseline for the current work. In this vec-
tor space, the co-occurrence counts are extracted
from the British National Corpus (BNC) (Leech et
al., 1994). As basis words, we use the most fre-
quent nouns, verbs, adjectives and adverbs (POS
tags SUBST, VERB, ADJ and ADV in the BNC
XML distribution2). The vector space is lemma-
tized, that is, it contains only “canonical” forms of
words.

In order to weight the raw co-occurrence counts,
we use positive point-wise mutual information
(PPMI). The component value for a target word
t and a context word c is given by:

PPMI(t, c) = max

✓
0, log

p(c|t)
p(c)

◆

where p(c|t) is the probability of word c given t

in a symmetric window of length 5 and p(c) is the
probability of c overall.

Vector spaces based on point-wise mutual in-
formation (or variants thereof) have been success-
fully applied in various distributional and compo-
sitional tasks; see e.g. Grefenstette and Sadrzadeh
(2011a), Mitchell and Lapata (2008), Levy et al.
(2014) for details. PPMI has been shown to
achieve state-of-the-art results (Levy et al., 2014)
and is suggested by the review of Kiela and Clark
(2014). Our use here of the BNC as a corpus
and the window length of 5 is based on previ-
ous use and better performance of these param-
eters in a number of compositional experiments
(Grefenstette and Sadrzadeh, 2011a; Grefenstette

2
http://www.natcorp.ox.ac.uk/

and Sadrzadeh, 2011b; Mitchell and Lapata, 2008;
Kartsaklis et al., 2012).

KS14 In this variation, we train a vector space
from the ukWaC corpus3 (Ferraresi et al., 2008),
originally using as a basis the 2,000 content words
with the highest frequency (but excluding a list of
stop words as well as the 50 most frequent content
words since they exhibit low information content).
The vector space is again lemmatized. As context
we consider a 5-word window from either side of
the target word, while as our weighting scheme we
use local mutual information (i.e. point-wise mu-
tual information multiplied by raw counts). In a
further step, the vector space was normalized and
projected onto a 300-dimensional space using sin-
gular value decomposition (SVD).

In general, dimensionality reduction produces
more compact word representations that are robust
against potential noise in the corpus (Landauer and
Dumais, 1997; Schütze, 1997). SVD has been
shown to perform well on a variety of tasks similar
to ours (Baroni and Zamparelli, 2010; Kartsaklis
and Sadrzadeh, 2014).

Neural word embeddings (NWE) For our neu-
ral setting, we used the skip-gram model of
Mikolov et al. (2013b) trained with negative sam-
pling. The specific implementation that was tested
in our experiments was a 300-dimensional vec-
tor space learned from the Google News corpus
and provided by the word2vec

4 toolkit. Fur-
thermore, the gensim library (Řehůřek and So-
jka, 2010) was used for accessing the vectors.
On the contrary with the previously described co-
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http://wacky.sslmit.unibo.it/

4
https://code.google.com/p/word2vec/
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Sbj ⌦�!
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�!
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�!
Sbj � (Verb ⇥�!
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�!
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�!
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�!
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�!
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Sbj)) Kartsaklis and Sadrzadeh (2014)

Table 2: Compositional methods.
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◆
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sitional tasks; see e.g. Grefenstette and Sadrzadeh
(2011a), Mitchell and Lapata (2008), Levy et al.
(2014) for details. PPMI has been shown to
achieve state-of-the-art results (Levy et al., 2014)
and is suggested by the review of Kiela and Clark
(2014). Our use here of the BNC as a corpus
and the window length of 5 is based on previ-
ous use and better performance of these param-
eters in a number of compositional experiments
(Grefenstette and Sadrzadeh, 2011a; Grefenstette
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http://www.natcorp.ox.ac.uk/

and Sadrzadeh, 2011b; Mitchell and Lapata, 2008;
Kartsaklis et al., 2012).

KS14 In this variation, we train a vector space
from the ukWaC corpus3 (Ferraresi et al., 2008),
originally using as a basis the 2,000 content words
with the highest frequency (but excluding a list of
stop words as well as the 50 most frequent content
words since they exhibit low information content).
The vector space is again lemmatized. As context
we consider a 5-word window from either side of
the target word, while as our weighting scheme we
use local mutual information (i.e. point-wise mu-
tual information multiplied by raw counts). In a
further step, the vector space was normalized and
projected onto a 300-dimensional space using sin-
gular value decomposition (SVD).

In general, dimensionality reduction produces
more compact word representations that are robust
against potential noise in the corpus (Landauer and
Dumais, 1997; Schütze, 1997). SVD has been
shown to perform well on a variety of tasks similar
to ours (Baroni and Zamparelli, 2010; Kartsaklis
and Sadrzadeh, 2014).

