

Joint Emotion Analysis via Multi-task Gaussian Processes

Daniel Beck, Trevor Cohn, Lucia Specia

October 28, 2014

Introduction

2 Multi-task Gaussian Process Regression

3 Experiments and Discussion

4 Conclusions and Future Work

Introduction

- 2 Multi-task Gaussian Process Regression
- 3 Experiments and Discussion

4 Conclusions and Future Work

Emotion Analysis

Goal

Automatically detect emotions in a text [Strapparava and Mihalcea, 2008];

Emotion Analysis

Goal

Automatically detect emotions in a text [Strapparava and Mihalcea, 2008];

Headline	Fear	Joy	Sadness
Storms kill, knock out power, cancel flights	82	0	60
Panda cub makes her debut	0	59	0

• Learn a model that shows sound and interpretable correlations between emotions.

- Learn a model that shows sound and interpretable correlations between emotions.
- Datasets are scarce and small → Multi-task models are able to learn from all emotions jointly;

- Learn a model that shows sound and interpretable correlations between emotions.
- Datasets are scarce and small → Multi-task models are able to learn from all emotions jointly;
- ullet Annotation scheme is subjective and fine-grained o Prone to bias and noise;

- Learn a model that shows sound and interpretable correlations between emotions.
- Datasets are scarce and small → Multi-task models are able to learn from all emotions jointly;
- Annotation scheme is subjective and fine-grained → Prone to bias and noise;

Disclaimer: this work is not about features (at the moment...)

Most multi-task models used in NLP assume some degree of correlation between tasks:

Most multi-task models used in NLP assume some degree of correlation between tasks:

Domain Adaptation: assumes the existence of a "general" domain-independent knowledge in the data.

Most multi-task models used in NLP assume some degree of correlation between tasks:

Domain Adaptation: assumes the existence of a "general" domain-independent knowledge in the data.

Annotation Noise Modelling: assumes that annotations are noisy deviations from a "ground truth".

Most multi-task models used in NLP assume some degree of correlation between tasks:

Domain Adaptation: assumes the existence of a "general" domain-independent knowledge in the data.

Annotation Noise Modelling: assumes that annotations are noisy deviations from a "ground truth".

For Emotion Analysis, we need a multi-task model that is able to take into account possible anti-correlations, avoiding negative transfer.

Headline	Fear	Joy	Sadness
Storms kill, knock out power, cancel flights	82	0	60
Panda cub makes her debut	0	59	0

Introduction

2 Multi-task Gaussian Process Regression

3 Experiments and Discussion

4 Conclusions and Future Work

Let (\mathbf{X}, \mathbf{y}) be the training data and $f(\mathbf{x})$ the latent function that models that data:

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x})) k(\mathbf{x}, \mathbf{x}'))$$

Mean function

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

Kernel function

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
Likelihood
$$p(f|\mathbf{X}, \mathbf{y}) = \underbrace{p(\mathbf{y}|\mathbf{X}, f)p(f)}_{p(\mathbf{y}|\mathbf{X})}$$

$$p(f|\mathbf{X}, \mathbf{y}) \Rightarrow \frac{p(\mathbf{y}|\mathbf{X}, f(p(f)))}{p(\mathbf{y}|\mathbf{X})}$$

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \int_f p(y_*|\mathbf{x}_*, f, \mathbf{X}, \mathbf{y}) p(f|\mathbf{X}, \mathbf{y}) df$$
Likelihood (test)

Let (X, y) be the training data and f(x) the latent function that models that data:

$$\frac{f(\mathbf{x})}{\mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))} = \frac{p(\mathbf{y}|\mathbf{X}, f)p(f)}{p(\mathbf{y}|\mathbf{X})}$$

$$\frac{p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y})}{f(\mathbf{y}_*|\mathbf{x}_*, f, \mathbf{X}, \mathbf{y})p(f|\mathbf{X}, \mathbf{y})df}$$

Predictive distribution

GP Regression

Likelihood: In a regression setting, we usually consider a
Gaussian likelihood, which allow us to obtain a closed
form solution for the test posterior;

¹AKA Squared Exponential, Gaussian or Exponential Quadratic kernel.

GP Regression

Likelihood: In a regression setting, we usually consider a
Gaussian likelihood, which allow us to obtain a closed
form solution for the test posterior;

Kernel: Many options available. In this work we use the Radial Basis Function (RBF) kernel¹:

$$k(\mathbf{x}, \mathbf{x}') = \alpha_f^2 \times exp\left(-\frac{1}{2}\sum_{i=1}^F \frac{(x_i - x_i')^2}{l_i}\right)$$

¹AKA Squared Exponential, Gaussian or Exponential Quadratic kernel.

