Syntax-based Statistical Machine Translation

Philip Williams and Philipp Koehn

29 October 2014

Part I - Introduction

Part II - Rule Extraction

Part III - Decoding

Part IV - Extensions

What Do We Mean by Syntax-based SMT?

- "Syntax-based" is a very inclusive term. It refers to a large family of approaches:
 - Hiero, syntax-directed MT, syntax-augmented MT, syntactified phrasebased MT, tree-to-string, string-to-dependency, dependency treelet-based, soft syntax, fuzzy tree-to-tree, tree-based, . . .
- We mean that the translation model uses a tree-based representation of language.
 - We don't count syntax-based preordering or syntactic LMs.
- We will focus on four widely-used approaches:
 - 1. Hierarchical phrase-based
- 3. String-to-tree

2. Tree-to-string

4. Tree-to-tree

Syntax-based Statistical Machine Translation

2

Why Use Syntax?

- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German-English translation
 - long distance agreement (e.g., subject-verb) in output
- Encourage grammatically coherent output
- Important step towards more linguistically motivated models (semantics)
- State-of-the art for some language pairs
 - Chinese-English (NIST 2008)
 - English-German (WMT 2012)
 - German-English (WMT 2013)

Statistical Machine Translation

Given a source string, s, find the target string, t^* , with the highest probability according to a distribution p(t|s):

```
t^* = \arg\max_t p(t|s)
```

- 1. Model a probability distribution p(t|s)
- 2. Learn the parameters for the model
- 3. Find or approximate the highest probability string t^*

Syntax-based Statistical Machine Translation

-

Statistical Machine Translation

- 1. Model a probability distribution p(t|s)
 - How is syntax used in modelling?
- 2. Learn the parameters for the model
 - What are the parameters of a syntax-based model?
- 3. Find or approximate the highest probability string t^*
 - How do we decode with a syntax-based model?

Modelling p(t|s)

• Most SMT models use Och and Ney's (2002) log-linear formulation:

$$p(t|s) = \frac{\exp\left(\sum_{m=1}^{M} \lambda_m h_m(t,s)\right)}{\sum_{t'} \exp\left(\sum_{m=1}^{M} \lambda_m h_m(t',s)\right)}$$

 h_1,\ldots,h_M are real-valued functions and $\lambda_1,\ldots,\lambda_M$ are real-valued constants

• Denominator can be ignored during search:

$$t^* = \arg \max_{t} p(t|s)$$
$$= \arg \max_{t} \sum_{m=1}^{M} \lambda_m h_m(t,s)$$

Syntax-based Statistical Machine Translation

Modelling p(t|s)

$$t^* = \arg\max_{t} \sum_{m=1}^{M} \lambda_m h_m(t, s) \tag{1}$$

- ullet In word-based models, s and t are modelled as sequences of words.
- ullet In phrase-based models, s and t are modelled as sequences of phrases.
- So what about syntax-based models?

Hierarchical Phrase-based MT

Like phrase pairs. . .

But with nesting:

Syntax-based Statistical Machine Translation

(

Hierarchical Phrase-based MT

Hierarchical phrase pairs:

are modelled using Synchronous Context-Free Grammar (SCFG):

 $X \rightarrow ist \ dieser \ X_1 \mid , \ this \ one \ is \ X_1$

 $x \ \rightarrow \ \textit{nicht besonders} \ x_1 \ | \ \textit{not particularly} \ x_1$

 $X \rightarrow schl\ddot{u}pfrig \mid juicy$

Hierarchical Phrase-based MT

Rules can include up to two non-terminals:

$$X \rightarrow deshalb X_1 die X_2 \mid therefore the X_2 X_1$$

 $X \rightarrow X_1 und X_2 \mid X_1 and X_2$

Glue rules concatenate hierarchical phrases:

Syntax-based Statistical Machine Translation

10

Hierarchical Phrase-based MT

- Synchronous Context-Free Grammar:
 - Rewrite rules of the form $\langle A, B \rangle \to \langle \alpha, \beta, \sim \rangle$
 - A and B are source and target non-terminals, respectively
 - $-\alpha$ and β are strings of terminals and non-terminals for the source and target sides, respectively.
 - $-\sim$ is a one-to-one correspondence between source and target non-terminals.
- Hiero grammars are a special case of SCFG:
 - One non-terminal type, X, on source side
 - Two non-terminal types, X and S, on target side
 - Various restrictions on rule form (see Chiang (2007))

 $s_1 \mid s_1$

• Derivation starts with pair of linked s symbols.

