
Spectral Learning Techniques for Weighted Automata,
Transducers, and Grammars

Borja Balle♦ Ariadna Quattoni♥ Xavier Carreras♥

p♦q McGill University
p♥q Xerox Research Centre Europe

TUTORIAL @ EMNLP 2014

Latest Version Available from:

http://www.lsi.upc.edu/~bballe/slides/tutorial-emnlp14.pdf

http://www.lsi.upc.edu/~bballe/slides/tutorial-emnlp14.pdf

Outline

1. Weighted Automata and Hankel Matrices

2. Spectral Learning of Probabilistic Automata

3. Spectral Methods for Transducers and Grammars
Sequence Tagging
Finite-State Transductions
Tree Automata

4. Hankel Matrices with Missing Entries

5. Conclusion

6. References

Compositional Functions and Bilinear Operators

§ Compositional functions defined in terms of recurrence relations

§ Consider a sequence abaccb

fpabaccbq “ αfpabq ¨ βfpaccbq

“ αfpabq ¨Aa ¨ βfpccbq

“ αfpabaq ¨Ac ¨ βfpcbq

where
§ n is the dimension of the model
§ αf maps prefixes to Rn
§ βf maps suffixes to Rn
§ Aa is a bilinear operator in Rnˆn

Problem

How to estimate αf, βf and Aa,Ab, . . . from “samples” of f?

Weighted Finite Automata (WFA)

An algebraic model

for compositional functions on strings

Weighted Finite Automata (WFA)
Example with 2 states and alphabet Σ “ ta,bu

q0 q1

a 0.4
b 0.1

a 0.2
b 0.3

a 0.1
b 0.1

a 0.1
b 0.1

0.6

Operator Representation

α0 “

„

1.0
0.0

α8 “

„

0.0
0.6

Aa “

„

0.4 0.2
0.1 0.1

Ab “

„

0.1 0.3
0.1 0.1

fpabq “ αJ0 AaAbα8

Weighted Finite Automata (WFA)
Notation:

§ Σ: alphabet – finite set

§ n: number of states – positive integer

§ α0: initial weights – vector in Rn (features of empty prefix)

§ α8: final weights – vector in Rn (features of empty suffix)

§ Aσ: transition weights – matrix in Rnˆn (@σ P Σ)

Definition: WFA with n states over Σ

A “ xα0,α8, tAσuy

Compositional Function: Every WFA A defines a function fA : Σ‹ Ñ R

fApxq “ fApx1 . . . xT q “ αJ0 Ax1 ¨ ¨ ¨AxTα8 “ αJ0 Axα8

Example – Hidden Markov Model

§ Assigns probabilities to strings fpxq “ Prxs
§ Emission and transition are conditionally independent given state

αJ0 “ r0.3 0.3 0.4s

αJ8 “ r1 1 1s

Aa “ Oa ¨ T

T “

»

–

0 0.7 0.3
0 0.75 0.25
0 0.4 0.6

fi

fl

Oa “

»

–

0.3 0 0
0 0.9 0
0 0 0.5

fi

fl

0.3

0.4

0.75

0.25

0.7

0.6 a, 0.5
b, 0.5

a, 0.3
b, 0.7

a, 0.9
b, 0.1

Example – Probabilistic Transducer

§ Σ “ Xˆ Y, where X input alphabet and Y output alphabet

§ Assigns conditional probabilities fpx,yq “ Pry|xs to pairs px,yq P Σ‹

X “ tA,Bu

Y “ ta,bu

αJ0 “ r0.3 0 0.7s

αJ8 “ r1 1 1s

AbB “

»

–

0.2 0.4 0
0 0 1
0 0.75 0

fi

fl

A/a, 0.1 ∣ A/b, 0.9

B/a, 0.25 ∣ B/b, 0.75 ∣ A/b, 0.15

A/a, 0.75

A/b, 0.25 ∣ B/b, 1

B/b, 0.4 B/a, 0.4

A/b, 0.85
B/b, 0.2

0.3 0.7

Other Examples of WFA

Automata-theoretic:

§ Probabilistic Finite Automata (PFA)

§ Deterministic Finite Automata (DFA)

Dynamical Systems:

§ Observable Operator Models (OOM)

§ Predictive State Representations (PSR)

Disclaimer: All weights in R with usual addition and multiplication (no
semi-rings!)

Applications of WFA

WFA Can Model:

§ Probability distributions fApxq “ Prxs
§ Binary classifiers gpxq “ signpfApxq ` θq

§ Real predictors fApxq

§ Sequence predictors gpxq “ argmaxy fApx,yq (with Σ “ Xˆ Y)

Used In Several Applications:

§ Speech recognition [Mohri, Pereira, and Riley ’08]

§ Image processing [Albert and Kari ’09]

§ OCR systems [Knight and May ’09]

§ System testing [Baier, Grösser, and Ciesinski ’09]

§ etc.

Useful Intuitions About fA

fApxq “ fApx1 . . . xT q “ αJ0 Ax1 ¨ ¨ ¨AxTα8 “ αJ0 Axα8

§ Sum-Product: fApxq is a sum–product computation

ÿ

i0,i1,...,iTPrns

α0pi0q

˜

T
ź

t“1

Axtpit´1, itq

¸

α8piT q

§ Forward-Backward: fApxq is dot product between forward and
backward vectors

fAppsq “
`

αJ0 Ap
˘

¨ pAsα8q “ αp ¨ βs

§ Compositional Features: fApxq is a linear model

fApxq “
`

αJ0 Ax
˘

¨ α8 “ φpxq ¨ α8

where φ : Σ‹ Ñ Rn compositional features (i.e. φpxσq “ φpxqAσ)

Forward–Backward Equations for Aσ
Any WFA A defines forward and backward maps

αA,βA : Σ‹ Ñ Rn

such that for any splitting x “ p ¨ s one has

αAppq “ αJ0 Ap1 ¨ ¨ ¨ApT
βApsq “ As1 ¨ ¨ ¨AsT 1α8

fApxq “ αAppq ¨ βApsq

Example

§ In HMM and PFA one has for every i P rns

rαAppqsi “ Prp , h`1 “ is

rβApsqsi “ Prs | h “ is

Forward–Backward Equations for Aσ
Any WFA A defines forward and backward maps

αA,βA : Σ‹ Ñ Rn

such that for any splitting x “ p ¨ s one has

αAppq “ αJ0 Ap1 ¨ ¨ ¨ApT
βApsq “ As1 ¨ ¨ ¨AsT 1α8

fApxq “ αAppq ¨ βApsq

Key Observation

If fAppσsq, αAppq, and βApsq were known for many p, s, then Aσ could
be recovered from equations of the form

fAppσsq “ αAppq ¨Aσ ¨ βApsq

Hankel matrices help organize these equations!

