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Emotion Analysis

Goal

Automatically detect emotions in a text
[Strapparava and Mihalcea, 2008];

Headline Fear Joy Sadness

Storms kill, knock out power, cancel flights 82 0 60
Panda cub makes her debut 0 59 0
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Why Multi-task?

Learn a model that shows sound and interpretable correlations
between emotions.

Datasets are scarce and small → Multi-task models are able
to learn from all emotions jointly;

Annotation scheme is subjective and fine-grained → Prone to
bias and noise;

Disclaimer: this work is not about features (at the moment...)
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Multi-task learning and Anti-correlations

Most multi-task models used in NLP assume some degree of
correlation between tasks:

Domain Adaptation: assumes the existence of a “general”
domain-independent knowledge in the data.

Annotation Noise Modelling: assumes that annotations are noisy
deviations from a “ground truth”.

For Emotion Analysis, we need a multi-task model that is able to
take into account possible anti-correlations, avoiding negative
transfer.
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Gaussian Processes

Let (X, y) be the training data and f (x) the latent function that
models that data:

f (x) ∼ GP(µ(x), k(x, x′))

p(f |X, y) =
p(y|X, f )p(f )

p(y|X)

p(y∗|x∗,X, y) =

∫
f
p(y∗|x∗, f ,X, y)p(f |X, y)df

Mean functionKernel function

Likelihood

Marginal likelihood

PriorPosterior

Likelihood (test)Predictive distribution
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GP Regression

Likelihood: In a regression setting, we usually consider a
Gaussian likelihood, which allow us to obtain a closed
form solution for the test posterior;

Kernel: Many options available. In this work we use the
Radial Basis Function (RBF) kernel1:

k(x, x′) = α2
f × exp

(
−1

2

F∑
i=1

(xi − x ′i )
2

li

)

1AKA Squared Exponential, Gaussian or Exponential Quadratic kernel.
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The Intrinsic Coregionalisation Model

Coregionalisation models extend GPs to vector-valued outputs
[Álvarez et al., 2012]. Here we use the Intrinsic Coregionalisation
Model (ICM):

k((x, d), (x′, d ′)) = kdata(x, x′)× Bd ,d ′

Kernel on data points (like RBF, for instance)Coregionalisation matrix: encodes task covariances

B can be parameterised and learned by optimizing the model
marginal likelihood.
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PPCA model

[Bonilla et al., 2008] decomposes B using PPCA:

B = UΛUT + diag(α),

To ensure numerical stability, we employ the incomplete-Cholesky
decomposition over UΛUT :

B = L̃L̃T + diag(α),
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PPCA model

L11
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+ diag(α) = B

12 hyperparameters
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Experimental Setup

Dataset: SEMEval2007 “Affective Text”
[Strapparava and Mihalcea, 2007];

1000 News headlines, each one annotated with 6 scores
[0-100], one for emotion;

Bag-of-words representation as features;

Pearson’s correlation score as evaluation metric;
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Learned Task Covariances

100 sentences
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Prediction Results

Split: 100/900
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Training Set Size Influence

Split: 100+/100
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Conclusions and Future Work

Conclusions

The proposed model is able to learn sensible correlations and
anti-correlations;

For small datasets, it also outperforms single-task baselines;

Future Work

Modelling the label distribution (different priors, different
likelihoods)

Multiple multi-task levels (for example, MTurk data
[Snow et al., 2008]);

Other multi-task GP models
[Álvarez et al., 2012, Hensman et al., 2013];
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