Syntax-based Statistical Machine Translation

12

SCFG Derivation

• $S \rightarrow S_1 X_2 \mid S_1 X_2$ (glue rule)

$$\begin{array}{l} s_1 \ \mid \ s_1 \\ \\ \Rightarrow \ s_2 \ x_3 \ \mid \ s_2 \ x_3 \\ \\ \Rightarrow \ s_2 \ x_4 \ \textit{und} \ x_5 \ \mid \ s_2 \ x_4 \ \textit{and} \ x_5 \end{array}$$

• $X \rightarrow X_1 \ und \ X_2 \mid X_1 \ and \ X_2$

Syntax-based Statistical Machine Translation

14

SCFG Derivation

$$\begin{array}{l} s_1 \ \mid \ s_1 \\ \\ \Rightarrow \ s_2 \ x_3 \ \mid \ s_2 \ x_3 \\ \\ \Rightarrow \ s_2 \ x_4 \ und \ x_5 \ \mid \ s_2 \ x_4 \ and \ x_5 \\ \\ \Rightarrow \ s_2 \ unzutreffend \ und \ x_5 \ \mid \ s_2 \ unfounded \ and \ x_5 \end{array}$$

• $x \rightarrow unzutreffend \mid unfounded$

```
\begin{array}{l} s_1 \mid s_1 \\ \\ \Rightarrow s_2 \mid x_3 \mid s_2 \mid x_3 \\ \\ \Rightarrow s_2 \mid x_4 \mid und \mid x_5 \mid s_2 \mid x_4 \mid und \mid x_5 \\ \\ \Rightarrow s_2 \mid unzutreffend \mid und \mid x_5 \mid s_2 \mid unfounded \mid und \mid unfounded \mid s_3 \mid unfounded \mid unfounded \mid s_4 \mid unfounded \mid un
```

• $X \rightarrow irref\"{u}hrend \mid misleading$

Syntax-based Statistical Machine Translation

16

SCFG Derivation

```
\begin{array}{l} s_1 \mid s_1 \\ \\ \Rightarrow s_2 \mid x_3 \mid s_2 \mid x_3 \\ \\ \Rightarrow s_2 \mid x_4 \mid und \mid x_5 \mid s_2 \mid x_4 \mid und \mid x_5 \\ \\ \Rightarrow s_2 \mid unzutreffend \mid und \mid x_5 \mid s_2 \mid unfounded \mid und \mid x_5 \\ \\ \Rightarrow s_2 \mid unzutreffend \mid und \mid unfounded \mid u
```

 $\bullet \ \scriptscriptstyle{\mathrm{S}} \to x_1 \ | \ x_1 \qquad \text{(glue rule)}$

```
\begin{array}{l} s_1 \mid s_1 \\ \Rightarrow s_2 \mid x_3 \mid s_2 \mid x_3 \\ \Rightarrow s_2 \mid x_4 \mid und \mid x_5 \mid s_2 \mid x_4 \mid und \mid x_5 \\ \Rightarrow s_2 \mid unzutreffend \mid und \mid x_5 \mid s_2 \mid unfounded \mid und \mid x_5 \\ \Rightarrow s_2 \mid unzutreffend \mid und \mid und \mid unfounded \mid x_5 \mid unfounded \mid und \mid unfounded \mid unf
```

• $X \rightarrow deshalb X_1 die X_2 \mid therefore the X_2 X_1$ (non-terminal reordering)

Syntax-based Statistical Machine Translation

18

SCFG Derivation

```
\begin{array}{l} S_1 \ | \ S_1 \\ \\ \Rightarrow \ S_2 \ X_3 \ | \ S_2 \ X_3 \\ \\ \Rightarrow \ S_2 \ X_4 \ und \ X_5 \ | \ S_2 \ X_4 \ and \ X_5 \\ \\ \Rightarrow \ S_2 \ unzutreffend \ und \ X_5 \ | \ S_2 \ unfounded \ and \ X_5 \\ \\ \Rightarrow \ S_2 \ unzutreffend \ und \ irref\"{u}hrend \ | \ S_2 \ unfounded \ and \ misleading \\ \\ \Rightarrow \ X_6 \ unzutreffend \ und \ irref\"{u}hrend \ | \ X_6 \ unfounded \ and \ misleading \\ \\ \Rightarrow \ deshalb \ X_7 \ die \ X_8 \ unzutreffend \ und \ irref\"{u}hrend \\ | \ therefore \ the \ X_8 \ X_7 \ unfounded \ and \ misleading \\ \\ \Rightarrow \ deshalb \ sei \ die \ X_8 \ unzutreffend \ und \ irref\"{u}hrend \\ | \ therefore \ the \ X_8 \ was \ unfounded \ and \ misleading \\ \end{array}
```