Neural word embeddings (NWE) For our neu-
ral setting, we used the skip-gram model of
Mikolov et al. (2013b) trained with negative sam-
pling. The specific implementation that was tested
in our experiments was a 300-dimensional vec-
tor space learned from the Google News corpus
and provided by the word2vec

4 toolkit. Fur-
thermore, the gensim library (Řehůřek and So-
jka, 2010) was used for accessing the vectors.
On the contrary with the previously described co-

3
http://wacky.sslmit.unibo.it/
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Frobenius addition
Frobenius multiplication
Frobenius outer

Mitchell and Lapata ‘08

Grefenstette and Sadrzadeh ‘11

Kartsaklis et al. ‘12

Kartsaklis and Sadrzadeh ‘14



Experiments

11



Vector spaces

GS11: BNC, lemmatised, 2000 dimensions, PPMI 

KS14: ukWaC, lemmatised, 300 dimensions, LMI, SVD 

NWE: Google news, 300 dimensions, word2vec
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Disambiguation

System meets specification

satisfies

visits

13

Grefenstette and Sadrzadeh ’11 and ‘14



Similarity of sentences

System meets specification

System satisfies specification

System visits specification

14

Grefenstette and Sadrzadeh ’11 and ‘14



Verb only baseline

System meets specification

satisfy

visit
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Disambiguation results

Method GS11 KS14 NWE
Verb only 0.212 0.325 0.107
Addition 0.103 0.275 0.149

Multiplication 0.348 0.041 0.095
Kronecker 0.304 0.176 0.117
Relational 0.285 0.341 0.362

Copy subject 0.089 0.317 0.131
Copy object 0.334 0.331 0.456

Frobenius add. 0.261 0.344 0.359
Frobenius mult. 0.233 0.341 0.239
Frobenius out. 0.284 0.350 0.375

Spearman rho 16



Sentence similarity 

panel discuss issue project present problem

man shut door gentleman close eye

paper address question study pose problem

17

Kartsaklis, Sadrzadeh, Pulman (CoNLL ’12) Kartsaklis, Sadrzadeh (EMNLP ‘13)



Sentence similarity

Method GS11 KS14 NWE
Verb only 0.491 0.602 0.561
Addition 0.682 0.732 0.689

Multiplication 0.597 0.321 0.341
Kronecker 0.581 0.408 0.561
Relational 0.558 0.437 0.618

Copy subject 0.370 0.448 0.405
Copy object 0.571 0.306 0.655

Frobenius add. 0.566 0.460 0.585
Frobenius mult. 0.525 0.226 0.387
Frobenius out. 0.560 0.439 0.662

Spearman rho 18



Paraphrasing

• MS Paraphrasing corpus 

• Compute similarity of a pair of sentences 

• Choose a threshold similarity value on training data 

• Evaluate on the test set

19



Paraphrase results

Method GS11 KS14 NWE

Addition 0,62 (0,79) 0,70 (0,80) 0,73 (0,82)

Multiplication 0,52 (0,58) 0,66 (0,80) 0,42 (0,34)

Accuracy (F-Score) 20



Dialogue act tagging

Switchboard: telephone conversation corpus.

1. Utterance-feature matrix 

2. Utterance vectors are 
reduced using SVD to 50 
dimensions 

3. k-nearest neighbours 
classification

I ⊕ wonder ⊕ if ⊕ that ⊕ worked ⊕ .

M ≈ U∑̃VT = M̃

21

Milajevs and Purver ’14, Serafin et al. ’03 



Dialogue act tagging results

Method GS11 KS14 NWE

lemmatised NWE

Addition 0,35 (0,35) 0,40 (0,35) 0,44 (0,40) 0,63 (0,60)

Multiplication 0,32 (0,16) 0,39 (0,33) 0,43 (0,38) 0,58 (0,53)

Accuracy (F-Score) 22



Discussion

“context-predicting models obtain a thorough and 
resounding victory against their count-based counterparts” 
Baroni et al. (2014) 

“analogy recovery is not restricted to neural word 
embeddings [...] a similar amount of relational similarities 
can be recovered from traditional distributional word 
representations” Levy et al. (2014) 

“shallow approaches are as good as more computationally 
intensive alternatives on phrase similarity and paraphrase 
detection tasks” Blacoe and Lapata (2012)
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Improvement over baselines

Task GS11 KS14 NWE

Disambiguation + + +
Sentence 
similarity + - +

Paraphrase - + +
Dialog act 

tagging - - +
24



Conclusion

• The choice of compositional operator seems to be more 
important than the word vector nature and more task specific. 

• Tensor-based composition does not yet always outperform 
simple compositional operators. 

• Neural word embeddings are more successful than the co-
occurrence based alternatives. 

• Corpus size might contribute a lot.
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