The Hankel Matrix

Two Equivalent Representations

§ Functional: f : Σ‹ Ñ R
§ Matricial: Hf P RΣ

‹ˆΣ‹ , the Hankel matrix of f

Definition: p prefix, s suffix ñ Hfpp, sq “ fpp ¨ sq

Properties

§ |x| ` 1 entries for fpxq

§ Depends on ordering of Σ‹

§ Captures structure

Hf “

»

—

—

—

—

—

–

ε a b aa ¨¨¨

ε 0 1 0 2 ¨ ¨ ¨

a 1 2 1 3
b 0 1 0 2
aa 2 3 2 4
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

Hfpε,aaq “ Hfpa,aq “ Hfpaa, εq “ 2

A Fundamental Theorem about WFA

Relates the rank of Hf

and the number of states of WFA computing f

Theorem [Carlyle and Paz ’71, Fliess ’74]

Let f : Σ‹ Ñ R be any function

1. If f “ fA for some WFA A with n states ñ rankpHfq ď n

2. If rankpHfq “ n ñ exists WFA A with n states s.t. f “ fA

Why Fundamental?

Because proof of (2) gives an algorithm for “recovering” A from the Hankel
matrix of fA
Example: Can “recover” an HMM from the probabilities it assigns to se-
quences of observations

Structure of Low-rank Hankel Matrices

Hf P RΣ
‹ˆΣ‹ P P RΣ

‹ˆn S P RnˆΣ
‹

»

—

—

—

—

—

—

—

–

s

...

...

...
p ¨ ¨ ¨ ¨ ¨ ¨ ‚ ¨ ¨ ¨ ¨ ¨ ¨

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

p ‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

fl

»

–

s

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

fpp1 ¨ ¨ ¨pT ¨ s1 ¨ ¨ ¨ sT 1q “ αJ0 Ap1 ¨ ¨ ¨ApT
loooooooomoooooooon

αAppq

As1 ¨ ¨ ¨AsT 1α8
loooooooomoooooooon

βApsq

αAppq “ Ppp, ¨q βApsq “ Sp¨, sq

Hankel Factorizations and Operators

Hσ P RΣ
‹ˆΣ‹ P P RΣ‹ˆn Aσ P Rnˆn S P RnˆΣ‹

»

—

—

—

—

–

s

¨

¨

¨

p ¨ ¨ ‚ ¨ ¨

¨

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

p ‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

fl

»

–

‚ ‚ ‚

‚ ‚ ‚

‚ ‚ ‚

fi

fl

»

–

s

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

fpp1 ¨ ¨ ¨pT ¨ σ ¨ s1 ¨ ¨ ¨ sT 1q “ αJ0 Ap1
¨ ¨ ¨ApT

loooooooomoooooooon

αAppq

¨ Aσ ¨ As1 ¨ ¨ ¨AsT 1α8
loooooooomoooooooon

βApsq

Hσ “ P Aσ S =ñ Aσ “ P` Hσ S`

Note: Works with finite sub-blocks as well (assuming rankpPq “ rankpSq “ n)

General Learning Algorithm for WFA

Data Hankel
matrix WFALow-rank matrix

estimation
Factorization and

linear algebra

Key Idea: The Hankel Trick

1. Learn a low-rank Hankel matrix that implicitly induces
“latent” states

2. Recover the states from a decomposition of the
Hankel matrix

Limitations of WFA
Invariance Under Change of Basis
For any invertible matrix Q the following WFA are equivalent:

§ A “ xα0,α8, tAσuy

§ B “ xQJα0,Q´1α8, tQ´1AσQuy

fApxq “ αJ0 Ax1 ¨ ¨ ¨AxTα8

“ pαJ0 QqpQ
´1Ax1Qq ¨ ¨ ¨ pQ

´1AxTQqpQ
´1α8q “ fBpxq

Example

Aa “

„

0.5 0.1
0.2 0.3

Q “

„

0 1
´1 0

Q´1AaQ “

„

0.3 ´0.2
´0.1 0.5

Consequences

§ There is no unique parametrization for WFA

§ Given A it is undecidable whether @x fApxq ě 0

§ Cannot expect to recover a probabilistic parametrization

Outline

1. Weighted Automata and Hankel Matrices

2. Spectral Learning of Probabilistic Automata

3. Spectral Methods for Transducers and Grammars
Sequence Tagging
Finite-State Transductions
Tree Automata

4. Hankel Matrices with Missing Entries

5. Conclusion

6. References

Spectral Learning of Probabilistic Automata

Data Hankel
matrix WFALow-rank matrix

estimation
Factorization and

linear algebra

Basic Setup:

§ Data are strings sampled from probability distribution on Σ‹

§ Hankel matrix is estimated by empiricial probabilities

§ Factorization and low-rank approximation is computed using SVD

The Empirical Hankel Matrix
Suppose S “ px1, . . . , xNq is a sample of N i.i.d. strings
Empirical distribution:

f̂Spxq “
1

N

N
ÿ

i“1

Irxi “ xs

Empirical Hankel matrix:

ĤSpp, sq “ f̂Sppsq

Example:

S “

$

’

’

&

’

’

%

aa, b, bab, a,
b, a, ab, aa,
ba, b, aa, a,
aa, bab, b, aa

,

/

/

.

/

/

-

−Ñ Ĥ “

»

—

—

–

a b

ε .19 .25
a .31 .06
b .06 .00
ba .00 .13

fi

ffi

ffi

fl

(Hankel with rows P “ tε,a,b,bau and columns S “ ta,bu)

Finite Sub-blocks of Hankel Matrices
Parameters:

§ Set of rows (prefixes) P Ă Σ‹

§ Set of columns (suffixes) S Ă Σ‹

Σ λ a b aa ab ...

λ 1 0.3 0.7 0.05 0.25 . . .
a 0.3 0.05 0.25 0.02 0.03 . . .
b 0.7 0.6 0.1 0.03 0.2 . . .

aa 0.05 0.02 0.03 0.017 0.003 . . .
ab 0.25 0.23 0.02 0.11 0.12 . . .
...

...
...

...
...

...
. . .

Σ λ a b aa ab ...

λ 1 0.3 0.7 0.05 0.25 . . .
a 0.3 0.05 0.25 0.02 0.03 . . .
b 0.7 0.6 0.1 0.03 0.2 . . .

aa 0.05 0.02 0.03 0.017 0.003 . . .
ab 0.25 0.23 0.02 0.11 0.12 . . .
...

...
...

...
...

...
. . .

H

Ha

Σ λ a b aa ab ...

λ 1 0.3 0.7 0.05 0.25 . . .
a 0.3 0.05 0.25 0.02 0.03 . . .
b 0.7 0.6 0.1 0.03 0.2 . . .

aa 0.05 0.02 0.03 0.017 0.003 . . .
ab 0.25 0.23 0.02 0.11 0.12 . . .
...