• $x \rightarrow sei \mid was$

- $S_1 \mid S_1$
 - \Rightarrow s₂ x₃ | s₂ x₃
 - \Rightarrow S₂ X₄ und X₅ | S₂ X₄ and X₅
 - \Rightarrow S₂ unzutreffend und X₅ | S₂ unfounded and X₅
 - \Rightarrow S₂ unzutreffend und irreführend | S₂ unfounded and misleading
 - \Rightarrow x_6 unzutreffend und irreführend | x_6 unfounded and misleading
 - \Rightarrow deshalb X_7 die X_8 unzutreffend und irreführend | therefore the X_8 X_7 unfounded and misleading
 - \Rightarrow deshalb sei die X_8 unzutreffend und irreführend | therefore the X_8 was unfounded and misleading
 - ⇒ deshalb sei die Werbung unzutreffend und irreführend | therefore the advertisement was unfounded and misleading
- $x \rightarrow Werbung \mid advertisement$

Syntax-based Statistical Machine Translation

20

Hierarchical Phrase-based MT

• We can now define the search in terms of SCFG derivations

$$t^* = \arg\max_{t} \sum_{m=1}^{M} \lambda_m h_m(t, s) \tag{1}$$

$$= \arg\max_{t} \sum_{d} \sum_{m=1}^{M} \lambda_{m} h_{m}(t, s, d)$$
 (2)

 $d \in D$, the set of synchronous derivations with source s and yield t.

• In practice, approximated with search for single-best derivation:

$$d^* = \arg\max_{d} \sum_{m=1}^{M} \lambda_m h_m(t, s, d)$$
 (3)

Hierarchical Phrase-based MT

• Search for single-best derivation:

$$d^* = \arg\max_{d} \sum_{m=1}^{M} \lambda_m h_m(t, s, d)$$
 (3)

• Rule-local feature functions allow decomposition of derivation scores:

$$h_m(d) = \sum_{r_i} h_m(r_i)$$

 \bullet But n-gram language model can't be decomposed this way. . .

$$d^* = \arg\max_{d} \left(\lambda_1 \log p_{LM}(d) + \sum_{r_i} \sum_{m=2}^{M} \lambda_m h_m(r_i) \right)$$
 (4)

Syntax-based Statistical Machine Translation

22

Hierarchical Phrase-based MT

- Summary so far:
 - Generalizes concept of phrase pair to allow nested phrases
 - Formalized using SCFG
 - No use of linguistic annotation: syntactic in a purely formal sense
 - Model uses standard SMT log-linear formulation
 - Search over derivations
- Later:
 - Rule extraction and scoring
 - Decoding (search for best derivation)
 - k-best extraction

Tree-to-String

Hierarchical phrase pairs but with embedded tree fragments on the source side:

Each source subphrase is a complete subtree.

Syntax-based Statistical Machine Translation

24

Tree-to-String

Formalized using Synchronous Tree-Substitution Grammar (STSG):

Syntax-based Statistical Machine Translation

Tree-to-String

- Synchronous Tree Substitution Grammar (STSG):
 - Grammar rules have the form $\langle \pi, \gamma, \sim \rangle$
 - $-\pi$ is a tree with source terminal and non-terminal leaves
 - $-\gamma$ is a string¹ of target terminals and non-terminals
 - $-\sim$ is a one-to-one correspondence between source and target non-terminals.
- Unlike Hiero:
 - Linguistic-annotation (on source-side)
 - No limit to number of substitution sites (non-terminals)
 - No reordering limit during decoding

Syntax-based Statistical Machine Translation

26

Tree-to-String

- Derivation involves synchronous rewrites (like SCFG)
- Tree fragments required to match input parse tree.
 - Motivation: tree provides context for rule selection ("syntax-directed")
- Efficient decoding algorithms available: source tree constrains rule options
- Search for single-best derivation:

$$d^* = \arg\max_{d} \left(\lambda_1 \log p_{LM}(d) + \sum_{r_i} \sum_{m=2}^{M} \lambda_m h_m(r_i) \right)$$

where source-side of d must match input tree

Technically, a 1-level tree formed by adding X as the root and the symbols from γ as children.

String-to-Tree

Hierarchical phrase pairs but with embedded tree fragments on the target side:

Each target subphrase is a complete subtree.

