A Language
22N Technologies
P 7

Institute

Language Modeling with Power
Low Rank Ensembles

L ///l.’//

hris Dyer Eric Xing

'''''''




Overview




ML

Overview —

EPARTMENT

* Model: Framework for language modeling using
ensembles of low rank matrices and tensors

* Relations: Includes existing n-gram smoothing
techniques as special cases




ML

Overview —

EEEEEEEEEE

* Model: Framework for language modeling using
ensembles of low rank matrices and tensors

* Relations: Includes existing n-gram smoothing
techniques as special cases

* Performance: Consistently outperforms state-of-the-art
Kneser Ney baselines for same context length

* Speed: Easily scalable since no partition function
required
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* Evaluate probabilities of sentences
Linear algebra is awesome P(wq,..,w,) = 0.3648

Linear algebra is boring P(wy,..,w,) =0.1922

* Very useful in downstream applications such as machine
translation and speech recognition.
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e Very fast
* O(N) test complexity
* Low context sizes sufficient
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* Low rank approximation successful in many ML
applications
* Collaborate filtering (Netflix)
* Matrix completion

* These solutions have been attempted in language
modeling
* Saul and Pereira 1997
* Hutchinson et al. 2011

e Unfortunately, not generally competitive with Kneser
Ney
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Probabilities of rare words a
(domicile, dilapidated) problem, since representation is
too fine grained
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e Construct ensembles of low rank matrices/tensors to
model language at multiple granularities

* Includes existing n-gram techniques as special cases
e Absolute discounting
 Jelinek Mercer (deleted-interpolation)
* Kneser Ney

* Preserves advantages of standard n-gram approaches
 Effective for short context lengths
e Fast evaluation at test time
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max(c(w;,w;_1) — d, 0)

ZW C(W, Wi—l)

pd(Wi|Wi—1) —

pkney(Wilwi—l) — pd(Wilwi—l) + V(Wi—l)pkn—uni(wi)

Where y(w;_,) is the leftover probability
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P(w;) = 2 Prney Wilw;_1)P(w;_1)
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* If w; and w;_, are independent

P(wj,w;_q) = P(Wi)P(Wi—1)

P(house, old)

* But what if w; and w;_; are not independent? What
does the best rank 1 approximation give?

P(old)

P(house)
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* Let B be the matrix such that
B(Wi) Wi—l) — C(Wil Wi—l)

* Let
M, = mlnM:MZO,rank(M):lllB — M|\,
— N
— Generalized KL
[Lee and Seung 2001]
* Then

M1 (w;, wi_q) < P(W)P(w;_)
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bigram under KL:
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* Construct matrices of varying rank and power

power = 0.5
low rank

power =0
rank =1

Power
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* Marginal constraint must hold:

p(Wi) — z psm(Wilwi—l)p(Wi—l)

Wi—1

* Evaluation of conditional probabilities must be fast
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» Step 2: Take low rank approximation of discounted quantities
such that marginal constraint still holds

= ="a | discount L oa b
@ = N A
5] [ A A A
] 9] .. A A kL
.I ) m " kx . N
= B m A A
] 7] - ] [N N N [N
g= == discount | ,» » " »
5] [N
mE B BE A A A
= m B A A A
= = . = A A N A
= =
] = ] =] - =}
. = | ] = 5]
= B = = = = 2 = 5]
.. 7] = .. ]

m CI = . om
= = - - =
= a " =

= LI s By L




Our Approach: Two Step ML

Procedure S

» Step 2: Take low rank approximation of discounted quantities
such that marginal constraint still holds

1
] 5] . A A
s ="a |discount | | . r
=] [ N A '
=] (= A N A A
... = .. . . A a kkk
= = . N N R A
] = I. - A A Ny A
0.5
B g = AN A
.= == ldiscount |[,» »"» | lowran
[} E B A N A A
'-. “ I. = N M ka
= = o A N N A
0
=] 7] =] = =
s ="@m . e "o low rank
m
m @ m . "a = m =
.. 7] = .. =]
= - m " m “ "= "=
m m
B oa By .. = g 5 -.




Our Approach: Two Step
Procedure

» Step 2: Take low rank approximation of discounted quantities
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Why It Works

* Low rank approximations with respect to KL preserve
row/column sums

low rank

—)

* Therefore, discounting / leftover weight are preserved
under the low rank approximation
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* Low rank approximations with respect to KL preserve
row/column sums
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* Compute normalizers on sparse counts




Normalizer can be Precomputed ﬂ

MACHINE LEARNING
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* Low rank approximations with respect to KL preserve
row/column sums

A A
A
N h low rank
ST —)
A
A A (N
[ N
N N N
A

* Compute normalizers on sparse counts

* No partition functions!