...
...

...
...

...
. . .

H

Ha

§ H for finding P and S

§ Hσ for finding Aσ
§ hλ,S for finding α0

§ hP,λ for finding α8

Low-rank Approximation and Factorization

Parameters:

§ Desired number of states n

§ Block H P RPˆS of the empirical Hankel matrix

Low-rank Approximation: compute truncated SVD of rank n

H
loomoon

PˆS

« Un
loomoon

Pˆn

Λn
loomoon

nˆn

VJn
loomoon

nˆS

Factorization: H « PS already given by SVD

P “ UnΛn ñ P` “ Λ´1n UJn
`

“ pHVnq
`
˘

S “ VJn ñ S` “ Vn

Computing the WFA

Parameters:

§ Factorization H « pUΛqVJ

§ Hankel blocks Hσ, hλ,S, hP,λ

Aσ “ Λ´1UJHσV
`

“ pHVq`HσV
˘

α0 “ VJhλ,S

α8 “ Λ´1UJhP,λ

`

“ pHVq`hP,λ

˘

Computational and Statistical Complexity

Running Time:

§ Empirical Hankel matrix: Op|PS| ¨Nq

§ SVD and linear algebra: Op|P| ¨ |S| ¨ nq

Statistical Consistency:

§ By law of large numbers, ĤS Ñ ErHs when NÑ8

§ If ErHs is Hankel of some WFA A, then ÂÑ A

§ Works for data coming from PFA and HMM

PAC Analysis: (assuming data from A with n states)

§ With high probability, }ĤS ´H} ď OpN´1{2q

§ When N ě Opn|Σ|2T4{ε2snpHq
4q, then

ÿ

|x|ďT

|fApxq ´ fÂpxq| ď ε

Proofs can be found in [Hsu, Kakade, and Zhang ’09, Bailly ’11, Balle ’13]

Practical Considerations

Data Hankel
matrix WFALow-rank matrix

estimation
Factorization and

linear algebra

Basic Setup:

§ Data are strings sampled from probability distribution on Σ‹

§ Hankel matrix is estimated by empiricial probabilities

§ Factorization and low-rank approximation is computed using SVD

Advanced Implementations:

§ Choice of parameters P and S

§ Scalable estimation and factorization of Hankel matrices

§ Smoothing and variance normalization

§ Use of prefix and substring statistics

Choosing the Basis

Definition: The pair pP, Sq defining the sub-block is called a basis

Intuitions:

§ Basis should be choosen such that ErHs has full rank

§ P must contain strings reaching each possible state of the WFA

§ S must contain string producing different outcomes for each pair of
states in the WFA

Popular Approaches:

§ Set P “ S “ Σďk for some k ě 1 [Hsu, Kakade, and Zhang ’09]

§ Choose P and S to contain the K most frequent prefixes and suffixes
in the sample [Balle, Quattoni, and Carreras ’12]

§ Take all prefixes and suffixes appearing in the sample [Bailly, Denis, and

Ralaivola ’09]

Scalable Implementations

Problem: When |Σ| is large, even the simplest basis become huge

Hankel Matrix Representation:

§ Use hash functions to map P (S) to row (column) indices

§ Use sparse matrix data structures because statistics are usually sparse

§ Never store the full Hankel matrix in memory

Efficient SVD Computation:

§ SVD for sparse matrices [Berry ’92]

§ Approximate randomized SVD [Halko, Matrinsson, and Tropp ’11]

§ On-line SVD with rank 1 updates [Brand ’06]

Refining the Statistics in the Hankel Matrix

Smoothing the Estimates

§ Empirical probabilities f̂Spxq tend to be sparse

§ Like in n-gram models, smoothing can help when Σ is large

§ Should take into account that strings in PS have different lengths

§ Open Problem: How to smooth empirical Hankels properly

Row and Column Weighting

§ More frequent prefixes (suffixes) have better estimated rows
(columns)

§ Can scale rows and columns to reflect that

§ Will lead to more reliable SVD decompositions

§ See [Cohen, Stratos, Collins, Foster, and Ungar ’13] for details

Substring Statistics
Problem: If the sample contains strings with wide range of lengths, small
basis will ignore most of the examples

String Statistics (occurence probability):

S “

$

’

’

&

’

’

%

aa, b, bab, a,
bbab, abb, babba, abbb,
ab, a, aabba, baa,
abbab, baba, bb, a

,

/

/

.

/

/

-

−Ñ Ĥ “

»

—

—

–

a b

ε .19 .06
a .06 .06
b .00 .06
ba .06 .06

fi

ffi

ffi

fl

Substring Statistics (expected number of occurences as substring):

Empirical expectation “
1

N

N
ÿ

i“1

rnumber of occurences of x in xis

S “

$

’

’

&

’

’

%

aa, b, bab, a,
bbab, abb, babba, abbb,
ab, a, aabba, baa,
abbab, baba, bb, a

,

/

/

.

/

/

-

−Ñ Ĥ “

»

—

—

–

a b

ε 1.31 1.56
a .19 .62
b .56 .50
ba .06 .31

fi

ffi

ffi

fl

Substring Statistics

Theorem [Balle, Carreras, Luque, and Quattoni ’14]

If a probability distribution f is computed by a WFA with n states, then
the corresponding substring statistics are also computed by a WFA with n
states

Learning from Substring Statistics

§ Can work with smaller Hankel matrices

§ But estimating the matrix takes longer

Experiment: PoS-tag Sequence Models

 60

 62

 64

 66

 68

 70

 72

 74

 0 10 20 30 40 50

W
o

rd
 E

rr
o

r
R

a
te

 (
%

)

Number of States

Spectral, Σ basis
Spectral, basis k=25
Spectral, basis k=50

Spectral, basis k=100
Spectral, basis k=300
Spectral, basis k=500

Unigram
Bigram

§ PTB sequences of simplified PoS tags [Petrov, Das, and McDonald 2012]

§ Configuration: expectations on frequent substrings

§ Metric: error rate on predicting next symbol in test sequences

Experiment: PoS-tag Sequence Models

 58

 60

 62

 64

 66

 68

 70

 0 10 20 30 40 50

W
o

rd
 E

rr
o

r
R

a
te

 (
%

)

Number of States

Spectral, Σ basis
Spectral, basis k=500

EM
Unigram

Bigram

§ Comparison with a bigram baseline and EM

§ Metric: error rate on predicting next symbol in test sequences

§ At training, the Spectral Method is ą 100 faster than EM

Outline

1. Weighted Automata and Hankel Matrices

2. Spectral Learning of Probabilistic Automata

3. Spectral Methods for Transducers and Grammars
Sequence Tagging
Finite-State Transductions
Tree Automata

4. Hankel Matrices with Missing Entries

5. Conclusion

6. References

Sequence Tagging and Transduction

§ Many applications involve pairs of input-output sequences:
§ Sequence tagging (one output tag per input token)

e.g.: part of speech tagging

output: NNP NNP VBZ NNP .
input: Ms. Haag plays Elianti .

