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Motivation: Knowledge Base Completion

Unstructured Text

⇒

Structured Knowledge Base
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Motivation: Question Answering
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Relation Extraction

Input: Sentences containing (entity, slot value).
Output: Relation between entity and slot value.

Consider two approaches:

Supervised: Trivial as a supervised classifier.
Training data: {(sentence, relation)}.
But. . . this training data is expensive to produce.

Distantly Supervised: Artificially produce “supervised” data.
Training data: {(entity, relation, slot value)}.
But. . . this training data is much more noisy.
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Contribution: Combine Benefits of Both

Adding carefully selected supervision improves distantly supervised
relation extraction.

What is “carefully selected”: Propose new active learning criterion.

Evaluate a number of questions:
Is the proposed criterion better than other methods?

Where is the supervision helping?

How far can we get with a supervised classifier?
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Distant Supervision

(Barack Obama, EmployedBy, United States)
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Multiple-Instance Multiple-Label (MIML) Learning

(Barack Obama, EmployedBy, United States)
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↑ Barack Obama is the 44th and
current president of the United States
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Multiple-Instance Multiple-Label (MIML-RE)

y1 y2 . . . yn−1 yn
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Active Learning

Old problem: Supervision is expensive, but very useful.

Old solution: Active learning!

Select a subset of latent z to annotate.

Fix these labels during training.
Bonus: this creates a supervised training set.

We initialize from a supervised classifier on this training set.

Some Statistics

1,208,524 latent z which we could annotate.

$0.13 per annotation.

$160,000 to annotate everything.

New spin: Have to get it right the first time.
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Example Selection Criteria

1 Train k MIML-RE models on k subsets of the data.
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2 For each latent z, each trained model c predicts a multinomial Pc(z).
3 Calculate Jensen-Shannon divergence: 1

k ∑
k
c=1 KL(pc(z)||pmean(z)).

4 We have measure of disagreement for each z.

Three selection criteria

Sample uniformly (uniform).

Take z with highest disagreement (highJS).

Sample z with highest disagreement (sampleJS).
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Example Selection Criteria
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← Mostly easy examples

Potentially
Non-representative examples ↓
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Example Selection Criteria

Committee Member Judgments
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Sentence Member A Member B Member C
Obama was born in Hawaii born born no relation
Obama grew up in Hawaii born lived in born
Obama Bear visits Hawaii no relation born employee of
President Obama . . . title title title
Obama employed president . . . employee of title employee of

Uniform: Often annotates easy sentences.
High JS (disagreement): More likely to annotate “rare” sentences.
Sample JS (disagreement): Mix of hard and representative sentences.
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Experiments

Recall our questions:

Is the proposed criterion better than other methods?

Where is the supervision helping?

How far can we get with a supervised classifier?

Two experimental setups:

Slot filling evaluation of Surdeanu et al. (2012).

Stanford’s 2013 TAC-KBP slot filling system

Bonus: 4.4 F1 improvement on 2014 TAC-KBP competition
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Old News: MIML-RE Works Well

Slot filling evaluation of Surdeanu et al. (2012).
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Active learning is important; SampleJS performs well.

Slot filling evaluation of Surdeanu et al. (2012).
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SampleJS performs best on TAC-KBP challenge.

TAC-KBP 2013 Slot Filling Challenge:

End-to-end task – includes IR + consistency.

Precision: facts LDC evaluators judged as correct.
Recall: facts other teams (including LDC annotators) also found.

System P R F1

No active learning 38.0 30.5 33.8
Sample uniformly 34.4 35.0 34.7
Highest JS disagreement 46.2 30.8 37.0
Sample JS disagreement 39.4 36.2 37.7

2014 TAC-KBP Slot Filling Challenge: 27.6→ 32.0 F1.
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Good initialization is more important than constraining EM.

Is initialization or fixing latent zs during EM helping?

What if we initialize with distant supervision?
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Hypothesis: Supervision not only smooths the objective but provides better
initialization for the non-convex objective.
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A supervised classifier performs surprisingly well.

TAC-KBP 2013 Slot Filling Challenge:

End-to-end task – includes IR + consistency.

Precision: facts LDC evaluators judged as correct.
Recall: facts other teams (including LDC annotators) also found.

System P R F1

MIML-RE (baseline) 38.0 30.5 33.8

Supervised from SampleJS 33.5 35.0 34.2
MIML-RE Supervised init. 35.1 35.6 35.5
SampleJS 39.4 36.2 37.7

A bit circular: Need MIML-RE to get supervised examples.
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A Case for Supervised Classifiers

Stanford’s KBP system Supervised Classifier
(artist rendition) (150 lines + featurizer)

Annotating examples: $1330
Flight to Qatar: $1027
Apple 27” Screen: $999
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Conclusions

Things you can use:

New active learning criterion: Sampling disagreement between a
committee of classifiers.

Corpus of supervised examples for TAC-KBP relations.

4.4 F1 improvement on 2014 KBP Slot Filling.

Things we’ve learned:

Example selection is very important for performance.

MIML-RE is sensitive to initialization.

Supervised classifiers can perform similarly to distantly supervised
methods.

Thank You!
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Comparison to Pershina et al. (ACL 2014)

Slot filling evaluation of Surdeanu et al. (2012).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.05  0.1  0.15  0.2  0.25  0.3

P
re

ci
si

o
n

Recall

Sample JS
Pershina et al. (2014)

MIML-RE

Angeli, Tibshirani, Wu, Manning (Stanford) Combining Distant and Partial Supervision . . . October 28, 2014 19 / 19


