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Context

▶ Supervised Machine Learning techniques have established new
performance standards for many NLP tasks

▶ Success crucially depends on the availability of annotated
in-domain data

▶ Not so common situation (e.g. under-resourced languages)

▶ What can we do then ?
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Context

▶ Unsupervised learning

▶ Crawl data (e.g. Wiktionary)
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State of the art

▶ In most cases this only results in partially annotated data
▶ Alternative ML techniques need to be designed

State of the art
▶ Partially observed CRF [Täckström et al., 2013]
▶ Posterior regularization [Ganchev and Das, 2013]
▶ Expectation maximization [Wang and Manning, 2014]
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Contributions

1. We cast this problem in the framework of ambiguous
learning [Bordes et al., 2010, Cour et al., 2011]

2. We present a novel method to learn from ambiguous
supervision data

3. We show significant improvements over prior state of the art
4. We conduct a detailed analysis that allows us to identify the

limits of transfer-based methods and their evaluation
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Part I

Projecting Labels across Aligned
Corpora
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Hypothesis

▶ In this work we focus on POS tagging

Strong assumption
Syntactic categories in the source language can be directly related
to the ones in the target one

Universal tagset [Petrov et al., 2012]
{ Noun, Verb, Adj, Adv, Pron, Det,

Adp, Num, Conj, Prt, ‘.’, X }

▶ All annotations are mapped to this universal tagset
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Type and token constraints

Transfer-based methods only deliver partial and noisy supervision
▶ Heuristic filtering rules [Yarowsky et al., 2001]
▶ Graph-base projection [Das and Petrov, 2011]
▶ Combine with monolingual information

[Täckström et al., 2013]

Type and token constraints [Täckström et al., 2013]

1. type constraints from a dictionary
...

2. token constraints projected through alignment links
...
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Type constraints

From tag dictionaries
▶ Automatically extracted from Wiktionary

▶ Build from the projected labels across the aligned corpora

..… .marché. …. marché. ….

…

.

market

.

…

.

walked

.

…

..
⇒

.
market

.. NOUN
VERB

.

.

NOUN .

.

VERB

.

.

NOUN .

.

VERB

▶ We use the intersection of the two above
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Token constraints

1. Use the type constraints
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Token constraints

2. Use the alignment links from the parallel corpora
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Token constraints

3. Tag the source side (resource-rich)
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Token constraints

4. Project labels if licensed by type constraints
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Part II

Modeling Sequences under Ambiguous
Supervision
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Problem
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▶ Gold labels: a set of possible labels of which only one is true
▶ How to learn from ambiguous supervision ?
▶ Can be cast in the framework of ambiguous learning

[Bordes et al., 2010, Cour et al., 2011]
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History-based model: inference
..x:. Un. marché. pour. la. ....

y:
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y∗i =

arg max
y∈{NOUN, VERB, ...}

F(x, y, y∗i−1, y∗i−2, ...)

Principle
▶ Structured prediction is reduced to a sequence of

multi-classification problems

▶ At each step, the decision is taken based on the input
structure and the so far partially tagged sequence
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History-based model: training

▶ Linear classifier y∗i = arg maxy∈Y wTϕ(x, i, y, hi)

▶ Perceptron

-like

update

Full supervision
if y∗i ̸= ŷi then

wt+1 ← wt − ϕ (x, i, y∗i , hi) +

∑
ŷi∈Ŷi

ϕ (x, i, ŷi, hi)

▶ Heighten the gold label

s

score at the cost of the wrongly
predicted one

▶ Theoretical guarantees for similar problems under mild
assumptions [Bordes et al., 2010, Cour et al., 2011]
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Part III

Experiments
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Experimental setup

▶ Experiments on 10 languages from different families
▶ English as the source side

Our method needs
▶ Parallel corpora Europarl, NIST, Open Subtitle
▶ English POS tagger Wapiti
▶ Crawled dictionary Wiktionary
▶ Labeled test data CoNLL’07, UDT v2.0, Treebanks

▶ Standard feature set
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Results

CRF HBAL ∆ [1] [2] [3] Unsupervised [1]

ar 33.9 27.9 -6.0 49.9 — — —
cs 11.6 10.4 -1.2 19.3 18.9 — —
de 12.2 8.8 -3.4 9.6 9.5 14.2 18.7
el 10.9 8.1 -2.8 9.4 10.5 20.8 28.2
es 10.7 8.2 -2.5 12.8 10.9 13.6 18.7
fi 12.9 13.3 +0.4 — — — —
fr 11.6 10.2 -1.4 12.5 11.6 — —
id 16.3 11.3 -5.0 — — — —
it 10.4 9.1 -1.3 10.1 10.2 13.5 31.9
sv 11.6 10.1 -1.5 10.8 11.1 13.9 29.9

CRF Partially supervised CRF baseline
[Täckström et al., 2013]

HBAL Our History-based model

[1] [Ganchev and Das, 2013]
[2] [Täckström et al., 2013]
[3] [Li et al., 2012]
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Part IV

Discussion
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Discussion

Closer look on Spanish results:

State of the art 10.9%

Our model HBAL 8.2%
Our model trained on supervised data (HBSL) 2.4%

Our method still falls short of a fully supervised model!
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Why such a large gap ?

Noisy constraints
▶ Type constraints precision on test data is 94%
▶ I.e. using our type constraints as hard constraints at decoding

time yields at least 6% of errors
▶ In this setting HBSL gets 7.3%
▶ Noisy dictionaries

Out-of-domain evaluation

̸=
1. tokenization differs
2. domain differs
3. annotation conventions differ
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The annotation convention problem

▶ Several independently designed information sources are
combined

▶ They follow conflicting annotation conventions

Example
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.
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Impact of annotation and train/test mismatches

Fixing some annotation mismatches in type constraints

ar cs de el es fi fr id it sv
HBAL 27.9 10.4 8.8 8.1 8.2 13.3 10.2 11.3 9.1 10.1
HBAL + match 24.1 7.6 8.0 7.3 7.4 12.2 7.4 9.8 8.3 8.8

∆ -3.8 -2.8 -0.8 -0.8 -0.8 -1.1 -2.8 -1.5 -0.8 -1.3

Supervised experiments for Spanish

train train labels test error rate
UDT manual 2.4%

Europarl HBSL 4.2%
Europarl FreeLing 6.1%
Europarl Cross-lingual transfer (ambiguous) 8.2%

▶ Performance may be underestimated
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Part V

Conclusion
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Conclusion

▶ We introduce a new, simple and efficient learning criterion
▶ Performance surpasses best reported results
▶ Results close to the best achievable performance ?
▶ Evaluation of such settings much be taken with great care
▶ Additional gains might be more easily obtained by fixing

systematic biases than by designing more sophisticated weakly
supervised learners
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Thank you for your attention

Questions ?

Tools and resources available from http://perso.limsi.fr/wisniews/weakly

http://perso.limsi.fr/wisniews/weakly
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