§ Transductions (sequence lenghts might differ)

e.g.: spelling correction

output: a p p l e
input: a p l e

§ Finite-state automata are classic methods to model these relations.
Spectral methods apply naturally to this setting.

Sequence Tagging

§ Notation:
§ Input alphabet X
§ Output alphabet Y
§ Joint alphabet Σ “ Xˆ Y

§ Goal: map input sequences to output sequences of the same length

§ Approach: learn a function

f : pXˆ Yq‹ Ñ R

Then, given an input x P XT return

argmax
yPYT

fpx,yq

(note: this maximization is not tractable in general)

Weighted Finite Tagger

§ Notation:
§ Xˆ Y: joint alphabet – finite set
§ n: number of states – positive integer
§ α0: initial weights – vector in Rn (features of empty prefix)
§ α8: final weights – vector in Rn (features of empty suffix)
§ Aba: transition weights – matrix in Rnˆn (@a P X,b P Y)

§ Definition: WFTagger with n states over Xˆ Y

A “ xα0,α8, tAbauy

§ Compositional Function: Every WFTagger defines a function
fA : pXˆ Yq‹ Ñ R

fApx1 . . . xT ,y1 . . .yT q “ αJ0 A
y1
x1
¨ ¨ ¨AyTxT α8 “ αJ0 A

y
xα8

The Spectral Method for WFTaggers

Data Hankel
matrix WFALow-rank matrix

estimation
Factorization and

linear algebra

§ Assume fpx,yq “ Ppx,yq
§ Same mechanics as for WFA, with Σ “ Xˆ Y
§ In a nutshell:

1. Choose set of prefixes and suffixes to define Hankel
Ñ in this case they are bistrings

2. Estimate Hankel with prefix-suffix training statistics
3. Factorize Hankel using SVD
4. Compute α and β projections,

and compute operators xα0,α8, tAσuy

§ Other cases:
§ fApx,yq “ Ppy | xq — see [Balle et al., 2011]
§ fApx,yq non-probabilistic — see [Quattoni et al., 2014]

Prediction with WFTaggers
§ Assume fApx,yq “ Ppx,yq

§ Given x1:T , compute most likely output tag at position t:

argmax
aPY

µpt,aq

where

µpt,aq fi Ppyt “ a | xq “
ÿ

y“y1...a...yT

Ppx,yq

“
ÿ

y“y1...a...yT

αJ0 A
y
xα8

“ αJ0

˜

ÿ

y1...yt´1

A
y1:t´1
x1:t´1

¸

loooooooooooomoooooooooooon

α‹Apx1:t´1q

Aaxt

˜

ÿ

yt`1...yT

A
yi`1:T
xt`1:T

¸

α8

loooooooooooomoooooooooooon

β‹Apxt`1:T q

α‹Apx1:tq “ α
‹
Apx1:t´1q

˜

ÿ

bPY

Abxt

¸

β‹Apxt:T q “

˜

ÿ

bPY

Abxt

¸

β‹Apxt`1:T q

Prediction with WFTaggers (II)

§ Assume fApx,yq “ Ppx,yq

§ Given x1:T , compute most likely output bigram ab at position t:

argmax
a,bPY

µpt,a,bq

where

µpt,a,bq “ Ppyt “ a,yt`1 “ b | xq

“ α‹Apx1:t´1qA
a
xt
Abxt`1

β‹Apxt`2:T q

§ Compute most likely full sequence y – intractable
In practice, use Minimum Bayes-Risk decoding:

argmax
yPYT

ÿ

t

µpt,yt,yt`1q

Finite State Transducers

(ab,cde)

a

b

c d e

a-c

ε-d

b-e

§ A WFTransducer evaluates aligned strings,
using the empty symbol ε to produce one-to-one alignments:

fpca
d
ε
e
bq “ αJ0 A

c
aA

d
εA

e
b

§ Then, a function can be defined on unaligned strings by aggregating
alignments

gpab, cdeq “
ÿ

πPΠpab,cdeq

fpπq

Finite State Transducers: Main Problems

§ Inference: given an FST A, how to . . .
§ Compute gpx,yq for unaligned strings?
Ñ using edit-distance recursions

§ Compute marginal quantities µpedgeq “ Ppedge | xq?
Ñ also using edit-distance recursions

§ Compute most-likely y for given x?
Ñ use MBR-decoding with marginal scores

§ Unsupervised Learning: learn an FST from pairs of unaligned strings
§ Unlike with EM, the spectral method can not recover latent structure

such as alignments
(recall: alignments are needed to estimate Hankel entries)

§ See [Bailly et al., 2013b] for a solution based on Hankel matrix
completion

Spectral Learning of Tree Automata and Grammars

S

NP

noun

Mary

VP

verb

plays

NP

det

the

noun

guitar

Some References:

§ Tree Series: [Bailly et al., 2010, Bailly et al., 2010]

§ Latent-annotated PCFG: [Cohen et al., 2012, Cohen et al., 2013b]

§ Dependency parsing: [Luque et al., 2012, Dhillon et al., 2012]

§ Unsupervised learning of WCFG: [Bailly et al., 2013a, Parikh et al., 2014]

§ Synchronous grammars: [Saluja et al., 2014]

Compositional Functions over Trees

f

¨

˚

˝

a

b a

c c

b b

˛

‹

‚
“ f

¨

˚

˝

a

b a

c c

b b

˛

‹

‚
“ αA

˜

a

b ‹

¸J

βA

¨

˝

a

c c

b b

˛

‚

“ f

¨

˚

˝

a

b a

c c

b b

˛

‹

‚
“ αA

˜

a

b ‹

¸J

Aa

´

βA

´

c

b b

¯

b βAp cq

¯

“ f

¨

˚

˝

a

b a

c c

b b

˛

‹

‚
“ αA

˜

a

b a

‹ c

¸J

Ac pβApbq b βApbqq

Inside-Outside Composition of Trees

a

c b

c a

b

a

c ‹ b

c a

b

d“

t “ to d ti

note: i-o composition generalizes the notion of concatenation in strings,
i.e., outside trees are prefixes, inside trees are suffixes

Weighted Finite Tree Automata (WFTA)

An algebraic model for compositional functions on trees

WFTA Notation (I)

Labeled Trees

§ tΣku “ tΣ0,Σ1, . . . ,Σru – ranked alphabet

§ T – space of labeled trees over some ranked alphabet

Tree:

