

Language Modeling with Power Low Rank Ensembles

Ankur Parikh

Avneesh Saluja

Chris Dyer

Eric Xing

Overview

- Model: Framework for language modeling using ensembles of low rank matrices and tensors
- **Relations:** Includes existing *n*-gram smoothing techniques as special cases

- Model: Framework for language modeling using ensembles of low rank matrices and tensors
- **Relations:** Includes existing *n*-gram smoothing techniques as special cases
- **Performance:** Consistently outperforms state-of-the-art Kneser Ney baselines for same context length
- Speed: Easily scalable since no partition function required

Outline

Introduction

- Background on *n*-gram smoothing
- Our Approach
 - Rank
 - Power
 - Constructing the Ensemble
- Experiments

Introduction	Background	Rank	Power	Ensembles	Experiments	3

• Evaluate probabilities of sentences

Introduction	Background	Rank	Power	Ensembles	Experiments	4

• Evaluate probabilities of sentences

Linear algebra is awesome

Introduction	Background	Rank	Power	Ensembles	Experiments	4

• Evaluate probabilities of sentences

Linear algebra is awesome

 $P(w_1, \dots, w_4) = 0.3648$

Introduction	Background	Rank	Power	Ensembles	Experiments	4
--------------	------------	------	-------	-----------	-------------	---

• Evaluate probabilities of sentences

Linear algebra is awesome Linear algebra is boring

$$P(w_1,\ldots,w_4) = 0.3648$$

Introduction Background Rank Power Ensembles Experiments	4
--	---

• Evaluate probabilities of sentences

Linear algebra is awesome Linear algebra is boring $P(w_1, \dots, w_4) = 0.3648$ $P(w_1, \dots, w_4) = 0.1922$

Introduction	Background	Rank	Power	Ensembles	Experiments	4
--------------	------------	------	-------	-----------	-------------	---

• Evaluate probabilities of sentences

Linear algebra is awesome Linear algebra is boring $P(w_1, \dots, w_4) = 0.3648$ $P(w_1, \dots, w_4) = 0.1922$

• Very useful in downstream applications such as machine translation and speech recognition.

Rank

Introduction	Background	Rank	Power	Ensembles	Experiments	5

5

Introduction	Background	Rank	Power	Ensembles	Experiments	

Introduction	Background	Rank	Power	Ensembles	Experiments	5

Introduction	Background	Rank	Power	Ensembles	Experiments	5

N-grams

- Predominant approach to language modeling
 - w_i

5

• Predominant approach to language modeling

• Predominant approach to language modeling

• Predominant approach to language modeling

5

• Predominant approach to language modeling

• Alleviate data sparsity problem

 $\hat{P}(w_i|w_{i-1})$

Introduction	Background	Rank	Power	Ensembles	Experiments	6

• Alleviate data sparsity problem

 $\hat{P}(w_i|w_{i-1})$

 $\hat{P}(w_i)$

Introduction Background Rank Power Ensembles Experiments	Introduction	ground Rank	Power	Ensembles	Experiments	6
--	--------------	-------------	-------	-----------	-------------	---

Introduction	Background	Rank	Power	Ensembles	Experiments	6
--------------	------------	------	-------	-----------	-------------	---

Introduction Background Rank Power Ensembles Experiments	6
--	---

Introduction	Background	Rank	Power	Ensembles	Experiments	6

Introduction	Background	Rank	Power	Ensembles	Experiments	6

Advantages of N-gram Models

• "Fine-to-coarse", captures various levels of dependence

- Very fast
 - O(N) test complexity
 - Low context sizes sufficient

Introduction	Background	Rank	Power	Ensembles	Experiments	
--------------	------------	------	-------	-----------	-------------	--

• No notion of similarity between words

 $\hat{P}(w_i)$

Introduction	Background	Rank	Power	Ensembles	Experiments	8

• No notion of similarity between words

(house, decrepit)

 $\hat{P}(w_i)$

Introduction	Background	Rank	Power	Ensembles	Experiments	
--------------	------------	------	-------	-----------	-------------	--

No notion of similarity between words

(house, decrepit)

