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Abstract

Discourse parsing is a challenging task
and plays a critical role in discourse anal-
ysis. In this paper, we focus on label-
ing full argument spans of discourse con-
nectives in the Penn Discourse Treebank
(PDTB). Previous studies cast this task
as a linear tagging or subtree extraction
problem. In this paper, we propose a
novel constituent-based approach to argu-
ment labeling, which integrates the ad-
vantages of both linear tagging and sub-
tree extraction. In particular, the pro-
posed approach unifies intra- and inter-
sentence cases by treating the immediate-
ly preceding sentence as a special con-
stituent. Besides, a joint inference mech-
anism is introduced to incorporate glob-
al information across arguments into our
constituent-based approach via integer lin-
ear programming. Evaluation on PDT-
B shows significant performance improve-
ments of our constituent-based approach
over the best state-of-the-art system. It al-
so shows the effectiveness of our joint in-
ference mechanism in modeling global in-
formation across arguments.

1 Introduction

Discourse parsing determines the internal struc-
ture of a text and identifies the discourse rela-
tions between its text units. It has attracted in-
creasing attention in recent years due to its impor-
tance in text understanding, especially since the
release of the Penn Discourse Treebank (PDTB)
corpus (Prasad et al., 2008), which adds a layer of
discourse annotations on top of the Penn Treebank

∗The research reported in this paper was carried out while
Fang Kong was a research fellow at the National University
of Singapore.

(PTB) corpus (Marcus et al., 1993). As the largest
available discourse corpus, the PDTB corpus has
become the defacto benchmark in recent studies
on discourse parsing.

Compared to connective identification and dis-
course relation classification in discourse parsing,
the task of labeling full argument spans of dis-
course connectives is much harder and thus more
challenging. For connective identification, Lin et
al. (2014) achieved the performance of 95.76%
and 93.62% in F-measure using gold-standard and
automatic parse trees, respectively. For discourse
relation classification, Lin et al. (2014) achieved
the performance of 86.77% in F-measure on clas-
sifying discourse relations into 16 level 2 types.
However, for argument labeling, Lin et al. (2014)
only achieved the performance of 53.85% in F-
measure using gold-standard parse trees and con-
nectives, much lower than the inter-annotation a-
greement of 90.20% (Miltsakaki et al., 2004).

In this paper, we focus on argument labeling in
the PDTB corpus. In particular, we propose a nov-
el constituent-based approach to argument label-
ing which views constituents as candidate argu-
ments. Besides, our approach unifies intra- and
inter-sentence cases by treating the immediately
preceding sentence as a special constituent. Final-
ly, a joint inference mechanism is introduced to
incorporate global information across arguments
via integer linear programming. Evaluation on the
PDTB corpus shows the effectiveness of our ap-
proach.

The rest of this paper is organized as follows.
Section 2 briefly introduces the PDTB corpus.
Related work on argument labeling is reviewed
in Section 3. In Section 4, we describe our
constituent-based approach to argument labeling.
In Section 5, we present our joint inference mech-
anism via integer linear programming (ILP). Sec-
tion 6 gives the experimental results and analysis.
Finally, we conclude in Section 7.
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2 Penn Discourse Treebank

As the first large-scale annotated corpus that fol-
lows the lexically grounded, predicate-argument
approach in D-LTAG (Lexicalized Tree Adjoin-
ing Grammar for Discourse) (Webber, 2004), the
PDTB regards a connective as the predicate of a
discourse relation which takes exactly two text s-
pans as its arguments. In particular, the text span
that the connective is syntactically attached to is
called Arg2, and the other is called Arg1.

Although discourse relations can be either ex-
plicitly or implicitly expressed in PDTB, this pa-
per focuses only on explicit discourse relations
that are explicitly signaled by discourse connec-
tives. Example (1) shows an explicit discourse re-
lation from the article wsj 2314 with connective
so underlined, Arg1 span italicized, and Arg2 s-
pan bolded.

(1) But its competitors have much broader busi-
ness interests and so are better cushioned
against price swings .