§ t P T “ xV,E, lpvqy: a labeled tree

§ V “ t1, . . . ,mu: the set of vertices

§ E “ txi, jyu: the set of edges forming a tree

§ lpvq Ñ tΣku: returns the label of v – (i.e. a symbol in tΣku)

WFTA Notation (II)

Labeled Trees

§ tΣku “ tΣ0,Σ1, . . . ,Σru – ranked alphabet

§ T – space of labeled trees over some ranked alphabet

Leaf Trees and Inside Compositions:

leaf tree unary composition binary composition
σ P Σ0 σ P Σ1, t1 P T σ P Σ2, t1, t2 P T

σ σ

t1

σ

t1 t2

t “ σ t “ σrt1s t “ σrt1, t2s

WFTA Notation (III)

Labeled Trees

§ tΣku “ tΣ0,Σ1, . . . ,Σru – ranked alphabet

§ T – space of labeled trees over some ranked alphabet

Useful functions (to access the nodes of a tree t):

§ rptq: returns the root node of t

§ ppt, vq: returns the parent of v

§ apt, vq: returns the arity of v (number of children of v)
§ cpt, vq: returns the children of v

§ if cpt, vq “ rv1, . . . vks we use cipt, vq for i-th child
§ children are assumed to be ordered from left to right

Notation for WFTA (IV): Tensors

Kronecker product:

§ for v1 P Rn and v2 P Rn:

§ v1 b v2 P Rn
2

contains all products between elements of v1 and v2
§ Example:

§ v1 “ ra,bs
§ v2 “ rc,ds
§ v1 b v2 “ rac,ad,bc,bds

Simplifying assumption:

§ We consider trees with apt, vq ď 2
Ñ i.e. tensors of order 3 (two children per parent)

Weighted Finite Tree Automata (WFTA)

Σ “ tΣ0,Σ1,Σ2u: ranked alphabet of order 2 – finite set

Definition: WFTA with n states over Σ

A “ xα‹, tβσu, tA
1
σu, tA

2
σuy

§ n: number of states – positive integer

§ α‹ P Rn: root weights

§ βσ P Rn: leaf weights – (@σ P Σ0)

§ A1
σ P Rnˆn: transition weights – (@σ P Σ1)

§ A2
σ P R

nˆn2
: transition weights – (@σ P Σ2)

§ Note: A2
σ is a tensor in Rnˆnˆn packed as a matrix

WFTA: Inside Function

Definition: Any WFTA A defines an inside function:

βA : T Ñ Rn – maps a tree to a vector in Rn

§ if t is a leaf:

βApt “ σq “ βσ

§ if t results from a unary composition:

βApt “ σrt1sq “ A1
σβApt1q

§ if t results from a binary composition:

βApt “ σrt1, t2sq “ A2
σ pβApt1q b βApt2qq

t “ σ

t “
σ

t1

t “
σ

t1 t2

WFTA Function:

Every WFTA A defines a function

fA : T Ñ R

computed as:
fAptq “ αJ‹ βAptq

Weighted Finite Tree Automaton (WFTA)

Example of inside computation:

a

b a

c c

b

αJ‹ A2
apβb bA2

apA
1
cpβbq b βcqq

loooooooooooooooooomoooooooooooooooooon

A2
ap βb
loomoon

bA2
apA

1
cpβbq b βcq

loooooooooomoooooooooon

q

βb
A2
apA

1
cpβbq

looomooon

b βc
loomoon

q

A1
cp βb
loomoon

q βc

βb

Useful Intuition: Latent-variable Models as WFTA

fAptq “ αt‹βAptq

§ Each labeled node v is decorated with a latent variable hv P rns
§ fAptq is a sum–product computation:

ř

h0,h1,...,h|V|Prns

¨

˝α‹ph0q
ź

vPV :apvq“0

βlpvqrhvs

ˆ
ź

vPV :apvq“1

A1
lpvqrhv,hcpt,vqs

ˆ
ź

vPV :apvq“2

A2
lpvqrhv,hc1pt,vq,hc2pt,vqs

˛

‚

§ fAptq is a linear model in the latent space defined by βA : T Ñ Rn

fAptq “

n
ÿ

i“1

α‹ris βAptqris

Inside/Outside Decomposition

v

tree t

‹

outside tree tzv

v

inside tree trvs

Consider a tree t and one node v:
§ Inside tree trvs: the subtree of t rooted at v

§ trvs P T

§ Outside tree tzv: the rest of t when removing trvs
§ T‹: the space of outside trees, i.e. tzv P T‹
§ Foot node ‹: a tree insertion point (a special symbol ‹ R tΣku)
§ An outside tree has exactly one foot node in the leaves

Inside/Outside Composition

a

c b

c a

b

a

c ‹ b

c a

b

d“

§ A tree is formed by composing an outside tree with an inside tree
Ñ generalizes prefix/suffix concatenation in strings

§ Multiple ways to decompose a full tree into inside/outside trees
Ñ as many as nodes in a tree

Outside Trees

§ Outside trees t‹ P T‹ are defined recursively using compositions:

foot node unary composition binary composition
to P T‹, σ P Σ

1 to P T‹, σ P Σ
2, ti P T

‹
‹to
d

σ

‹

‹to
d

σ

ti
‹

‹to
d

σ

ti
‹

t‹ “ ‹ t‹ “ to d σr‹s t‹ “ to d σr‹, tis t‹ “ to d σrti, ‹s

WFTA: Outside Function

Definition: Any WFTA A defines an outside function:

αA : T‹ Ñ Rn – maps an outside tree to a vector in Rn

§ if t‹ is a foot node:

αApt‹ “ ‹q “ α0

§ if t‹ results from a unary composition:

αApt‹ “ to d σr‹sq “ αAptoq
JA1

σ

§ if t‹ results from a binary composition:

αApt‹“todσrti, ‹sq “ αAptoq
JA2

σ pβAptiq b 1nq

(note: similar expression for t‹ “ to d σr‹, tis)

t‹ “ ‹

t‹ “
‹to
d

σ

‹

t‹ “
‹to
d

σ

ti
‹

WFTA are fully compositional

a

c b

c a

b

a

c ‹ b

c a

b

d“

For any inside-outside decomposition of a tree:

fAptq “ αAptoq
JβAptiq plet t “ to d tiq

“ αAptoq
JA2

σpβApt1q b βApt2qq plet ti “ σrt1, t2sq

Consequences:

§ We can isolate the αA and βA vector spaces

§ Given αA and βA, we can isolate the operators Akσ

Hankel Matrices of functions over Labeled Trees

Two Equivalent Representations

§ Functional: fA : T Ñ R
§ Matricial: HfA P R|T‹|ˆ|T| (the Hankel matrix of fA)

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a b

a

a

a

b

a
a b

¨¨¨

‹ 0 1 ´1 2 3 ...

a

‹
´1 2 1 ´1 ¨ ¨ ¨

b

‹
4 1 6 2

a
‹b 0 ´1 ´3 ´7

a
‹ b 3

...