Introduction	Background	Rank	Power	Ensembles	Experiments	8

No notion of similarity between words

Introduction	Background	Rank	Power	Ensembles	Experiments	8

• No notion of similarity between words

Introduction	Background	Rank	Power	Ensembles	Experiments	8

No notion of similarity between words

Introduction Background Rank Power Ensembles	Experiments	8
--	-------------	---

No notion of similarity between words

Introduction Background Rank Power Ensembles Experiments	Introduction	Rank	Power	Ensembles	Experiments	8
--	--------------	------	-------	-----------	-------------	---

• Project words to lower-dimensional space

Introduction	Background	Rank	Power	Ensembles	Experiments	9

• Project words to lower-dimensional space

Introduction	Background	Rank	Power	Ensembles	Experiments	9

• Project words to lower-dimensional space

• Words with similar contexts will have similar projections

Introduction	Background	Rank	Power	Ensembles	Experiments	9

• Project words to lower-dimensional space

• Words with similar contexts will have similar projections

Introduction	Background	Rank	Power	Ensembles	Experiments	9

ecrepit

Motivation For Low Rank Methods

Project words to lower-dimensional space

• Words with similar contexts will have similar projections

Introduction	Background	Rank	Power	Ensembles	Experiments	9

Introduction	Background	Rank	Power	Ensembles	Experiments	10

- Low rank approximation successful in many ML applications
 - Collaborate filtering (Netflix)
 - Matrix completion

Introduction	Background	Rank	Power	Ensembles	Experiments	10
--------------	------------	------	-------	-----------	-------------	----

- Low rank approximation successful in many ML applications
 - Collaborate filtering (Netflix)
 - Matrix completion
- These solutions have been attempted in language modeling
 - Saul and Pereira 1997
 - Hutchinson et al. 2011

Rank

- Low rank approximation successful in many ML applications
 - Collaborate filtering (Netflix)
 - Matrix completion
- These solutions have been attempted in language modeling
 - Saul and Pereira 1997
 - Hutchinson et al. 2011
- Unfortunately, not generally competitive with Kneser Ney

Rank

If rank is too small.....

Introduction Background Rank Power Ensembles Experiments	iction Background	Introduction
--	-------------------	--------------

If rank is too small.....

Introduction	Background	Rank	Power	Ensembles	Experiments	11
--------------	------------	------	-------	-----------	-------------	----

If rank is too small.....

Introduction	Background	Rank	Power	Ensembles	Experiments	11
--------------	------------	------	-------	-----------	-------------	----

If rank is too large....

Introduction	Background	Rank	Power	Ensembles	Experiments	12

If rank is too large....

(domicile, dilapidated)

Introduction	Background	Rank	Power	Ensembles	Experiments	
--------------	------------	------	-------	-----------	-------------	--

If rank is too large....

(domicile, dilapidated)

Probabilities of rare words a problem, since representation is too fine grained

Introduction	Background	Rank	Power	Ensembles	Experiments	12

Our Approach

Introduction	Background	Rank	Power	Ensembles	Experiments	13

 Construct ensembles of low rank matrices/tensors to model language at multiple granularities

Introduction	Background	Rank	Power	Ensembles	Experiments	13
--------------	------------	------	-------	-----------	-------------	----

- Construct ensembles of low rank matrices/tensors to model language at multiple granularities
- Includes existing *n*-gram techniques as special cases
 - Absolute discounting
 - Jelinek Mercer (deleted-interpolation)
 - Kneser Ney

Introduction	Background	Rank	Power	Ensembles	Experiments	13

- Construct ensembles of low rank matrices/tensors to model language at multiple granularities
- Includes existing *n*-gram techniques as special cases
 - Absolute discounting
 - Jelinek Mercer (deleted-interpolation)
 - Kneser Ney
- Preserves advantages of standard *n*-gram approaches
 - Effective for short context lengths
 - Fast evaluation at test time

Outline

- Introduction
- Background on Kneser Ney smoothing
- Our Approach
 - Rank
 - Power
 - Constructing the Ensemble
- Experiments

Instanced used in an	Dealerround	Develo	Denner	Freeswelles	Europius onto	1.4
Introduction	Баскугочно	Капк	Power	Ensembles	Experiments	14