Note that a connective and its arguments can ap-
pear in any relative order, and an argument can be
arbitrarily far away from its corresponding con-
nective. Although the position of Arg2 is fixed
once the connective is located, Arg1 can occur in
the same sentence as the connective (SS), in a sen-
tence preceding that of the connective (PS), or in
a sentence following that of the connective (FS),
with proportions of 60.9%, 39.1%, and less than
0.1% respectively for explicit relations in the PDT-
B corpus (Prasad et al., 2008). Besides, out of
all PS cases where Arg1 occurs in some preced-
ing sentence, 79.9% of them are the exact imme-
diately preceding sentence. As such, in this paper,
we only consider the current sentence containing
the connective and its immediately preceding sen-
tence as the text span where Arg1 occurs, similar
to what was done in (Lin et al., 2014).

3 Related Work

For argument labeling in discourse parsing on the
PDTB corpus, the related work can be classified
into two categories: locating parts of arguments,
and labeling full argument spans.

As a representative on locating parts of argu-
ments, Wellner and Pustejovsky (2007) proposed
several machine learning approaches to identify
the head words of the two arguments for discourse

connectives. Following this work, Elwell and
Baldridge (2008) combined general and connec-
tive specific rankers to improve the performance
of labeling the head words of the two arguments.
Prasad et al. (2010) proposed a set of heuristics to
locate the position of the Arg1 sentences for inter-
sentence cases. The limitation of locating parts of
arguments, such as the positions and head word-
s, is that it is only a partial solution to argument
labeling in discourse parsing.

In comparison, labeling full argument spans can
provide a complete solution to argument labeling
in discourse parsing and has thus attracted increas-
ing attention recently, adopting either a subtree
extraction approach (Dinesh et al. (2005), Lin et
al. (2014)) or a linear tagging approach (Ghosh et
al. (2011)).

As a representative subtree extraction approach,
Dinesh et al. (2005) proposed an automatic tree
subtraction algorithm to locate argument spans for
intra-sentential subordinating connectives. How-
ever, only dealing with intra-sentential subordinat-
ing connectives is not sufficient since they con-
stitute only 40.93% of all cases. Instead, Lin et
al. (2014) proposed a two-step approach. First, an
argument position identifier was employed to lo-
cate the position of Arg1. For the PS case, it di-
rectly selects the immediately preceding sentence
as Arg1. For other cases, an argument node iden-
tifier was employed to locate the Arg1- and Arg2-
nodes. Next, a tree subtraction algorithm was used
to extract the arguments. However, as pointed out
in Dinesh et al. (2005), it is not necessarily the
case that a connective, Arg1, or Arg2 is dominated
by a single node in the parse tree (that is, it can be
dominated by a set of nodes). Figure 1 shows the
gold-standard parse tree corresponding to Exam-
ple (1). It shows that Arg1 includes three nodes:
[CC But], [NP its competitors], [V P have much
broader business interests], and Arg2 includes t-
wo nodes: [CC and], [V P are better cushioned a-
gainst price swings]. Therefore, such an argumen-
t node identifier has inherent shortcomings in la-
beling arguments. Besides, the errors propagat-
ed from the upstream argument position classifier
may adversely affect the performance of the down-
stream argument node identifier.

As a representative linear tagging approach,
Ghosh et al. (2011) cast argument labeling as a lin-
ear tagging task using conditional random fields.
Ghosh et al. (2012) further improved the perfor-

69



S

VP

VP

VP

PP

NP

NNS

swings

NN

price

IN

against

VBN

cushioned

ADVP

RBR

better

VBP

are

RB

so

CC

and

VP

NP

NNS

interests

NN

business

ADJP

JJR

broader

RB

much

VBP

have

NP

NNS

competitors

PRP

its

CC

But

Figure 1: The gold-standard parse tree corresponding to Example (1)

mance with integration of the n-best results.
While the subtree extraction approach locates

argument spans based on the nodes of a parse tree
and is thus capable of using rich syntactic informa-
tion, the linear tagging approach works on the to-
kens in a sentence and is thus capable of capturing
local sequential dependency between tokens. In
this paper, we take advantage of both subtree ex-
traction and linear tagging approaches by propos-
ing a novel constituent-based approach. Further-
more, intra- and inter-sentence cases are unified
by treating the immediately preceding sentence as
a special constituent. Finally, a joint inference
mechanism is proposed to add global information
across arguments.

4 A Constituent-Based Approach to
Argument Labeling

Our constituent-based approach works by first
casting the constituents extracted from a parse tree
as argument candidates, then determining the role
of every constituent as part of Arg1, Arg2, or
NULL, and finally, merging all the constituents
for Arg1 and Arg2 to obtain the Arg1 and Arg2
text spans respectively. Obviously, the key to
the success of our constituent-based approach is
constituent-based argument classification, which
determines the role of every constituent argument
candidate.