Marginal Constraint Holds

p(Wi) = 2 pplre(wilwi—l)p(wi—l)

Wi—-1




ML

Generalizing KN to PLRE
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Kneser Ney

 Ensemble composed of
unsmoothed n-grams

» Alter lower order distributions by

using count of unique histories

* Use absolute discounting to

interpolate different n-grams and

preserve lower order marginal
constraint

Power Low Rank Ensembles

Ensemble composed of
unsmoothed n-grams plus other
low rank matrices/tensors

Alter lower order distributions
by elementwise power

Generalized discounting
scheme: First compute

discounts on powered
counts, then take low rank
approximation

Ensembles
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Training Procedure
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Training Procedure

/ /

count from corpus ' inimizati
p Use alternating minimization count from corpus

(EM) to compute low rank
approximation with respect
to KL [Lee and Seung 2001]
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Training Procedure

o=

/ /

count from corpus Use alternating minimization count from corpus
(EM) to compute low rank

approximation with respect
to KL [Lee and Seung 2001]

* Because of ensemble representation, required rank is
only about 100, even for billion word datasets

o @




Test Time

KN Test Complexity: O(n)
n = order, K = rank

PLRE Test Complexity: O (nK)




ML

Test Time ——

EEEEEEEEEE

KN Test Complexity: O(n)
n = order, K = rank

PLRE Test Complexity: O(nK)
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Test Time ——
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KN Test Complexity: O(n)
n = order, K = rank

PLRE Test Complexity: O(nK)

)
K
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* Experiments
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e Evaluate on English and Russian

* Baselines
* modKN — Modified Kneser Ney (back-off)
 modint-KN- Modified Interpolated Kneser Ney

* Other comparisons: Class-based models, Neural Networks,
Hierarchical Pitman Yor
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Small Datasets - Perplexity ——
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* English-Small [Bengio et al. 2003]

e 20K vocabulary
* 14 million tokens

e Russian-Small
e 77K vocabulary
* 3.5 million tokens
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* English-Small [Bengio et al. 2003]

e 20K vocabulary
* 14 million tokens

e Russian-Small
e 77K vocabulary
* 3.5 million tokens

class KN mod-KN modint-KN PLRE
English-Small 119.7 104.55 100.07 95.15
Russian-Small 284.09 283.7 260.19 238.96




Small English Comparisons
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Small English Comparisons —
Model Context Size| Perplexity
mod-KN(4) 3 128
modint-KN(4) 3 116.6
infinity-gram HPYP [Wood et al. 2009 ] infinity 111.8
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Small English Comparisons
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Model Context Size| Perplexity

mod-KN(4) 3 128
modint-KN(4) 3 116.6
infinity-gram HPYP [Wood et al. 2009 ] infinity 111.8
PLRE(4) 3 108.7

LBL [Mnih and Hinton 2007 | 5 117
LBL [Mnih and Hinton 2007 | 10 107.8
RNN-ME [Mikolov et al. 2012 ] infinity 82.1




Large Datasets - Perplexity

* English-Large
* 836,000 types
e 837 million tokens

* Russian-Large
* 1.3 million types
e 521 million tokens

* On 8 cores, PLRE (with optimal parameter settings)
completes training on English-Large in 3.2 hrs and
Russian-Large in 7.7 hours
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* English-Large
* 836,000 types
e 837 million tokens

modint-KN PLRE
English-Large | 77.90 +/- 0.20 | 75.66 +/- 0.19
Russian-Large | 289.6 +/-6.82 |264.59 +/- 5.84

* Russian-Large
* 1.3 million types
e 521 million tokens

* On 8 cores, PLRE (with optimal parameter settings)
completes training on English-Large in 3.2 hrs and
Russian-Large in 7.7 hours
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* English to Russian translation task
(Language model is used as a
feature in the translation system)

* Unlike other recent works, we use
PLRE instead of modint-KN (not
both)

* To deal with the non-determinism,
the model is only trained once,
using modint-KN. The same
feature weights are then used for
both PLRE and modint-KN
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* English to Russian translation task
(Language model is used as a
feature in the translation system)

Method BLEU
* Unlike other recent works, we use modint-KN | 17.63+/- 0.11
PLRE instead of modint-KN (not PLRE 17.79 +/- 0.07

both) )
Smallest Diff PLRE+0.05

Largest Diff PLRE+0.29

* To deal with the non-determinism,
the model is only trained once,
using modint-KN. The same
feature weights are then used for
both PLRE and modint-KN
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* We presented a novel technique for language modeling
called power low rank ensembles

e Consistently outperforms state-of-the-art Kneser Ney
baselines

o Effective for small context sizes
* No partition function required

* Part of broader theme of exploiting connection between
linear algebra and probability to develop new solutions
for NLP
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Thanks!

Code/data available at http://www.cs.cmu.edu/~apparikh/plre