Kneser Ney - Intuition

• Lower order distribution should be altered

Introduction	Background	Rank	Power	Ensembles	Experiments	56

Kneser Ney - Intuition

 Lower order distribution should be altered

- Consider two words, *York* and *door*
 - York only follows very few words i.e. New York
 - Door can follow many words i.e. "the door", "red door", "my door" etc.

$$P(w_i = \text{door} | \text{backed} - \text{off on } w_{i-1})$$

> $P(w_i = \text{York} | \text{backed} - \text{off on } w_{i-1})$

Kneser Ney - Intuition

 Lower order distribution should be altered

- Consider two words, *York* and *door*
 - York only follows very few words i.e. New York
 - Door can follow many words i.e. "the door", "red door", "my door" etc.

$$P(w_i = \text{door} \mid \text{backed} - \text{off on } w_{i-1})$$

> $P(w_i = \text{York} \mid \text{backed} - \text{off on } w_{i-1})$

Introduction	Background	Rank	Power	Ensembles	Experiments	58

Kneser Ney Unigram Distribution

$$N_{-}(w_{i}) = |\{w : c(w_{i}, w) > 0\}|$$

Diversity of $w'_i s$ history

Introduction	Background	Rank	Power	Ensembles	Experiments	16

Kneser Ney Unigram Distribution

$$N_{-}(w_{i}) = |\{w : c(w_{i}, w) > 0\}|$$

Diversity of $w'_i s$ history

$$\widehat{P}_{kn-uni}(w_i) = \frac{N_-(w_i)}{\sum_w N_-(w)}$$

Introduction Background Rank Power Ensembles Experiments
--

Introduction	Background	Rank	Power	Ensembles	Experiments	1
--------------	------------	------	-------	-----------	-------------	---

$$\hat{P}_d(w_i|w_{i-1}) = \frac{\max(c(w_i, w_{i-1}) - d, 0)}{\sum_w c(w, w_{i-1})}$$

Introduction	Background	Rank	Power	Ensembles	Experiments	17

$$\hat{P}_{d}(w_{i}|w_{i-1}) = \frac{\max(c(w_{i}, w_{i-1}) - d, 0)}{\sum_{w} c(w, w_{i-1})}$$

 $\hat{P}_{kney}(w_i|w_{i-1}) = \hat{P}_d(w_i|w_{i-1}) + \gamma(w_{i-1})\hat{P}_{kn-uni}(w_i)$

Introd	liction
1111100	action

Experiments

$$\hat{P}_{d}(w_{i}|w_{i-1}) = \frac{\max(c(w_{i}, w_{i-1}) - d, 0)}{\sum_{w} c(w, w_{i-1})}$$

 $\hat{P}_{kney}(w_i|w_{i-1}) = \hat{P}_d(w_i|w_{i-1}) + \gamma(w_{i-1})\hat{P}_{kn-uni}(w_i)$

Where $\gamma(w_{i-1})$ is the leftover probability

Introduction	Background	Rank	Power	Ensembles	Experiments	17

Lower Order Marginal Aligns!

$$\hat{P}(w_{i}) = \sum_{w_{i-1}} \hat{P}_{kney}(w_{i}|w_{i-1})\hat{P}(w_{i-1})$$

Introduction	Background	Rank	Power	Ensembles	Experiments	18
--------------	------------	------	-------	-----------	-------------	----

<u>Kneser Ney</u>

Power Low Rank Ensembles

		_			
Introduction Background	Rank	Power	Ensembles	Experiments	19

<u>Kneser Ney</u>

 Ensemble composed of unsmoothed *n*-grams Power Low Rank Ensembles

Introduction Background	Rank	Power	Ensembles	Experiments	19

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories

Power Low Rank Ensembles

Introduction	Background	Rank	Power	Ensembles	Experiments	19

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories
- Use absolute discounting to interpolate different *n*-grams and preserve lower order marginal constraint

Power Low Rank Ensembles

Rank

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories
- Use absolute discounting to interpolate different *n*-grams and preserve lower order marginal constraint

Power Low Rank Ensembles

Rank

Experiments

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories
- Use absolute discounting to interpolate different *n*-grams and preserve lower order marginal constraint