As stated above, the PDTB views a connective
as the predicate of a discourse relation. Similar
to semantic role labeling (SRL), for a given con-
nective, the majority of the constituents in a parse
tree may not be its arguments (Xue and Palmer,
2004). This indicates that negative instances (con-

stituents marked NULL) may overwhelm positive
instances. To address this problem, we use a
simple algorithm to prune out these constituents
which are clearly not arguments to the connective
in question.

4.1 Pruning
The pruning algorithm works recursively in pre-
processing, starting from the target connective n-
ode, i.e. the lowest node dominating the connec-
tive. First, all the siblings of the connective node
are collected as candidates, then we move on to
the parent of the connective node and collect it-
s siblings, and so on until we reach the root of
the parse tree. In addition, if the target connec-
tive node does not cover the connective exactly,
the children of the target connective node are also
collected.

For the example shown in Figure 1, we can lo-
cate the target connective node [RB so] and return
five constituents — [V P have much broader busi-
ness interests], [CC and], [V P are better cushioned
against price swings], [CC But], and [NP its com-
petitors] — as argument candidates.

It is not surprising that the pruning algorithm
works better on gold parse trees than automatic
parse trees. Using gold parse trees, our pruning al-
gorithm can recall 89.56% and 92.98% (489 out of
546 Arg1s, 808 out of 869 Arg2s in the test data)
of the Arg1 and Arg2 spans respectively and prune
out 81.96% (16284 out of 19869) of the nodes in
the parse trees. In comparison, when automatic
parse trees (based on the Charniak parser (Char-
niak, 2000)) are used, our pruning algorithm can
recall 80.59% and 89.87% of the Arg1 and Arg2
spans respectively and prune out 81.70% (16190
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Feature Description Example
CON-Str The string of the given connective (case-sensitive) so
CON-LStr The lowercase string of the given connective so

CON-Cat
The syntactic category of the given connective: sub-
ordinating, coordinating, or discourse adverbial

Subordinating

CON-iLSib Number of left siblings of the connective 2
CON-iRSib Number of right siblings of the connective 1

NT-Ctx

The context of the constituent. We use POS combi-
nation of the constituent, its parent, left sibling and
right sibling to represent the context. When there is
no parent or siblings, it is marked NULL.

VP-VP-NULL-CC

CON-NT-Path
The path from the parent node of the connective to
the node of the constituent

RB ↑ V P ↓ V P

CON-NT-Position
The position of the constituent relative to the connec-
tive: left, right, or previous

left

CON-NT-Path-iLsib
The path from the parent node of the connective to
the node of the constituent and whether the number
of left siblings of the connective is greater than one

RB ↑ V P ↓ V P :>1

Table 1: Features employed in argument classification.

out of 19816) of the nodes in the parse trees.

4.2 Argument Classification
In this paper, a multi-category classifier is em-
ployed to determine the role of an argument can-
didate (i.e., Arg1, Arg2, or NULL). Table 1 lists
the features employed in argument classification,
which reflect the properties of the connective and
the candidate constituent, and the relationship be-
tween them. The third column of Table 1 shows
the features corresponding to Figure 1, consider-
ing [RB so] as the given connective and [V P have
much broader business interests] as the constituent
in question.

Similar to Lin et al. (2014), we obtained the syn-
tactic category of the connectives from the list pro-
vided in Knott (1996). However, different from
Lin et al. (2014), only the siblings of the root path
nodes (i.e., the nodes occurring in the path of the
connective to root) are collected as the candidate
constituents in the pruning stage, and the value of
the relative position can be left or right, indicat-
ing that the constituent is located on the left- or
right-hand of the root path respectively. Besides,
we view the root of the previous sentence as a spe-
cial candidate constituent. For example, the value
of the feature CON-NT-Position is previous when
the current constituent is the root of the previous
sentence. Finally, we use the part-of-speech (POS)
combination of the constituent itself, its parent n-

ode, left sibling node and right sibling node to rep-
resent the context of the candidate constituent. In-
tuitively, this information can help determine the
role of the constituent.

For the example shown in Figure 1, we first em-
ploy the pruning algorithm to get the candidate
constituents, and then employ our argument clas-
sifier to determine the role for every candidate.
For example, if the five candidates are labeled as
Arg1, Arg2, Arg2, Arg1, and Arg1, respectively,
we merge all the Arg1 constituents to obtain the
Arg1 text span (i.e., But its competitors have much
broader business interests). Similarly, we merge
the two Arg2 constituents to obtain the Arg2 text s-
pan (i.e., and are better cushioned against price
swings).

