Taxonomy Construction Using Syntactic Contextual Evidence

Luu Anh Tuan¹, Jung-jae Kim¹, Ng See Kiong²

¹School of Computer Engineering, Nanyang Technologial University, Singapore ²Institute for Infocomm Research, A*STAR, Singapore

Outline

- Introduction
- Related work
- Methodology
- Experiments
- Conclusion and future work

Taxonomy

Chordates

Vertebrates

Reptiles

Animals

Insects

Mammals

Arthopods

Spiders

Crustaceans

- Useful for many areas:
 - question answering
 - document clustering

 Some available hand-crafted taxonomies: WordNet, OpenCyc, Freebase

Birds

- time-consuming
- more general, less specific
- \rightarrow demand for constructing taxonomies for new domains

Outline

- Introduction
- Related work
- Methodology
- Experiments
- Conclusion and future work

Taxonomic relation identification

- Statistical approach:
 - Co-occurrence analysis (Budanitsky, 1999), term subsumption (Fotzo, 2004), clustering (Wong, 2007).
 - Less accurate, heavily depend on feature types and dataset
- Linguistic approach:
 - Hand-written patterns: (Kozareva, 2010), (Wentao, 2012)
 - Automatic bootstrapping: (Girju, 2003), (Velardi, 2012)
 - Lack of contextual analysis across sentences \rightarrow low coverage

Our contribution

- Propose syntactic contextual subsumption method:
 - Utilize contextual information of terms in syntactic structures by evidence from the Web
 - Infer taxonomic relations between terms in different sentences
- Introduce graph-based algorithm for taxonomy induction:
 - Utilize the evidence scores of edges
 - Base on graph's topological properties

Outline

- Introduction
- Related work
- Methodology
- Experiments
- Conclusion and future work

Term extraction and filtering

- Term extraction:
 - Apply Stanford parser \rightarrow extract all noun phrases
 - Remove determiners, do lemmatization
- Term filtering:
 - TF-IDF
 - Domain relevance, domain consensus (Navigli and Velardi, 2004)

```
TS(t,D) = \alpha \times TFIDF(t,D) + \beta \times DR(t, D) + \gamma \times DC(t, D)
```

Taxonomic relation identification

- Combine three methods:
 - Syntactic contextual subsumption
 - String inclusion with WordNet
 - Lexical-syntactic pattern matching

Syntactic contextual subsumption (SCS)

- Find relations across different sentences
- Utilize syntactic structure (Subject, Verb, Object)

• Observation 1: (terrorist, attack, people), (terrorist, attack, American)

 \rightarrow people \gg American

• But from (animal, eat, meat) and (animal, eat, grass)?

Syntactic contextual subsumption (SCS)

• Observation 2:

• S(animal, eat) = {meat, wild boar, deer, buffalo, grass, potato, insects}

• S(tiger, eat) = {meat, wild boar, deer, buffalo}

 \rightarrow animal \gg tiger

Syntactic contextual subsumption (SCS)

- For terms s_1, s_2 :
 - Find most common relation v between s_1 and s_2 . Suppose s_1 and s_2 are both subjects
 - Submit query "s₁ v" to search engine, collect first 1000 results, find S(s₁,v) = {o | ∃(s₁,v,o)}
 - Similar for S(s₂,v)
 - Calculate:

$$Score_{SCS}(s_1, s_2) = \left[\frac{|S(s_1, v) \cap S(s_2, v)|}{|S(s_2, v)|} + \left(1 - \frac{|S(s_1, v) \cap S(s_2, v)|}{|S(s_1, v)|}\right) \right] \times \log(|S(s_1, v)| + |S(s_2v)|)$$

String inclusion with WordNet (SIWN)

• SIWN method:

 $\mathbf{t}_1 = \mathbf{w}_{11} \, \mathbf{w}_{12} \, \mathbf{w}_{13}$

 $t_1 \gg t_2$

 \gg : is hypernym of

 $\mathbf{t}_2 = \mathbf{w}_{21} \, \mathbf{w}_{22} \, \mathbf{w}_{23} \, \mathbf{w}_{24} \, \mathbf{w}_{25}$

"suicide attack" \gg "self-destruction bombing"

- attack \gg bombing
- suicide \approx self-destruction

$$Score_{SIWN}(t_1, t_2) = \begin{cases} 1 & \text{if } t1 \gg t_2 \text{ via SIWN} \\ 0 & \text{otherwise} \end{cases}$$

Lexical-syntactic pattern (LSP)

• Use following patterns to query on Google:

" t_1 such as t_2 " " t_1 , including t_2 " " t_2 is $[a|an] t_1$ " " t_2 is a [kind|type] of t_1 " " t_2 , [and|or] other t_1 "

$$Score_{LSP}(t_1, t_2) = \frac{\log(WH(t_1, t_2))}{1 + \log(WH(t_2, t_1))}$$

Combined method

 $Score(t_1, t_2) = \alpha \times Score_{SIWN}(t_1, t_2)$ $+ \beta \times Score_{LSP}(t_1, t_2)$ $+ \gamma \times Score_{SCS}(t_1, t_2)$

Taxonomy induction

- Step 1: Initial hypernym graph with a ROOT node
- Step 2:

$$w(e(t_1, t_2)) = \begin{cases} 1 & \text{if } t_1 = ROOT \\ Score(t_1, t_2) & \text{otherwise} \end{cases}$$

• Step 3: apply Edmonds' algorithm to find maximum optimum branching of weighted directed graph

Taxonomy induction group group 4.8 5.7 4.8 5.7 Militant Militant Terrorist Terrorist group organization group 3.7 organization 6.2 3.2 6.2 9.7 9.7 Armed Armed 1.9 4.9 International International Islamic Hezbollah Islamic terrorist terrorist group group organization organization 4.9 6.4 6.4 Hezbollah Al-Qaeda Al-Qaeda

Outline

- Introduction
- Related work
- Methodology
- Experiments
- Conclusion and future work

Constructing new taxonomies

- Terrorism domain:
 - 104 reports of the US state department "Patterns of Global Terrorism (1991-2002)"
 - Each report ~1,500 words
- Artificial Intelligence (AI) domain:
 - 4,119 papers extracted
 - the IJCAI proceedings from 1969 to 2011
 - the ACL archives from 1979 to 2010

Taxonomy construction

• Compare constructed AI taxonomy with that of (Velardi et al., 2012)

	Our system	Velardi's system
#vertex	1839	1675
#edge	1838	1674
Average depth	6.2	6
Max depth	10	10
Term coverage	83%	76%

Taxonomy construction

• Number of taxonomic relations extracted by different methods

	Number of extracted relations		
	Terrorism domain	AI domain	
SCS	484	1308	
SIWN	301	984	
LSP	527	1537	
SIWN + LSP	711	2203	
SCS + SIWN + LSP	976	3122	

Taxonomy construction

• Estimated precision of taxonomic relation identification methods in 100 random extracted relations

	Percentage of correct relations		
	Terrorism domain	AI domain	
SCS	91%	88%	
SIWN	96%	91%	
LSP	93%	93%	
SCS + SIWN + LSP	92%	90%	

Evaluate against WordNet

- Three domains: Animals, Plants and Vehicles:
 - Use the bootstrapping algorithm described in (Kozareva, 2008)
- Compare the results with (Kozareva, 2010) and (Navigli, 2011)

	Animals domain		Plants domain			Vehicles domain			
	Our	Kozareva	Navigli	Our	Kozareva	Navigli	Our	Kozareva	Navigli
Term coverage	96%	N.A.	94%	98%	N.A.	97%	97%	N.A.	96%
Precision	95%	98%	97%	95%	97%	97%	93%	99%	91%
Recall	56%	38%	44%	53%	39%	38%	69%	60%	49%
F-measure	71%	55%	61%	68%	56%	55%	79%	75%	64%