Rank

In General, Bigram is Full Rank

Introduction	Background	Rank	Power	Ensembles	Experiments	21

• If w_i and w_{i-1} are independent

$$P(w_i, w_{i-1}) = P(w_i)P(w_{i-1})$$

Introduction	Background	Rank	Power	Ensembles	Experiments	73
--------------	------------	------	-------	-----------	-------------	----

• If w_i and w_{i-1} are independent

$$P(w_i, w_{i-1}) = P(w_i)P(w_{i-1})$$

Introduction Background Rank Power Ensembles Experiments	74
--	----

• If w_i and w_{i-1} are independent

$$P(w_i, w_{i-1}) = P(w_i)P(w_{i-1})$$

P(*house*, *old*)

Introduction	Background	Rank	Power	Ensembles	Experiments	75
--------------	------------	------	-------	-----------	-------------	----

• If w_i and w_{i-1} are independent

$$P(w_i, w_{i-1}) = P(w_i)P(w_{i-1})$$

P(*house*, *old*)

 But what if w_i and w_{i-1} are not independent? What does the **best** rank 1 approximation give?

Introduction	Background	Rank	Power	Ensembles	Experiments	76

• Let **B** be the matrix such that

$$B(w_i, w_{i-1}) = c(w_i, w_{i-1})$$

• Let

• Then

$$\boldsymbol{M}_1(w_i, w_{i-1}) \propto \hat{P}(w_i) \hat{P}(w_{i-1})$$

Rank

Experiments

• MLE unigram is normalized rank 1 approx. of MLE bigram under KL:

$$\hat{P}(w_i) = \frac{M_1(w_i, w_{i-1})}{\sum_{w_i} M_1(w_i, w_{i-1})}$$

Introduction	Background	Rank	Power	Ensembles	Experiments	24
--------------	------------	------	-------	-----------	-------------	----

• MLE unigram is normalized rank 1 approx. of MLE bigram under KL:

$$\hat{P}(w_i) = \frac{M_1(w_i, w_{i-1})}{\sum_{w_i} M_1(w_i, w_{i-1})}$$

Vary rank to obtain quantities between bigram and unigram

• MLE unigram is normalized rank 1 approx. of MLE bigram under KL:

$$\hat{P}(w_i) = \frac{M_1(w_i, w_{i-1})}{\sum_{w_i} M_1(w_i, w_{i-1})}$$

 Vary rank to obtain quantities between bigram and unigram full rank

Introduction	Background	Rank	Power	Ensembles	Experiments	24

• MLE unigram is normalized rank 1 approx. of MLE bigram under KL:

$$\hat{P}(w_i) = \frac{M_1(w_i, w_{i-1})}{\sum_{w_i} M_1(w_i, w_{i-1})}$$

 Vary rank to obtain quantities between bigram and unigram full rank low rank rank 1

Generalizing KN to PLRE

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories
- Use absolute discounting to interpolate different *n*-grams and preserve lower order marginal constraint

Power Low Rank Ensembles

 Ensemble composed of unsmoothed *n*-grams plus other low rank matrices/tensors

Rank

Generalizing KN to PLRE

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories
- Use absolute discounting to interpolate different *n*-grams and preserve lower order marginal constraint

Power Low Rank Ensembles

 Ensemble composed of unsmoothed *n*-grams plus other low rank matrices/tensors

Experiments

Rank

26

Introduction	Background	Rank	Power	Ensembles	Experiments	27

$\begin{array}{c|c} B \\ 1 & 2 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 0 \end{array}$

Introduction	Background	Rank	Power	Ensembles	Experiments	27

Introduction	Background	Rank	Power	Ensembles	Experiments	27

Introduction	Background	Rank	Power	Ensembles	Experiments	27

Introduction	Background	Rank	Power	Ensembles	Experiments	27

Introduction	Background	Rank	Power	Ensembles	Experiments	27

Introduction	Background	Rank	Power	Ensembles	Experiments	27

Introduction	Background	Rank	Power	Ensembles	Experiments	27

Introduction	Background	Rank	Power	Ensembles	Experiments	27

Introduction

Background

Rank

Power

Ensembles

Experiments

Introduction	Background	Rank	Power	Ensembles	Experiments	28

$$\boldsymbol{M}_{1}^{0} = \min_{\boldsymbol{M}:\boldsymbol{M}\geq 0, rank(\boldsymbol{M})=1} \left\| \boldsymbol{B}^{0} - \boldsymbol{M} \right\|_{KL}$$