5 Joint Inference via Integer Linear
Programming

In the above approach, decisions are always made
for each candidate independently, ignoring global
information across candidates in the final output.
For example, although an argument span can be
split into multiple discontinuous segments (e.g.,
the Arg2 span of Example (1) contains two dis-
continuous segments, and, are better cushioned
against price swings), the number of discontinu-
ous segments is always limited. Statistics on the
PDTB corpus shows that the number of discontin-
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uous segments for both Arg1 and Arg2 is generally
(>= 99%) at most 2. For Example (1), from left
to right, we can obtain the list of constituent can-
didates: [CC But], [NP its competitors], [V P have
much broader business interests], [CC and], [V P

are better cushioned against price swings]. If our
argument classifier wrongly determines the roles
as Arg1, Arg2, Arg1, Arg2, and Arg1 respectively,
we can find that the achieved Arg1 span contains
three discontinuous segments. Such errors may be
corrected from a global perspective.

In this paper, a joint inference mechanism is in-
troduced to incorporate various kinds of knowl-
edge to resolve the inconsistencies in argumen-
t classification to ensure global legitimate predic-
tions. In particular, the joint inference mechanism
is formalized as a constrained optimization prob-
lem, represented as an integer linear programming
(ILP) task. It takes as input the argument classi-
fiers’ confidence scores for each constituent can-
didate along with a list of constraints, and outputs
the optimal solution that maximizes the objective
function incorporating the confidence scores, sub-
ject to the constraints that encode various kinds of
knowledge.

In this section, we meet the requirement of ILP
with focus on the definition of variables, the objec-
tive function, and the problem-specific constraints,
along with ILP-based joint inference integrating
multiple systems.

5.1 Definition of Variables

Given an input sentence, the task of argumen-
t labeling is to determine what labels should be
assigned to which constituents corresponding to
which connective. It is therefore natural that en-
coding the output space of argument labeling re-
quires various kinds of information about the con-
nectives, the argument candidates corresponding
to a connective, and their argument labels.

Given an input sentence s, we define following
variables:

(1) P : the set of connectives in a sentence.

(2) p ∈ P : a connective in P .

(3) C(p): the set of argument candidates corre-
sponding to connective p. (i.e., the parse tree
nodes obtained in the pruning stage).

(4) c ∈ C(p): an argument candidate.

(5) L: the set of argument labels {Arg1, Arg2,
NULL }.

(6) l ∈ L: an argument label in L.

In addition, we define the integer variables as
follows:

Z l
c,p ∈ {0, 1} (1)

If Z l
c,p = 1, the argument candidate c, which

corresponds to connective p, should be assigned
the label l. Otherwise, the argument candidate c is
not assigned this label.

5.2 The Objective Function
The objective of joint inference is to find the best
arguments for all the connectives in one sentence.
For every connective, the pruning algorithm is first
employed to determine the set of corresponding
argument candidates. Then, the argument classifi-
er is used to assign a label to every candidate. For
an individual labeling Z l

c,p, we measure the quality
based on the confidence scores, fl,c,p, returned by
the argument classifier. Thus, the objective func-
tion can be defined as

max
∑
l,c,p

fl,c,pZ
l
c,p (2)

5.3 Constraints
As the key to the success of ILP-based joint infer-
ence, the following constraints are employed:

Constraint 1: The arguments corresponding
to a connective cannot overlap with the connec-
tive. Let c1, c2..., ck be the argument candidates
that correspond to the same connective and over-
lap with the connective in a sentence.1 Then this
constraint ensures that none of them will be as-
signed as Arg1 or Arg2.

k∑
i=1

ZNULL
ci,p = k (3)

Constraint 2: There are no overlapping or em-
bedding arguments. Let c1, c2..., ck be the argu-
ment candidates that correspond to the same con-
nective and cover the same word in a sentence.2

1Only when the target connective node does not cover the
connective exactly and our pruning algorithm collects all the
children of the target connective node as part of constituent
candidates, such overlap can be introduced.

