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Taxonomy

» Useful for many areas: R

¢ que Stlon anSWCI'IIlg Chordates Arthop ods

- document clustering | /I\,

Vertebrates Spiders Crustaceans

el

Birds Reptiles Mammals

e Some available hand-crafted taxonomies: WordNet,
OpenCyc, Freebase

° time-consuming

* more general, less specific

- demand for constructing taxonomies for new domains
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Taxonomic relation identification

 Statistical approach:

Co-occurrence analysis (Budanitsky, 1999), term subsumption
(Fotzo, 2004), clustering (Wong, 2007).

Less accurate, heavily depend on feature types and dataset

* Linguistic approach:
Hand-written patterns: (Kozareva, 2010), (Wentao, 2012)
Automatic bootstrapping: (Girju, 2003), (Velardi, 2012)
Lack of contextual analysis across sentences - low coverage




Our contribution

Propose syntactic contextual subsumption method:

 Utilize contextual information of terms in syntactic structures by
evidence from the Web

» Infer taxonomic relations between terms in different sentences

Introduce graph-based algorithm for taxonomy induction:
» Utilize the evidence scores of edges
* Base on graph’s topological properties
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Workflow




Term extraction and filtering

Term extraction:

* Apply Stanford parser = extract all noun phrases
+ Remove determiners, do lemmatization

Term filtering:
« TF-IDF

* Domain relevance, domain consensus (Navigli and Velardi, 2004)

TS(t,D) = ax TFIDF(t,D) + px DR(t, D) + yx DC(t, D)




Taxonomic relation 1dentification

* Combine three methods:
» Syntactic contextual subsumption
» String inclusion with WordNet
» Lexical-syntactic pattern matching




Syntactic contextual subsumption
(SCS)

Find relations across different sentences

« Utilize syntactic structure (Subject, Verb, Object)

Observation 1:  (terrorist, attack, people),
(terrorist, attack, American)

—> people > American

But from (animal, eat, meat) and (animal, eat, grass)?




Syntactic contextual
subsumption (SCS)

e (Observation 2:

>s,» s,

* S(animal, eat) = {meat, wild boar, deer, buffalo, grass, potato, insects}
» S(tiger, eat) = {meat, wild boar, deer, buffalo}

—> animal > tiger

12




Syntactic contextual
subsumption (SCS)

* Forterms sy, S,:

Find most common relation v between s; and s,. Suppose s, and s,
are both subjects

Submit query “s; v’ to search engine, collect first 1000 results, find
S(s{,v) = {0]3(s,v,0)}

Similar for S(s,,v)
Calculate:

Scoregcs(s1,s2) =

1S(s1,v) [ S(s2,v)] ~ 1S(s1,v) 1 S(s2,v)]
o050, )

x log(]S(s1,v)| + |S(s2v)])




String inclusion with WordNet
(SIWN)

IWN method:
f1 = W11 W12 W13

t1 >tz
> N .
> 1s hypernym of

t2 = W21 W22 W23 W24 W25

“suicide attack” > “self-destruction bombing”
attack > bombing
suicide ~ self-destruction

1 1ftl > ty via SIWN
0 otherwise

SCOTGSIWN(tl, tg) = {




Lexical-syntactic pattern
(LSP)

» Use following patterns to query on Google:

“t1 such as ty”

“t1, including to”

“to is [alan] t1”

“to is a [kind|type] of t1”
“to, [and|or] other t1”

log(WH(t1,1t2))
1+ log(W H (t2,t1))

Scorepsp(ti,ta) =




Combined method

Score(t1,ta) = o x Scoresrwn (t1,t2)
+ B X SCO?"GLSP(tlat2)
+ v x Scoregcs(ty,t2)




Taxonomy induction

* Step 1: Initial hypernym graph with a ROOT node
« Step 2:

1 if t1 = ROOT
Score(ti,t2) otherwise

w(eftr,12)) = {

» Step 3: apply Edmonds’ algorithm to find maximum optimum
branching of weighted directed graph




Taxonomy induction
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Constructing new taxonomies

Terrorism domain:

+ 104 reports of the US state department “Patterns of Global
Terrorism (1991-2002)”

» Each report ~1,500 words

Artificial Intelligence (AI) domain:

* 4,119 papers extracted
 the IJCAI proceedings from 1969 to 2011
* the ACL archives from 1979 to 2010




Taxonomy construction

* Compare constructed Al taxonomy with that of (Velardi et
al., 2012)

Our system  Velardi’s system
#vertex 1839 1675
#edge 1838 1674
Average depth 6.2 6
Max depth 10 10
Term coverage 83 % 76%




Taxonomy construction

 Number of taxonomic relations extracted by different methods

Number of extracted relations

Terrorism domain Al domain

SCS 484 1308
SIWN 301 084
LSP 527 1537
SIWN + LSP 711 2203
SCS + SIWN + LSP 976 3122




Taxonomy construction

* Estimated precision of taxonomic relation identification
methods in 100 random extracted relations

Percentage of correct relations

Terrorism domain Al domain

SCS 91% 88%
SIWN 96 % 91%
LSP 93% 93%
SCS + SIWN + LSP 92% 90%




Evaluate against WordNet

e Three domains: Animals, Plants and Vehicles:
Use the bootstrapping algorithm described in (Kozareva, 2008)

* Compare the results with (Kozareva, 2010) and (Navigli, 2011)

Animals domain Plants domain Vehicles domain
Our Kozareva Navigli | Our Kozareva Navigli | Our Kozareva Navigli
Term coverage | 96% N.A. 94% | 98% N.A. 97% | 97% N.A. 96%
Precision 95% 98% 9% | 95% 97% 97% | 93% 99% 91%
Recall 56% 38% 44% | 53% 39% 38% | 69% 60% 49%
F-measure 1% 55% 61% | 68% 56% 55% | 19% 75% 64%




Syntactic structures

* Comparison of three syntactic structures: S-V-O (Subject-Verb-Object), N-P-N
(Noun- Preposition-Noun) and N-A-N (Noun-Adjective- Noun)

S-V-O N-P-N N-A-N

Animals domain
Precision 95 % 68% 72%
Recall 56 % 52% 47%
F-measure 71 % 59% 57%

Plants domain
Precision 95 % 63% 66%
Recall 53% 41% 43%
F-measure 68 % 50% 52%

Vehicles domain
Precision 93 % 59% 60%
Recall 69 % 45% 48%
F-measure 79 % 51% 53%




Dataset link

» All dataset and experiment results are available at
http:/ /nlp.sce.ntu.edu.sg/ wiki/projects/taxogen



http://nlp.sce.ntu.edu.sg/wiki/projects/taxogen
http://nlp.sce.ntu.edu.sg/wiki/projects/taxogen
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Conclusion

* Proposed a novel method of identifying taxonomic relations
using contextual evidence from syntactic structure and Web
data

Presented a graph-based algorithm to induce an optimal
taxonomy from a given taxonomic relation set

Generally achieve better performance than the state-of-the-art
methods




Future work

* Build the probabilistic model for taxonomy
* Consider the time stamp of information

* Apply to other domains and integrate into other frameworks
such as ontology learning or topic identification
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