Introduction	Background	Rank	Power	Ensembles	Experiments	28

$$\boldsymbol{M}_{1}^{0} = min_{\boldsymbol{M}:\boldsymbol{M}\geq 0,rank(\boldsymbol{M})=1} \left\| \boldsymbol{B}^{0} - \boldsymbol{M} \right\|_{KL}$$

$$\hat{P}_{kn-uni}(w_i) = \frac{M_1^0(w_i, w_{i-1})}{\sum_w M_1^0(w, w_{i-1})}$$

Internalization	Dealassaud	Daula	Devues	Fursauchlas	E	20
introduction	Баскугойна	капк	Power	Ensemples	Experiments	20

$$\boldsymbol{M}_{1}^{0} = \min_{\boldsymbol{M}:\boldsymbol{M}\geq 0, rank(\boldsymbol{M})=1} \left\| \boldsymbol{B}^{0} - \boldsymbol{M} \right\|_{KL}$$

$$\hat{P}_{kn-uni}(w_i) = \frac{M_1^0(w_i, w_{i-1})}{\sum_w M_1^0(w, w_{i-1})}$$

power = 1 full rank

Introduction	Background	Rank	Power	Ensembles	Experiments	28
--------------	------------	------	-------	-----------	-------------	----

$$\boldsymbol{M}_{1}^{0} = \min_{\boldsymbol{M}:\boldsymbol{M}\geq 0, rank(\boldsymbol{M})=1} \left\| \boldsymbol{B}^{0} - \boldsymbol{M} \right\|_{KL}$$

$$\hat{P}_{kn-uni}(w_i) = \frac{M_1^0(w_i, w_{i-1})}{\sum_w M_1^0(w, w_{i-1})}$$

Introduction Background Rank Power Ensembles Experiments	Introduction	Background	Rank	Power	Ensembles	Experiments	28
---	--------------	------------	------	-------	-----------	-------------	----

$$\boldsymbol{M}_{1}^{0} = \min_{\boldsymbol{M}:\boldsymbol{M}\geq 0, rank(\boldsymbol{M})=1} \left\| \boldsymbol{B}^{0} - \boldsymbol{M} \right\|_{KL}$$

$$\widehat{P}_{kn-uni}(w_i) = \frac{M_1^0(w_i, w_{i-1})}{\sum_w M_1^0(w, w_{i-1})}$$

Introduction	Background	Rank	Power	Ensembles	Experiments	28
--------------	------------	------	-------	-----------	-------------	----

Varying Rank and Power

Construct matrices of varying rank and power

Introduction	Background	Rank	Power	Ensembles	Experiments	29

Varying Rank and Power

Construct matrices of varying rank and power

Introduction	Background	Ranl
	~	

Power

Varying Rank and Power

• Generalizes to higher orders

Introduction	Background	Rank	Power	Ensembles	Experiments	30

Generalizing KN to PLRE

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories
- Use absolute discounting to interpolate different *n*-grams and preserve lower order marginal constraint

Power Low Rank Ensembles

- Ensemble composed of unsmoothed *n*-grams plus other low rank matrices/tensors
- Alter lower order distributions by elementwise power

Rank

Power

Generalizing KN to PLRE

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories
- Use absolute discounting to interpolate different *n*-grams and preserve lower order marginal constraint

Power Low Rank Ensembles

- Ensemble composed of unsmoothed *n*-grams plus other low rank matrices/tensors
- Alter lower order distributions by elementwise power

Rank

Key Requirements

• Marginal constraint must hold:

$$\hat{P}(w_i) = \sum_{w_{i-1}} \hat{P}_{sm}(w_i | w_{i-1}) \hat{P}(w_{i-1})$$

• Evaluation of conditional probabilities must be fast

Our Approach: Two Step Procedure

• Step 1: Compute discounts on powered counts such that marginal constraint holds. Each count gets a *different* discount

Introduction Background Rank Power Ensembles Experiments	34
--	----

Our Approach: Two Step Procedure

• Step 1: Compute discounts on powered counts such that marginal constraint holds. Each count gets a *different* discount