2This constraint only works in system combination of
Section 5.4, where additional phantom candidates may intro-
duce such overlap.
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Then this constraint ensures that at most one of
the constituents can be assigned as Arg1 or Arg2.
That is, at least k − 1 constituents should be as-
signed the special label NULL.

k∑
i=1

ZNULL
ci,p ≥ k − 1 (4)

Constraint 3: For a connective, there is at least
one constituent candidate assigned as Arg2.∑

c

ZArg2
c,p ≥ 1 (5)

Constraint 4: Since we view the previous com-
plete sentence as a special Arg1 constituent candi-
date, denoted as m, there is at least one candidate
assigned as Arg1 for every connective.∑

c

ZArg1
c,p + ZArg1

m,p ≥ 1 (6)

Constraint 5: The number of discontinuous
constituents assigned as Arg1 or Arg2 should be at
most 2. That is, if argument candidates c1, c2..., ck

corresponding to the same connective are discon-
tinuous, this constraint ensures that at most two
of the constituents can be assigned the same label
Arg1 or Arg2.

k∑
i=1

ZArg1
ci,p ≤ 2, and

k∑
i=1

ZArg2
ci,p ≤ 2 (7)

5.4 System Combination
Previous work shows that the performance of ar-
gument labeling heavily depends on the quality of
the syntactic parser. It is natural that combining
different argument labeling systems on differen-
t parse trees can potentially improve the overall
performance of argument labeling.

To explore this potential, we build two argu-
ment labeling systems — one using the Berke-
ley parser (Petrov et al., 2006) and the other the
Charniak parser (Charniak, 2000). Previous s-
tudies show that these two syntactic parsers tend
to produce different parse trees for the same sen-
tence (Zhang et al., 2009). For example, our pre-
liminary experiment shows that applying the prun-
ing algorithm on the output of the Charniak parser
produces a list of candidates with recall of 80.59%
and 89.87% for Arg1 and Arg2 respectively, while
achieving recall of 78.6% and 91.1% for Arg1 and
Arg2 respectively on the output of the Berkeley
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Figure 2: An example on unifying different candi-
dates.

parser. It also shows that combining these two can-
didate lists significantly improves recall to 85.7%
and 93.0% for Arg1 and Arg2, respectively.

In subsection 5.2, we only consider the con-
fidence scores returned by an argument classifier.
Here, we proceed to combine the probabilities pro-
duced by two argument classifiers. There are two
remaining problems to resolve:

• How do we unify the two candidate lists?
In principle, constituents spanning the same
sequence of words should be viewed as the
same candidate. That is, for different can-
didates, we can unify them by adding phan-
tom candidates. This is similar to the ap-
proach proposed by Punyakanok et al. (2008)
for the semantic role labeling task. For exam-
ple, Figure 2 shows the candidate lists gen-
erated by our pruning algorithm based on t-
wo different parse trees given the segment
“its competitors have much broader business
interests”. Dashed lines are used for phan-
tom candidates and solid lines for true can-
didates. Here, system A produces one can-
didate a1, with two phantom candidates a2
and a3 added. Analogously, phantom can-
didate b3 is added to the candidate list out-
put by System B. In this way, we can get the
unified candidate list: “its competitors have
much broader business interests”, “its com-
petitors”, “have much broader business inter-
ests”.

• How do we compute the confidence score for
every decision? For every candidate in the
unified list, we first determine whether it is
a true candidate based on the specific parse
tree. Then, for a true candidate, we extrac-
t the features from the corresponding parse
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tree. On this basis, we can determine the
confidence score using our argument classi-
fier. For a phantom candidate, we set the
same prior distribution as the confidence s-
core. In particular, the probability of the
”NULL” class is set to 0.55, following (Pun-
yakanok et al., 2008), and the probabilities of
Arg1 and Arg2 are set to their occurrence fre-
quencies in the training data. For the example
shown in Figure 2, since System A return-
s “its competitors have much broader busi-
ness interests” as a true candidate, we can ob-
tain its confidence score using our argumen-
t classifier. For the two phantom candidates
— “its competitors” and “have much broader
business interests” — we use the prior dis-
tributions directly. This applies to the candi-
dates for System B. Finally, we simply aver-
age the estimated probabilities to determine
the final probability estimate for every candi-
date in the unified list.

6 Experiments

In this section, we systematically evaluate our
constituent-based approach with a joint inference
mechanism to argument labeling on the PDTB
corpus.