Syntactic structures

• Comparison of three syntactic structures: *S-V-O* (*Subject-Verb-Object*), *N-P-N* (*Noun- Preposition-Noun*) and *N-A-N* (*Noun-Adjective- Noun*)

	<i>S-V-O</i>	N-P-N	N-A-N
Animals domain			
Precision	95%	68%	72%
Recall	56%	52%	47%
F-measure	71%	59%	57%
Plants domain			
Precision	95%	63%	66%
Recall	53%	41%	43%
F-measure	68%	50%	52%
Vehicles domain			
Precision	93%	59%	60%
Recall	69%	45%	48%
F-measure	79%	51%	53%

Dataset link

• All dataset and experiment results are available at <u>http://nlp.sce.ntu.edu.sg/wiki/projects/taxogen</u>

Outline

- Introduction
- Related work
- Architecture
- Experiments
- Conclusion and future work

Conclusion

- Proposed a novel method of identifying taxonomic relations using contextual evidence from syntactic structure and Web data
- Presented a graph-based algorithm to induce an optimal taxonomy from a given taxonomic relation set
- Generally achieve better performance than the state-of-the-art methods

Future work

- Build the probabilistic model for taxonomy
- Consider the time stamp of information
- Apply to other domains and integrate into other frameworks such as ontology learning or topic identification

THANK YOU Q&A

- W. Wentao, L. Hongsong, W. Haixun, and Q. Zhu. 2012. *Probase: A probabilistic taxonomy for text understanding*. In proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 481-492.
- 2. Z. Kozareva, E. Riloff, and E. H. Hovy. 2008. *Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs*. In proceedings of the 46th Annual Meeting of the ACL, pp. 1048-1056.
- 3. R. Navigli, P. Velardi and S. Faralli. 2011. *A Graph-based Algorithm for Inducing Lexical Taxonomies from Scratch*. In proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1872-1877.
- 4. P. Velardi, S. Faralli and R. Navigli. 2012. *Ontolearn Reloaded: A Graph-based Algorithm for Taxonomy Induction*. Computational Linguistics, 39(3), pp.665-707.
- 5. J. Edmonds. 1967. *Optimum branchings*. Journal of Research of the National Bureau of Standards, 71, pp. 233-240.
- 6. M. A. Hearst. 1992. *Automatic Acquisition of Hyponyms from Large Text Corpora*. In proceedings of the 14th Conference on Computational Linguistics, pp. 539-545.

References

- 7. Z. Kozareva, E. Riloff, and E. H. Hovy. 2008. *Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs*. In proceedings of the 46th Annual Meeting of the ACL, pp. 1048-1056.
- 8. W. Wong, W. Liu and M. Bennamoun. 2007. *Tree-traversing ant algorithm for term clustering based on featureless similarities*. Data Mining and Knowledge Discovery, 15(3), pp. 349-381.
- 9. A. Budanitsky. 1999. *Lexical semantic relatedness and its application in natural language processing*. Technical Report CSRG-390, Computer Systems Research Group, University of Toronto.
- 10. H. N. Fotzo and P. Gallinari. 2004. *Learning "Generalization / Specialization" Relations between Concepts-Application for Automatically Building Thematic Document Hierarchies*. In proceedings of the 7th International Conference on Computer-Assisted Information Retrieval.
- 11. D. Widdows and B. Dorow. 2002. *A Graph Model for Unsupervised Lexical Acquisition*. In proceedings of the 19th International Conference on Computational Linguistics, pp. 1-7.
- 12. R. Girju, A. Badulescu, and D. Moldovan. 2003. *Learning Semantic Constraints for the Automatic Discovery of Part-Whole Relations*.³ In proceedings of the NAACL, pp. 1-8.