Introduction	Background	Rank	Power	Ensembles	Experiments	34
						31

Our Approach: Two Step Procedure

• Step 1: Compute discounts on powered counts such that marginal constraint holds. Each count gets a *different* discount

Introduction	Background	Rank	Power	Ensembles	Experiments	34
introduction	Background	Kdlik	Power	Ensembles	Experiments	54

• <u>Step 2:</u> Take low rank approximation of discounted quantities such that marginal constraint still holds

Introduction	Background	Rank	Power	Ensembles	Experiments	35
	Ŭ				•	

• <u>Step 2</u>: Take low rank approximation of discounted quantities such that marginal constraint still holds

Introduction	Background	Rank	Power	Ensembles	Experiments	35
--------------	------------	------	-------	-----------	-------------	----

• <u>Step 2:</u> Take low rank approximation of discounted quantities such that marginal constraint still holds

Introduction	Background	Rank	Power	Ensembles	Experiments	35
--------------	------------	------	-------	-----------	-------------	----

• <u>Step 2:</u> Take low rank approximation of discounted quantities such that marginal constraint still holds

Introduction	Background	Rank	Power	Ensembles	Experiments	36

Introduction	Background	Rank	Power	Ensembles	Experiments	36

Introduction	Background	Rank	Power	Ensembles	Experiments	36

Introduction	Background	Rank	Power	Ensembles	Experiments	36

 Low rank approximations with respect to *KL* preserve row/column sums

• Therefore, discounting / leftover weight are preserved under the low rank approximation

Introduction	Background	Rank	Power	Ensembles	Experiments	36

Normalizer can be Precomputed

Introduction	Background	Rank	Power	Ensembles	Experiments	37

Normalizer can be Precomputed

 Low rank approximations with respect to KL preserve row/column sums

• Compute normalizers on sparse counts

Normalizer can be Precomputed

- Compute normalizers on sparse counts
- No partition functions!

Introduction	Background	Rank	Power	Ensembles	Experiments	37

Marginal Constraint Holds

$$\hat{P}(w_i) = \sum_{w_{i-1}} \hat{P}_{plre}(w_i | w_{i-1}) \hat{P}(w_{i-1})$$

Introduction	Background	Rank	Power	Ensembles	Experiments	38

Generalizing KN to PLRE

<u>Kneser Ney</u>

- Ensemble composed of unsmoothed *n*-grams
- Alter lower order distributions by using count of unique histories
- Use absolute discounting to interpolate different *n*-grams and preserve lower order marginal constraint

Power Low Rank Ensembles

- Ensemble composed of unsmoothed *n*-grams plus other low rank matrices/tensors
- Alter lower order distributions by elementwise power
- Generalized discounting scheme: First compute discounts on powered counts, then take low rank approximation

Power

Introduction	Background	Rank	Power	Ensembles	Experiments	40

count from corpus

Introduction	Background	Rank	Power	Ensembles	Experiments	40

Introduction	Background	Rank	Power	Ensembles	Experiments	40

Introduction	Background	Rank	Power	Ensembles	Experiments	40

 Because of ensemble representation, required rank is only about 100, even for billion word datasets

-	-						
In	t r	n		1	ti.	2	n
	LI '	υ	JU		LI	U	

Test Time

KN Test Complexity: O(n)

n = order, K = rank

PLRE Test Complexity: O(nK)

Introduction	Background	Rank	Power	Ensembles	Experiments	41

Test Time

KN Test Complexity: O(n)

n = order, K = rank

PLRE Test Complexity: O(nK)

Introduction	Background	Rank	Power	Ensembles	Experiments	41
--------------	------------	------	-------	-----------	-------------	----

Test Time

KN Test Complexity: O(n)

n = order, K = rank

PLRE Test Complexity: O(nK)

Introduction	Background	Rank	Power	Ensembles	Experiments	41

Outline

- Introduction
- Background on *n*-gram smoothing
- Our Approach
 - Rank
 - Power
 - Constructing the Ensemble
- Experiments

Introduction	Background	Rank	Power	Ensembles	Experiments	42

Experiments

- Evaluate on English and Russian
- Baselines
 - modKN Modified Kneser Ney (back-off)
 - modint-KN- Modified Interpolated Kneser Ney
 - Other comparisons: Class-based models, Neural Networks, Hierarchical Pitman Yor