6.1 Experimental settings

All our classifiers are trained using the OpenNLP
maximum entropy package3 with the default pa-
rameters (i.e. without smoothing and with 100
iterations). As the PDTB corpus is aligned with
the PTB corpus, the gold parse trees and sentence
boundaries are obtained from PTB. Under the au-
tomatic setting, the NIST sentence segmenter4 and
the Charniak parser5 are used to segment and parse
the sentences, respectively. lp solve6 is used for
our joint inference.

This paper focuses on automatically labeling
the full argument spans of discourse connec-
tives. For a fair comparison with start-of-the-
art systems, we use the NUS PDTB-style end-
to-end discourse parser7 to perform other sub-
tasks of discourse parsing except argument label-
ing, which includes connective identification, non-

3http://maxent.sourceforge.net/
4http://duc.nist.gov/duc2004/software/duc2003

.breakSent.tar.gz
5ftp://ftp.cs.brown.edu/pub/nlparser/
6http://lpsolve.sourceforge.net/
7http://wing.comp.nus.edu.sg/ linzihen/parser/

explicit discourse relation identification and clas-
sification.

Finally, we evaluate our system on two aspects:
(1) the dependence on the parse trees (GS/Auto,
using gold standard or automatic parse trees and
sentence boundaries); and (2) the impact of errors
propagated from previous components (noEP/EP,
using gold annotation or automatic results from
previous components). In combination, we have
four different settings: GS+noEP, GS+EP, Au-
to+noEP and Auto+EP. Same as Lin et al. (2014),
we report exact match results under these four set-
tings. Here, exact match means two spans match
identically, except beginning or ending punctua-
tion symbols.

6.2 Experimental results

We first evaluate the effectiveness of our
constituent-based approach by comparing our sys-
tem with the state-of-the-art systems, ignoring
the joint inference mechanism. Then, the con-
tribution of the joint inference mechanism to our
constituent-based approach, and finally the contri-
bution of our argument labeling system to the end-
to-end discourse parser are presented.
Effectiveness of our constituent-based ap-
proach

By comparing with two state-of-the-art argu-
ment labeling approaches, we determine the effec-
tiveness of our constituent-based approach.
Comparison with the linear tagging approach

As a representative linear tagging approach,
Ghosh et al. (2011; 2012; 2012) only reported the
exact match results for Arg1 and Arg2 using the
evaluation script for chunking evaluation8 under
GS+noEP setting with Section 02–22 of the PDTB
corpus for training, Section 23–24 for testing, and
Section 00–01 for development. It is also worth
mentioning that an argument span can contain
multiple discontinuous segments (i.e., chunks), so
chunking evaluation only shows the exact match
of every argument segment but not the exact match
of every argument span. In order to fairly compare
our system with theirs, we evaluate our system us-
ing both the exact metric and the chunking eval-
uation. Table 2 compares the results of our sys-
tem without joint inference and the results report-
ed by Ghosh et al. (2012) on the same data split.
We can find that our system performs much bet-

8http://www.cnts.ua.ac.be/conll2000/chunking/
conlleval.txt
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ter than Ghosh’s on both Arg1 and Arg2, even on
much stricter metrics.

Systems Arg1 Arg2
ours using exact match 65.68 84.50
ours using chunking evaluation 67.48 88.08
reported by Ghosh et al. (2012) 59.39 79.48

Table 2: Performance (F1) comparison of our ar-
gument labeling approach with the linear tagging
approach as adopted in Ghosh et al. (2012)

Comparison with the subtree extracting ap-
proach

For a fair comparison, we also conduct our
experiments on the same data split of Lin et
al. (2014) with Section 02 to 21 for training, Sec-
tion 22 for development, and Section 23 for test-
ing. Table 3 compares our labeling system without
joint inference with Lin et al. (2014), a representa-
tive subtree extracting approach. From the results,
we find that the performance of our argument la-
beling system significantly improves under all set-
tings. This is because Lin et al. (2014) considered
all the internal nodes of the parse trees, whereas
the pruning algorithm in our approach can effec-
tively filter out those unlikely constituents when
determining Arg1 and Arg2.

Setting Arg1 Arg2 Arg1&2

ours
GS+noEP 62.84 84.07 55.69
GS+EP 61.46 81.30 54.31
Auto+EP 56.04 76.53 48.89

Lin’s
GS+noEP 59.15 82.23 53.85
GS+EP 57.64 79.80 52.29
Auto+EP 47.68 70.27 40.37

Table 3: Performance (F1) comparison of our ar-
gument labeling approach with the subtree extrac-
tion approach as adopted in Lin et al. (2014)

As justified above, by integrating the advan-
tages of both linear tagging and subtree extraction,
our constituent-based approach can capture both
rich syntactic information from parse trees and
local sequential dependency between tokens. The
results show that our constituent-based approach
indeed significantly improves the performance
of argument labeling, compared to both linear
tagging and subtree extracting approaches.