Coregionalisation models extend GPs to vector-valued outputs [Álvarez et al., 2012]. Here we use the *Intrinsic Coregionalisation Model* (ICM):

$$k((\mathbf{x},d),(\mathbf{x}',d')) = k_{\mathsf{data}}(\mathbf{x},\mathbf{x}') \times \mathbf{B}_{d,d'}$$

Coregionalisation models extend GPs to vector-valued outputs [Álvarez et al., 2012]. Here we use the *Intrinsic Coregionalisation Model* (ICM):

$$k((\mathbf{x},d),(\mathbf{x}',d')) \in k_{\mathsf{data}}(\mathbf{x},\mathbf{x}') \gg \mathbf{B}_{d,d'}$$

Kernel on data points (like RBF, for instance)

Coregionalisation models extend GPs to vector-valued outputs [Álvarez et al., 2012]. Here we use the *Intrinsic Coregionalisation Model* (ICM):

$$k((\mathbf{x},d),(\mathbf{x}',d')) = k_{\mathsf{data}}(\mathbf{x},\mathbf{x}') \times \mathbf{B}_{d,d'}$$

Coregionalisation matrix: encodes task covariances

Coregionalisation models extend GPs to vector-valued outputs [Álvarez et al., 2012]. Here we use the *Intrinsic Coregionalisation Model* (ICM):

$$k((\mathbf{x},d),(\mathbf{x}',d')) = k_{\mathsf{data}}(\mathbf{x},\mathbf{x}') \times \mathbf{B}_{d,d'}$$

B can be parameterised and learned by optimizing the model marginal likelihood.

[Bonilla et al., 2008] decomposes **B** using PPCA:

$$\mathbf{B} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T + \mathrm{diag}(\boldsymbol{lpha}),$$

[Bonilla et al., 2008] decomposes **B** using PPCA:

$$\mathbf{B} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^T + \mathsf{diag}(\boldsymbol{\alpha}),$$

To ensure numerical stability, we employ the incomplete-Cholesky decomposition over $\mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$:

$$\mathbf{B} = \mathbf{\tilde{L}}\mathbf{\tilde{L}}^T + \mathsf{diag}(oldsymbol{lpha}),$$

PPCA model

PPCA model

PPCA model

Introduction

2 Multi-task Gaussian Process Regression

3 Experiments and Discussion

4 Conclusions and Future Work

 Dataset: SEMEval2007 "Affective Text" [Strapparava and Mihalcea, 2007];

- Dataset: SEMEval2007 "Affective Text" [Strapparava and Mihalcea, 2007];
- 1000 News headlines, each one annotated with 6 scores [0-100], one for emotion;

- Dataset: SEMEval2007 "Affective Text" [Strapparava and Mihalcea, 2007];
- 1000 News headlines, each one annotated with 6 scores [0-100], one for emotion;
- Bag-of-words representation as features;

- Dataset: SEMEval2007 "Affective Text" [Strapparava and Mihalcea, 2007];
- 1000 News headlines, each one annotated with 6 scores [0-100], one for emotion;
- Bag-of-words representation as features;
- Pearson's correlation score as evaluation metric;

Learned Task Covariances

Prediction Results

Split: 100/900

Prediction Results

Split: 100/900

Prediction Results

Split: 100/900

Training Set Size Influence

Introduction

- 2 Multi-task Gaussian Process Regression
- 3 Experiments and Discussion

4 Conclusions and Future Work

Conclusions

Conclusions

 The proposed model is able to learn sensible correlations and anti-correlations;

Conclusions

- The proposed model is able to learn sensible correlations and anti-correlations;
- For small datasets, it also outperforms single-task baselines;

Conclusions

- The proposed model is able to learn sensible correlations and anti-correlations;
- For small datasets, it also outperforms single-task baselines;

Future Work

Conclusions

- The proposed model is able to learn sensible correlations and anti-correlations;
- For small datasets, it also outperforms single-task baselines;

Future Work

Modelling the label distribution (different priors, different likelihoods)

Conclusions

- The proposed model is able to learn sensible correlations and anti-correlations;
- For small datasets, it also outperforms single-task baselines;

Future Work

- Modelling the label distribution (different priors, different likelihoods)
- Multiple multi-task levels (for example, MTurk data [Snow et al., 2008]);

Conclusions

- The proposed model is able to learn sensible correlations and anti-correlations;
- For small datasets, it also outperforms single-task baselines;

Future Work

- Modelling the label distribution (different priors, different likelihoods)
- Multiple multi-task levels (for example, MTurk data [Snow et al., 2008]);
- Other multi-task GP models [Álvarez et al., 2012, Hensman et al., 2013];

Joint Emotion Analysis via Multi-task Gaussian Processes

Daniel Beck, Trevor Cohn, Lucia Specia

October 28, 2014

Error Analysis

- Álvarez, M. A., Rosasco, L., and Lawrence, N. D. (2012). Kernels for Vector-Valued Functions: a Review. Foundations and Trends in Machine Learning, pages 1–37.
- Bonilla, E. V., Chai, K. M. A., and Williams, C. K. I. (2008). Multi-task Gaussian Process Prediction.

 Advances in Neural Information Processing Systems.
- Cohn, T. and Specia, L. (2013).

 Modelling Annotator Bias with Multi-task Gaussian Processes:

 An Application to Machine Translation Quality Estimation.

 In *Proceedings of ACL*.
- Hensman, J., Lawrence, N. D., and Rattray, M. (2013). Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinformatics, 14:252.
- Snow, R., O'Connor, B., Jurafsky, D., and Ng, A. Y. (2008). Cheap and Fast But is it Good?: Evaluating Non-Expert Annotations for Natural Language Tasks.

In Proceedings of EMNLP.

Strapparava, C. and Mihalcea, R. (2008). Learning to identify emotions in text. In *Proceedings of the 2008 ACM Symposium on Applied Computing*.