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Overview

• Model: Framework for language modeling using 
ensembles of low rank matrices and tensors

• Relations: Includes existing n-gram smoothing 
techniques as special cases

• Performance: Consistently outperforms state-of-the-art 
Kneser Ney baselines for same context length

• Speed: Easily scalable since no partition function 
required
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• Constructing the Ensemble

• Experiments
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Language Modeling

• Evaluate probabilities of sentences

• Very useful in downstream applications such as machine 
translation and speech recognition.
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• “Fine-to-coarse”, captures various levels of dependence

• Very fast
• O(N) test complexity
• Low context sizes sufficient

Advantages of N-gram Models
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Low Rank Approaches

• Low rank approximation successful in many ML 
applications
• Collaborate filtering (Netflix)
• Matrix completion

• These solutions have been attempted in language 
modeling
• Saul and Pereira 1997
• Hutchinson et al. 2011

• Unfortunately, not generally competitive with Kneser 
Ney
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Our Approach

• Construct ensembles of low rank matrices/tensors to 
model language at multiple granularities

• Includes existing n-gram techniques as special cases
• Absolute discounting
• Jelinek Mercer (deleted-interpolation)
• Kneser Ney

• Preserves advantages of standard n-gram approaches
• Effective for short context lengths
• Fast evaluation at test time
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Outline

• Introduction

• Background on Kneser Ney smoothing

• Our Approach
• Rank

• Power

• Constructing the Ensemble

• Experiments
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Independence = Rank 1

• If 𝑤𝑖 and 𝑤𝑖−1 are independent

• But what if 𝑤𝑖 and 𝑤𝑖−1 are not independent? What 
does the best rank 1 approximation give?
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• Let 𝑩 be the matrix such that
𝑩 𝑤𝑖 , 𝑤𝑖−1 = 𝑐 𝑤𝑖 , 𝑤𝑖−1

• Let

• Then

𝑴1 𝑤𝑖 , 𝑤𝑖−1 ∝  𝑃 𝑤𝑖
 𝑃 𝑤𝑖−1
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Varying Rank and Power

• Generalizes to higher orders
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Key Requirements

• Marginal constraint must hold:

• Evaluation of conditional probabilities must be fast

33
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• Step 1: Compute discounts on powered counts such that marginal 

constraint holds. Each count gets a different discount
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Why It Works

• Low rank approximations with respect to KL preserve 
row/column sums

• Therefore, discounting / leftover weight are preserved 
under the low rank approximation
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• No partition functions!
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Marginal Constraint Holds

38

 𝑃 𝑤𝑖 =  

𝑤𝑖−1

 𝑃𝑝𝑙𝑟𝑒 𝑤𝑖 𝑤𝑖−1)  𝑃 𝑤𝑖−1



Introduction Background Rank Power Ensembles Experiments

• Generalized discounting 
scheme: First compute 
discounts on powered 
counts, then take low rank 
approximation

Generalizing KN to PLRE

39

Kneser Ney

• Ensemble composed of 
unsmoothed n-grams

• Alter lower order distributions by 
using count of unique histories

• Use absolute discounting to 
interpolate different n-grams and 
preserve lower order marginal 
constraint

Power Low Rank Ensembles

• Ensemble composed of 
unsmoothed n-grams plus other 
low rank matrices/tensors

• Alter lower order distributions 
by elementwise power
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Training Procedure

• Because of ensemble representation, required rank is 
only about 100, even for billion word datasets
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count from corpus
count from corpusUse alternating minimization 

(EM) to compute low rank 
approximation with respect 
to KL [Lee and Seung 2001]
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Test Time

KN Test Complexity: 𝑂(𝑛)

PLRE Test Complexity: 𝑂 𝑛𝐾
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Outline

• Introduction

• Background on n-gram smoothing

• Our Approach
• Rank

• Power

• Constructing the Ensemble

• Experiments
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Experiments

• Evaluate on English and Russian

• Baselines
• modKN – Modified Kneser Ney (back-off)

• modint-KN- Modified Interpolated Kneser Ney 

• Other comparisons: Class-based models, Neural Networks, 
Hierarchical Pitman Yor

43
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Small Datasets - Perplexity

• English-Small [Bengio et al. 2003]
• 20K vocabulary

• 14 million tokens

• Russian-Small
• 77K vocabulary

• 3.5 million tokens
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class KN mod-KN modint-KN PLRE

English-Small 119.7 104.55 100.07 95.15

Russian-Small 284.09 283.7 260.19 238.96
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Small English Comparisons
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Model Context Size Perplexity

mod-KN(4) 3 128

modint-KN(4) 3 116.6

infinity-gram HPYP [Wood et al. 2009] infinity 111.8

PLRE(4) 3 108.7

LBL [Mnih and Hinton 2007] 5 117

LBL [Mnih and Hinton 2007] 10 107.8

RNN-ME [Mikolov et al. 2012] infinity 82.1
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Large Datasets - Perplexity

• English-Large 
• 836,000 types
• 837 million tokens

• Russian-Large
• 1.3 million types
• 521 million tokens

• On 8 cores, PLRE (with optimal parameter settings) 
completes training on English-Large in 3.2 hrs and 
Russian-Large in 7.7 hours
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modint-KN PLRE

English-Large 77.90 +/- 0.20 75.66 +/- 0.19

Russian-Large 289.6 +/-6.82 264.59 +/- 5.84
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Machine Translation Task

• English to Russian translation task 
(Language model is used as a 
feature in the translation system)

• Unlike other recent works, we use 
PLRE instead of modint-KN (not 
both)

• To deal with the non-determinism, 
the model is only trained once, 
using modint-KN. The same 
feature weights are then used for 
both PLRE and modint-KN
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Method BLEU

modint-KN 17.63 +/- 0.11

PLRE 17.79 +/- 0.07

Smallest Diff PLRE+0.05

Largest Diff PLRE+0.29



Conclusion

• We presented a novel technique for language modeling 
called power low rank ensembles

• Consistently outperforms state-of-the-art Kneser Ney 
baselines
• Effective for small context sizes
• No partition function required

• Part of broader theme of exploiting connection between 
linear algebra and probability to develop new solutions 
for NLP
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Thanks!
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Code/data available at http://www.cs.cmu.edu/~apparikh/plre