Introduction	Background	Rank	Power	Ensembles	Experiments	43

Small Datasets - Perplexity

- English-Small [Bengio et al. 2003]
 - 20K vocabulary
 - 14 million tokens
- Russian-Small
 - 77K vocabulary
 - 3.5 million tokens

Introduction	Background	Rank	Power	Ensembles	Experiments	44
incroduction	Dackground	i talik	100001	Elisellibies	Experiments	

Small Datasets - Perplexity

- English-Small [Bengio et al. 2003]
 - 20K vocabulary
 - 14 million tokens
- Russian-Small
 - 77K vocabulary
 - 3.5 million tokens

	class KN	mod-KN	modint-KN	PLRE
English-Small	119.7	104.55	100.07	95.15
Russian-Small	284.09	283.7	260.19	238.96

Introduction	Background	Rank	Power	Ensembles	Experiments	44

Introduction	Background	Rank	Power	Ensembles	Experiments	45

Model	Context Size	Perplexity
mod-KN(4)	3	128
modint-KN(4)	3	116.6
infinity-gram HPYP [<i>Wood et al. 2009</i>]	infinity	111.8

Introduction	Background	Rank	Power	Ensembles	Experiments	46
--------------	------------	------	-------	-----------	-------------	----

Model	Context Size	Perplexity
mod-KN(4)	3	128
modint-KN(4)	3	116.6
infinity-gram HPYP [<i>Wood et al. 2009</i>]	infinity	111.8
PLRE(4)	3	108.7

Introduction	Background	Rank	Power	Ensembles	Experiments	47
--------------	------------	------	-------	-----------	-------------	----

Model	Context Size	Perplexity
mod-KN(4)	3	128
modint-KN(4)	3	116.6
infinity-gram HPYP [<i>Wood et al. 2009</i>]	infinity	111.8
PLRE(4)	3	108.7
LBL [Mnih and Hinton 2007]	5	117
LBL [Mnih and Hinton 2007]	10	107.8
RNN-ME [<i>Mikolov et al. 2012</i>]	infinity	82.1

Large Datasets - Perplexity

- English-Large
 - 836,000 types
 - 837 million tokens
- Russian-Large
 - 1.3 million types
 - 521 million tokens

 On 8 cores, PLRE (with optimal parameter settings) completes training on English-Large in 3.2 hrs and Russian-Large in 7.7 hours

Large Datasets - Perplexity

- English-Large
 - 836,000 types
 - 837 million tokens
- Russian-Large
 - 1.3 million types
 - 521 million tokens

	modint-KN	PLRE
English-Large	77.90 +/- 0.20	75.66 +/- 0.19
Russian-Large	289.6 +/-6.82	264.59 +/- 5.84

 On 8 cores, PLRE (with optimal parameter settings) completes training on English-Large in 3.2 hrs and Russian-Large in 7.7 hours

Power

Machine Translation Task

- English to Russian translation task (Language model is used as a feature in the translation system)
- Unlike other recent works, we use PLRE *instead* of modint-KN (not both)
- To deal with the non-determinism, the model is only trained once, using modint-KN. The same feature weights are then used for both PLRE and modint-KN

-	
Introd	uction
	uction

Machine Translation Task

- English to Russian translation task (Language model is used as a feature in the translation system)
- Unlike other recent works, we use PLRE *instead* of modint-KN (not both)
- To deal with the non-determinism, the model is only trained once, using modint-KN. The same feature weights are then used for both PLRE and modint-KN

Method	BLEU
modint-KN	17.63 +/- 0.11
PLRE	17.79 +/- 0.07
Smallest Diff	PLRE+0.05
Largest Diff	PLRE+0.29

Power

Conclusion

- We presented a novel technique for language modeling called power low rank ensembles
- Consistently outperforms state-of-the-art Kneser Ney baselines
 - Effective for small context sizes
 - No partition function required
- Part of broader theme of exploiting connection between linear algebra and probability to develop new solutions for NLP

Language Technologies Institute

Thanks!

Code/data available at http://www.cs.cmu.edu/~apparikh/plre