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Taxonomy 

• Useful for many areas: 

• question answering 

• document clustering  

 

• Some available hand-crafted taxonomies: WordNet, 

OpenCyc, Freebase 

• time-consuming  

• more general, less specific 

 demand for constructing taxonomies for new domains 
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Taxonomic relation identification 

• Statistical approach:  

• Co-occurrence analysis (Budanitsky, 1999), term subsumption 

(Fotzo, 2004), clustering (Wong, 2007). 

• Less accurate, heavily depend on feature types and dataset   

• Linguistic approach:  

• Hand-written patterns: (Kozareva, 2010), (Wentao, 2012) 

• Automatic bootstrapping: (Girju, 2003), (Velardi, 2012)  

• Lack of  contextual analysis across sentences  low coverage 
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Our contribution 

• Propose syntactic contextual subsumption method: 

• Utilize contextual information of  terms in syntactic structures by 

evidence from the Web 

• Infer taxonomic relations between terms in different sentences 

• Introduce graph-based algorithm for taxonomy induction: 

• Utilize the evidence scores of  edges 

• Base on graph’s topological properties 
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Workflow 

Term extraction and filtering 

Taxonomic relation identification 

Taxonomy induction 
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Term extraction and filtering 

• Term extraction: 

• Apply Stanford parser  extract all noun phrases 

• Remove determiners, do lemmatization 

• Term filtering: 

• TF-IDF 

• Domain relevance, domain consensus (Navigli and Velardi, 2004) 

 

    TS(t,D) = α× TFIDF(t,D) + β× DR(t, D) + γ× DC(t, D)  
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Taxonomic relation identification 

• Combine three methods:  

• Syntactic contextual subsumption 

• String inclusion with WordNet 

• Lexical-syntactic pattern matching 
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Syntactic contextual subsumption 

(SCS) 

• Find relations across different sentences 

• Utilize syntactic structure (Subject, Verb, Object) 

 

• Observation 1:  (terrorist, attack, people),    

              (terrorist, attack, American)  

       people ≫ American 

• But from (animal, eat, meat) and (animal, eat, grass)?   
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Syntactic contextual 

subsumption (SCS) 
•  Observation 2: 

 

 

 

 

 

     s1 ≫ s2 

 

• S(animal, eat) = {meat, wild boar, deer, buffalo, grass, potato, insects}  

• S(tiger, eat)     = {meat, wild boar, deer, buffalo} 

    animal ≫ tiger  
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Syntactic contextual 

subsumption (SCS) 
• For terms s1, s2: 

• Find most common relation v between s1 and s2. Suppose s1 and s2 

are both subjects 

• Submit query “s1 v” to search engine, collect first 1000 results, find 

S(s1,v) = {o|∃(s1,v,o)} 

• Similar for S(s2,v) 

• Calculate: 
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String inclusion with WordNet 

(SIWN) 
• SIWN method: 

 

    

 

       “suicide attack” ≫ “self-destruction bombing” 

• attack ≫ bombing 

• suicide ≈ self-destruction  
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≫: is hypernym of 



Lexical-syntactic pattern 

(LSP)  
• Use following patterns to query on Google: 

 

 

 

 

15 



Combined method 
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Taxonomy induction 

• Step 1: Initial hypernym graph with a ROOT node 

• Step 2: 

 

 

• Step 3: apply Edmonds’ algorithm to find maximum optimum 

branching of  weighted directed graph 
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Taxonomy induction 
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Constructing new taxonomies 

• Terrorism domain:  

• 104 reports of  the US state department “Patterns of  Global 

Terrorism (1991-2002)” 

• Each report ~1,500 words 

• Artificial Intelligence (AI) domain:  

• 4,119 papers extracted  

• the IJCAI proceedings from 1969 to 2011 

• the ACL archives from 1979 to 2010 
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Taxonomy construction 

• Compare constructed AI taxonomy with that of  (Velardi et 

al., 2012) 
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Taxonomy construction 

• Number of  taxonomic relations extracted by different methods  
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Taxonomy construction 

• Estimated precision of  taxonomic relation identification 

methods in 100 random extracted relations  
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Evaluate against WordNet 

• Three domains: Animals, Plants and Vehicles:  

• Use the bootstrapping algorithm described in (Kozareva, 2008)  

• Compare the results with (Kozareva, 2010) and (Navigli, 2011) 
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Syntactic structures 

• Comparison of  three syntactic structures: S-V-O (Subject-Verb-Object), N-P-N 

(Noun- Preposition-Noun) and N-A-N (Noun-Adjective- Noun)  
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Dataset link 

• All dataset and experiment results are available at 

http://nlp.sce.ntu.edu.sg/wiki/projects/taxogen 
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Conclusion 

• Proposed a novel method of  identifying taxonomic relations 

using contextual evidence from syntactic structure and Web 

data  

• Presented a graph-based algorithm to induce an optimal 

taxonomy from a given taxonomic relation set  

• Generally achieve better performance than the state-of-the-art 

methods 
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Future work 

• Build the probabilistic model for taxonomy 

• Consider the time stamp of  information 

• Apply to other domains and integrate into other frameworks 

such as ontology learning or topic identification 
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