...
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

§ Definition:
Hpto, tiq “ fpto d tiq

§ Sublock for σ:
Hσpto,σrt1, t2sq “ fpto d σrt1, t2sq

§ Properties:
§ |V| ` 1 entries for fptq
§ Depends on ordering of T‹ and T
§ Captures structure

A Fundamental Theorem about WFTA

Relates the rank of Hf

and the number of states of WFTA computing f

Let f : T Ñ R be any function over labeled trees.

1. If f “ fA for some WFTA A with n states ñ rankpHfq ď n

2. If rankpHfq “ n ñ exists WFTA A with n states s.t. f “ fA

Why Fundamental?

Proof of (2) gives an algorithm for “recovering” A from the Hankel matrix
of fA

Structure of Low-rank Hankel Matrices

Hf P RT‹ˆT O P RT‹ˆn I P RnˆT

»

—

—

—

—

—

—

—

–

ti

...

...

...
to ¨ ¨ ¨ ¨ ¨ ¨ ‚ ¨ ¨ ¨ ¨ ¨ ¨

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

to ‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

fl

»

–

ti

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

fpto d tiq “ αAptoq
JβAptiq

αAptoq “ Opto, ¨q βAptiq “ Ip¨, tiq

Hankel Factorizations and Operators

Hσ P RT‹ˆT O P RT‹ˆn A2
σ P Rnˆn

2
I P RnˆT I P RnˆT

»

—

—

—

—

–

σrt1,t2s

¨

¨

¨

to ¨ ¨ ‚ ¨ ¨

¨

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

¨ ¨

¨ ¨

¨ ¨

to ‚ ‚

¨ ¨

fi

ffi

ffi

ffi

ffi

fl

„

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

»

—

—

–

„

t1

¨ ¨ ¨ ‚ ¨

¨ ¨ ¨ ‚ ¨

b

„

t2

¨ ‚ ¨ ¨ ¨

¨ ‚ ¨ ¨ ¨

fi

ffi

ffi

fl

fpto dσrt1, t2sq
looomooon

ti

“ αAptoq
JA2

σpβApt1q b βApt2qq
loooooooooooomoooooooooooon

βAptiq

Hankel Factorizations and Operators

Hσ “ O A2
σ rIb Is =ñ A2

σ “ O` Hσ rIb Is`

Note: Works with finite sub-blocks as well
(assuming rankpOq “ rankpIq “ n)

WFTA: Application to Parsing

S

NP

noun

Mary

VP

verb

plays

NP

det

the

noun

guitar

Some intuitions:

§ Derivation = Labeled Tree

§ Learning compositional functions over derivations
=ñ learning functions over trees

§ We are interested in functions computed by WFTA

WFTA for Parsing: Key Questions

§ What is the latent state representing?
§ For example: latent real valued embeddings of words and phrases

§ What form of supervision do we get?
§ Full Derivations (labeled trees)

i.e., supervised learning of latent-variable grammars

§ Derivation skeletons (unlabeled trees)
e.g. [Pereira and Schabes, 1992]

§ Yields from the grammar (only the leaves)
i.e., grammar induction

Parsing and Tree Automaton

S

NP

Mary

VP

plays NP

the guitar
βMary βplays

βthe βguitar

ANPrβMarys

ANPrβthe b βguitars

AVPrβplays bANPrβthe b βguitarss

ASrANPrβMarys bAVPrβplays bANPrβthe b βguitarsss

αJ0 ASrANPrβMarys bAVPrβplays bANPrβthe b βguitarsss

Phrase Embeddings using WFTA

Assume a WCFG in Chomsky Normal Form

§ n – number of states; i.e. dimensionality of the embedding.
§ Ranked alphabet:

§ Σ0 “ tthe, Mary, plays, . . . u – terminal words
§ Σ1 “ tnoun, verb, det, NP, VP, . . . u – unary non-terminals
§ Σ2 “ tS, NP, VP, . . . u – binary non-terminals

§ α‹ – final weights

§ tβwu for all w P Σ0 – word embeddings

§ tA1
N1
u for all N1 P Σ

1 – computes phrase embedding

§ tA2
N2
u for all N2 P Σ

2 – computes phrase embedding

Phrase Embeddings using WFTA

§ A “ xα‹, tβwu, tA
1
N1
u, tA2

N2
uy – WFTA

§ fAptq “ αt‹βApt,Sq – scores a derivation

§ βApt,Sq – is the n-dimensional embedding of derivation t

Spectral Learning Algorithm for WFTA

Assume A is stochastic – i.e. it computes a distribution over derivations
§ General Algorithm:

§ Chose a basis – i.e. a set of inside and outside trees
§ Estimate their empirical probabilities from a sample of derivations
§ Compute H and tHNu
§ tHNu – one for each non-terminal
§ Perform SVD on H
§ Recover parameters of A using the WFTA Theorem
§ Note: We can also use sub-tree statistics

Spectral Learning of Tree Automata

§ WFTA are a general algebraic framework for compositional functions

§ WFTA can exploit real-valued embeddings

§ There are simple algorithms for learning WFTAs from samples

Outline

1. Weighted Automata and Hankel Matrices

2. Spectral Learning of Probabilistic Automata

3. Spectral Methods for Transducers and Grammars
Sequence Tagging
Finite-State Transductions
Tree Automata

4. Hankel Matrices with Missing Entries

5. Conclusion

6. References

Learning WFA in More General Settings

Data Hankel
matrix WFALow-rank matrix

estimation
Factorization and

linear algebra

Question: How do we use these approach to learn f : Σ‹ Ñ R where fpxq
does not have a probabilistic interpretation?

Examples:

§ Classification f : Σ‹ Ñ t`1,´1u

§ Unconstrained real-valued predictions f : Σ‹ Ñ R
§ General scoring functions for tagging: f : pΣˆ ∆q‹ Ñ R

Example: Hankel Matrices with Missing Entries
When learning probabilistic functions. . .
entries in Hf are estimated from empirical counts, e.g. fpxq “ Prxs

$

’

’

&

’

’

%

aa, b, bab, a,
b, a, ab, aa,
ba, b, aa, a,

aa, bab, b, aa

,

/

/

.