Contribution of Joint Inference
Same as Lin et al. (2014), we conduct our ex-

periments using Section 02 to 21 for training, Sec-
tion 22 for development, and Section 23 for test-

ing. Table 4 lists the performance of our argumen-
t labeling system without and with ILP inference
under four different settings, while Table 5 reports
the contribution of system combination. It shows
the following:

• On the performance comparison of Arg1 and
Arg2, the performance on Arg2 is much bet-
ter than that on Arg1 with the performance
gap up to 8% under different settings. This is
due to the fact that the relationship between
Arg2 and the connective is much closer. This
result is also consistent with previous studies
on argument labeling.

• On the impact of error propagation from con-
nective identification, the errors propagated
from connective identification reduce the per-
formance of argument labeling by less than
2% in both Arg1 and Arg2 F-measure under
different settings.

• On the impact of parse trees, using automat-
ic parse trees reduces the performance of ar-
gument labeling by about 5.5% in both Arg1
and Arg2 F-measure under different settings.
In comparison with the impact of error prop-
agation, parse trees have much more impact
on argument labeling.

• On the impact of joint inference, it improves
the performance of argument labeling, espe-
cially on automatic parse trees by about 2%.9

• On the impact of system combination, the
performance is improved by about 1.5%.

Setting Arg1 Arg2 Arg1&2

without
Joint

Inference

GS+noEP 62.84 84.07 55.69
GS+EP 61.46 81.30 54.31
Auto+noEP 57.75 79.85 50.27
Auto+EP 56.04 76.53 48.89

with
Joint

Inference

GS+noEP 65.76 83.86 58.18
GS+EP 63.96 81.19 56.37
Auto+noEP 60.24 79.74 52.55
Auto+EP 58.10 76.53 50.73

Table 4: Performance (F1) of our argument label-
ing approach.

Contribution to the end-to-end discourse pars-
er

9Unless otherwise specified, all the improvements in this
paper are significant with p < 0.001.
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Systems Setting Arg1 Arg2 Arg1&2

Charniak noEP 60.24 79.74 52.55
EP 58.10 76.53 50.73

Berkeley noEP 60.78 80.07 52.98
EP 58.80 77.21 51.43

Combined noEP 61.97 80.61 54.50
EP 59.72 77.55 52.52

Table 5: Contribution of System Combination in
Joint Inference.

Lastly, we focus on the contribution of our ar-
gument labeling approach to the overall perfor-
mance of the end-to-end discourse parser. This
is done by replacing the argument labeling mod-
el of the NUS PDTB-style end-to-end discourse
parser with our argument labeling model. Table 6
shows the results using gold parse trees and auto-
matic parse trees, respectively.10 From the results,
we find that using gold parse trees, our argument
labeling approach significantly improves the per-
formance of the end-to-end system by about 1.8%
in F-measure, while using automatic parse trees,
the improvement significantly enlarges to 6.7% in
F-measure.

Setting New d-parser Lin et al.’s (2014)
GS 34.80 33.00
Auto 27.39 20.64

Table 6: Performance (F1) of the end-to-end dis-
course parser.

7 Conclusion

In this paper, we focus on the problem of auto-
matically labeling the full argument spans of dis-
course connectives. In particular, we propose a
constituent-based approach to integrate the advan-
tages of both subtree extraction and linear tagging
approaches. Moreover, our proposed approach in-
tegrates inter- and intra-sentence argument label-
ing by viewing the immediately preceding sen-
tence as a special constituent. Finally, a join-
t inference mechanism is introduced to incorpo-
rate global information across arguments into our

10Further analysis found that the error propagated from
sentence segmentation can reduce the performance of the
end-to-end discourse parser. Retraining the NIST sentence
segmenter using Section 02 to 21 of the PDTB corpus, the
original NUS PDTB-style end-to-end discourse parser can
achieve the performance of 25.25% in F-measure, while the
new version (i.e. replace the argument labeling model with
our argument labeling model) can achieve the performance
of 30.06% in F-measure.

constituent-based approach via integer linear pro-
gramming.
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