/

/

-

−Ñ

»

—

—

–

a b

ε .19 .25
a .31 .06
b .06 .00
ba .00 .13

fi

ffi

ffi

fl

But in a general regression setting...
entries in Hf are labels observed in the sample, and many may be missing

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

(bab,1)
(bbb,0)
(aaa,3)

(a,1)
(ab,1)
(aa,2)

(aba,2)
(bb,0)

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

−Ñ

»

—

—

—

—

—

—

–

ε a b

a 1 2 1
b ? ? 0
aa 2 3 ?
ab 1 2 ?
ba ? ? 1
bb 0 ? 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Inference of Hankel Matrices

Goal: Learn a Hankel matrix H P RPˆS from partial information, then
apply the Hankel trick

Information Models:

§ Subset of entries: tHpp, sq|pp, sq P Iu

§ Linear measurements: tHv|v P Vu

§ Bilinear measurements: tuJHv|u P U, v P Vu

§ Constraints between entries: tHpp, sq ě Hpp 1, s 1q|pp, s,p 1, s 1q P Iu

§ Noisy versions of all the above

Constraints and Inductive Bias:

§ Hankel constraints Hpp, sq “ Hpp 1, s 1q if ps “ p 1s 1

§ Constraints on entries |Hpp, sq| ď C

§ Low-rank constraints/regularization rankpHq

Empirical Risk Minimization Approach
Data: tpxi,yiquNi“1, xi P Σ‹, yi P R
Parameters:

§ Rows and columns P, S Ă Σ‹

§ (Convex) Loss function ` : Rˆ RÑ R`
§ Regularization parameter λ / rank bound R

Optimization (constrained formulation):

argmin
HPRPˆS

1

N

N
ÿ

i“1

`pyi,Hpxiqq subject to rankpHq ď R

Optimization (regularized formulation):

argmin
HPRPˆS

1

N

N
ÿ

i“1

`pyi,Hpxiqq ` λ rankpHq

Note: These optimization problems are non-convex!

Nuclear Norm Relaxation

Nuclear Norm: matrix M, }M}˚ “
ř

sipMq

In machine learning, minimizing the nuclear norm is a commonly used
convex surrogate for minimizing the rank

Convex Optimization for Hankel matrix estimation

argmin
HPRPˆS

1

N

N
ÿ

i“1

`pyi,Hpxiqq ` λ}H}˚

Optimization Algorithms for Hankel Matrix
Estimation

Optimizing the Nuclear Norm Surrogate

§ Projected/Proximal sub-gradient (e.g. [Duchi and Singer ’09])

§ Frank–Wolfe [Jaggi and Sulovsk ’10]

§ Singular value thresholding [Cai, Candès, and Shen ’10]

Non-Convex “Heuristics”

§ Alternating minimization (e.g. [Jain, Netrapalli, and Sanghavi ’13])

Applications of Hankel Matrix Estimation

§ Max-margin taggers [Quattoni, Balle, Carreras, and Globerson ’14]

§ Unsupervised transducers [Bailly, Quattoni, and Carreras ’13]

§ Unsupervised WCFG [Bailly, Carreras, Luque, Quattoni ’13]

Outline

1. Weighted Automata and Hankel Matrices

2. Spectral Learning of Probabilistic Automata

3. Spectral Methods for Transducers and Grammars
Sequence Tagging
Finite-State Transductions
Tree Automata

4. Hankel Matrices with Missing Entries

5. Conclusion

6. References

Conclusion

§ Spectral methods provide new tools to learn compositional functions
by means of algebraic operations

§ Key result:
forward-backward recursions ô low-rank Hankel matrices

§ Applicable to a wide range of compositional formalisms:
finite-state automata and transducers, context-free grammars, . . .

§ Relation to loss-regularized methods, by means of matrix-completion
techniques

Spectral Learning Techniques for Weighted Automata,
Transducers, and Grammars

Borja Balle♦ Ariadna Quattoni♥ Xavier Carreras♥

p♦q McGill University
p♥q Xerox Research Centre Europe

TUTORIAL @ EMNLP 2014

Outline

1. Weighted Automata and Hankel Matrices

2. Spectral Learning of Probabilistic Automata

3. Spectral Methods for Transducers and Grammars
Sequence Tagging
Finite-State Transductions
Tree Automata

4. Hankel Matrices with Missing Entries

5. Conclusion

6. References

Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade, S. M., Song, L.,
and Zhang, T. (2011).
Spectral methods for learning multivariate latent tree structure.
In NIPS.

Anandkumar, A., Foster, D. P., Hsu, D., Kakade, S. M., and Liu, Y.
(2012a).
A spectral algorithm for latent Dirichlet allocation.
In NIPS.

Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. (2013a).
A tensor spectral approach to learning mixed membership community
models.
In COLT.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M.
(2012b).
Tensor decompositions for learning latent variable models.
CoRR, abs/1210.7559.

Anandkumar, A., Hsu, D., Huang, F., and Kakade, S. M. (2012c).
Learning mixtures of tree graphical models.

In NIPS.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2012d).
A method of moments for mixture models and hidden markov models.
In 25th Annual Conference on Learning Theory.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2012e).
A method of moments for mixture models and hidden Markov models.
In COLT.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2013b).
Tutorial: Tensor decomposition algorithms for latent variable model
estimation.
In ICML.

Bailly, R. (2011).
Quadratic weighted automata: Spectral algorithm and likelihood
maximization.
In ACML.

Bailly, R., Carreras, X., Luque, F., and Quattoni, A. (2013a).
Unsupervised spectral learning of WCFG as low-rank matrix
completion.

In EMNLP.

Bailly, R., Carreras, X., and Quattoni, A. (2013b).
Unsupervised spectral learning of finite state transducers.
In NIPS.

Bailly, R., Denis, F., and Ralaivola, L. (2009).
Grammatical inference as a principal component analysis problem.
In ICML.

Bailly, R., Habrard, A., and Denis, F. (2010).
A spectral approach for probabilistic grammatical inference on trees.
In ALT.

Balle, B. (2013).
Learning Finite-State Machines: Algorithmic and Statistical Aspects.
PhD thesis, Universitat Politècnica de Catalunya.

Balle, B., Carreras, X., Luque, F., and Quattoni, A. (2013).
Spectral learning of weighted automata: A forward-backward
perspective.
Machine Learning.

Balle, B. and Mohri, M. (2012).
Spectral learning of general weighted automata via constrained matrix
completion.
In NIPS.

Balle, B., Quattoni, A., and Carreras, X. (2011).
A spectral learning algorithm for finite state transducers.
In ECML-PKDD.

Balle, B., Quattoni, A., and Carreras, X. (2012).
Local loss optimization in operator models: A new insight into
spectral learning.
In ICML.

Berry, M. W. (1992).
Large-scale sparse singular value computations.

Boots, B. and Gordon, G. (2011).
An online spectral learning algorithm for partially observable
dynamical systems.
In Association for the Advancement of Artificial Intelligence.

Boots, B., Gretton, A., and Gordon, G. (2013).
Hilbert space embeddings of predictive state representations.
In UAI.

Boots, B., Siddiqi, S., and Gordon, G. (2009).
Closing the learning-planning loop with predictive state
representations.
In Proceedings of Robotics: Science and Systems VI.

Boots, B., Siddiqi, S., and Gordon, G. (2011).
Closing the learning planning loop with predictive state
representations.
International Journal of Robotics Research.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011).
Distributed optimization and statistical learning via the alternating
direction method of multipliers.
Foundations and Trends in Machine Learning.

Brand, M. (2006).
Fast low-rank modifications of the thin singular value decomposition.
Linear algebra and its applications, 415(1):20–30.

Carlyle, J. W. and Paz, A. (1971).
Realizations by stochastic finite automata.
Journal of Computer Systems Science.

Chaganty, A. T. and Liang, P. (2013).
Spectral experts for estimating mixtures of linear regressions.
In ICML.

Cohen, S. B., Collins, M., Foster, D. P., Stratos, K., and Ungar, L.
(2013a).
Tutorial: Spectral learning algorithms for natural language processing.
In NAACL.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., and Ungar, L.
(2012).
Spectral learning of latent-variable PCFGs.
ACL.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., and Ungar, L.
(2013b).
Experiments with spectral learning of latent-variable PCFGs.
In NAACL-HLT.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., and Ungar, L.
(2014).
Spectral learning of latent-variable PCFGs: Algorithms and sample
complexity.
Journal of Machine Learning Research.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society.

Denis, F. and Esposito, Y. (2008).
On rational stochastic languages.
Fundamenta Informaticae.

Dhillon, P. S., Rodu, J., Collins, M., Foster, D. P., and Ungar, L. H.
(2012).
Spectral dependency parsing with latent variables.
In EMNLP-CoNLL.

Dupont, P., Denis, F., and Esposito, Y. (2005).
Links between probabilistic automata and hidden Markov models:
probability distributions, learning models and induction algorithms.

Pattern Recognition.

Fliess, M. (1974).
Matrices de Hankel.
Journal de Mathématiques Pures et Appliquées.

Foster, D. P., Rodu, J., and Ungar, L. H. (2012).
Spectral dimensionality reduction for HMMs.
CoRR, abs/1203.6130.

Gordon, G. J., Song, L., and Boots, B. (2012).
Tutorial: Spectral approaches to learning latent variable models.
In ICML.

Halko, N., Martinsson, P., and Tropp, J. (2011).
Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.
SIAM Review, 53(2):217–288.

Hamilton, W., Fard, M., and Pineau, J. (2013a).
Modelling sparse dynamical systems with compressed predictive state
representations.

In ICML.

Hamilton, W. L., Fard, M. M., and Pineau, J. (2013b).
Modelling sparse dynamical systems with compressed predictive state
representations.
In Proceedings of the 30th International Conference on Machine
Learning.

Hsu, D. and Kakade, S. M. (2013).
Learning mixtures of spherical Gaussians: moment methods and
spectral decompositions.
In ITCS.

Hsu, D., Kakade, S. M., and Zhang, T. (2009).
A spectral algorithm for learning hidden Markov models.
In COLT.

Hulden, M. (2012).
Treba: Efficient numerically stable EM for PFA.
In ICGI.

Jaeger, H. (2000).
Observable operator models for discrete stochastic time series.

Neural Computation, 12(6):1371–1398.

Littman, M., Sutton, R. S., and Singh, S. (2002).
Predictive representations of state.
In Advances In Neural Information Processing Systems.

Luque, F., Quattoni, A., Balle, B., and Carreras, X. (2012).
Spectral learning in non-deterministic dependency parsing.
In EACL.

Marcus, M., Marcinkiewicz, M., and Santorini, B. (1993).
Building a large annotated corpus of english: The Penn Treebank.
Computational linguistics, 19(2):313–330.

Parikh, A., Song, L., Ishteva, M., Teodoru, G., and Xing, E. (2012).
A spectral algorithm for latent junction trees.
In UAI.

Parikh, A. P., Cohen, S. B., and Xing, E. (2014).
Spectral unsupervised parsing with additive tree metrics.
In Proceedings of ACL.

Parikh, A. P., Song, L., and Xing, E. (2011).

A spectral algorithm for latent tree graphical models.
In ICML.

Pereira, F. and Schabes, Y. (1992).
Inside-outside reestimation from partially bracketed corpora.
In Proceedings of the 30th annual meeting on Association for
Computational Linguistics, pages 128–135. Association for
Computational Linguistics.

Quattoni, A., Balle, B., Carreras, X., and Globerson, A. (2014).
Spectral regularization for max-margin sequence tagging.
In ICML.

Rabiner, L. R. (1990).
A tutorial on hidden markov models and selected applications in
speech recognition.
In Waibel, A. and Lee, K., editors, Readings in speech recognition,
pages 267–296.

Recasens, A. and Quattoni, A. (2013).
Spectral learning of sequence taggers over continuous sequences.
In ECML-PKDD.

Rosencrantz, M., Gordon, G., and Thrun, S. (2004).
Learning low dimensional predictive representations.
In Proceedings of the 21st International Conference on Machine
learning.

Saluja, A., Dyer, C., and Cohen, S. B. (2014).
Latent-variable synchronous CFGs for hierarchical translation.
Proceedings of EMNLP.

Siddiqi, S. M., Boots, B., and Gordon, G. (2010).
Reduced-rank hidden Markov models.
In AISTATS.

Singh, S., James, M., and Rudary, M. (2004).
Predictive state representations: a new theory for modeling dynamical
systems.
In Proceedings of the 20th Conference on Uncertainty in Artificial
Intelligence.

Song, L., Boots, B., Siddiqi, S., Gordon, G., and Smola, A. (2010).
Hilbert space embeddings of hidden Markov models.

In ICML.

Song, L., Ishteva, M., Parikh, A., Xing, E., and Park, H. (2013).
Hierarchical tensor decomposition of latent tree graphical models.
In ICML.

Stratos, K., Rush, A. M., Cohen, S. B., and Collins, M. (2013).
Spectral learning of refinement hmms.
In CoNLL.

Verwer, S., Eyraud, R., and Higuera, C. (2012).
Results of the PAutomaC probabilistic automaton learning
competition.
In ICGI.

Wiewiora, E. (2007).
Modeling probability distributions with predictive state
representations.
PhD thesis, University of California at San Diego.

	Weighted Automata and Hankel Matrices
	Spectral Learning of Probabilistic Automata
	Spectral Methods for Transducers and Grammars
	Sequence Tagging
	Finite-State Transductions
	Tree Automata

	Hankel Matrices with Missing Entries
	Conclusion
	References