Syntax-based Statistical Machine Translation

28

String-to-Tree

Formalized using STSG:

Or SCFG:

SBAR
$$\rightarrow$$
 $f\ddot{u}r X_1 \mid as NP_1 go$
 $NP \rightarrow britische Skandale \mid British political scandals$

String-to-Tree

- Derivation is a rewriting process, like hierarchical phrase-based and tree-to-string
 - Rewrites only allowed if target labels match at substitution sites
 - Internal tree structure not used in derivation (hence frequent use of SCFG)
 - Motivation: constraints provided by target syntax lead to more fluent output
- Later:
 - Rule extraction and scoring
 - Decoding (Hiero will be special case of S2T)
 - k-best extraction (likewise)

Syntax-based Statistical Machine Translation

30

Tree-to-Tree

Hierarchical phrase pairs but with embedded tree fragments on both sides:

Formalized using STSG

Tree-to-Tree

Differences in source and target syntactic structure increasingly important

Can be differences in treebank annotation style or simply differences in language choice

Syntax-based Statistical Machine Translation

32

Summary So Far

• We have introduced four models:

Model	Formalism	Source Syntax	Target Syntax	Input
Hiero	SCFG	N	N	string
T2S	STSG	Υ	N	tree
S2T	STSG or SCFG	N	Υ	string
T2T	STSG	Υ	Υ	tree

- Next:
 - Rule extraction

Part I - Introduction

Part II - Rule Extraction

Part III - Decoding

Part IV - Extensions

Syntax-based Statistical Machine Translation

34

Learning Synchronous Grammars

- Extracting rules from a word-aligned parallel corpus
- First: Hierarchical phrase-based model
 - only one non-terminal symbol X
 - no linguistic syntax, just a formally syntactic model
- Then: Synchronous phrase structure model
 - non-terminals for words and phrases: NP, VP, PP, ADJ, ...
 - corpus must also be parsed with syntactic parser

Extracting Phrase Translation Rules

Syntax-based Statistical Machine Translation

36

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

Syntax-based Statistical Machine Translation

38

Extracting Hierarchical Phrase Translation Rules

Formal Definition

• Recall: consistent phrase pairs

$$(ar{e},ar{f})$$
 consistent with $A\Leftrightarrow$
$$\forall e_i\in ar{e}:(e_i,f_j)\in A \to f_j\in ar{f}$$
 and $\forall f_j\in ar{f}:(e_i,f_j)\in A \to e_i\in ar{e}$ and $\exists e_i\in ar{e},f_j\in ar{f}:(e_i,f_j)\in A$

• Let P be the set of all extracted phrase pairs (\bar{e}, \bar{f})

Syntax-based Statistical Machine Translation

40

Formal Definition

• Extend recursively:

$$\begin{split} \text{if } (\bar{e},\bar{f}) \in P \text{ and } (\bar{e}_{\text{SUB}},\bar{f}_{\text{SUB}}) \in P \\ \text{and } \bar{e} &= \bar{e}_{\text{PRE}} + \bar{e}_{\text{SUB}} + \bar{e}_{\text{POST}} \\ \text{and } \bar{f} &= \bar{f}_{\text{PRE}} + \bar{f}_{\text{SUB}} + \bar{f}_{\text{POST}} \\ \text{and } \bar{e} &\neq \bar{e}_{\text{SUB}} \text{ and } \bar{f} \neq \bar{f}_{\text{SUB}} \\ \text{add } (e_{\text{PRE}} + \mathbf{X} + e_{\text{POST}}, f_{\text{PRE}} + \mathbf{X} + f_{\text{POST}}) \text{ to } P \end{split}$$

(note: any of $e_{\rm PRE}$, $e_{\rm POST}$, $f_{\rm PRE}$, or $f_{\rm POST}$ may be empty)

• Set of hierarchical phrase pairs is the closure under this extension mechanism

Comments

• Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

$$Y \rightarrow X_1 X_2 \mid X_2 \text{ of } X_1$$

- Typical restrictions to limit complexity [Chiang, 2005]
 - at most 2 nonterminal symbols
 - at least 1 but at most 5 words per language
 - span at most 15 words (counting gaps)

Syntax-based Statistical Machine Translation

42

Learning Syntactic Translation Rules

Constraints on Syntactic Rules

- Same word alignment constraints as hierarchical models
- Hierarchical: rule can cover any span
 syntactic rules must cover constituents in the tree
- Hierarchical: gaps may cover any span
 ⇔ gaps must cover constituents in the tree
- Much fewer rules are extracted (all things being equal)

Syntax-based Statistical Machine Translation

4

Impossible Rules

Rules with Context

Syntax-based Statistical Machine Translation

46

Too Many Rules Extractable

- Huge number of rules can be extracted (every alignable node may or may not be part of a rule → exponential number of rules)
- Need to limit which rules to extract
- Option 1: similar restriction as for hierarchical model (maximum span size, maximum number of terminals and non-terminals, etc.)
- Option 2: only extract minimal rules ("GHKM" rules)

Minimal Rules

Extract: set of smallest rules required to explain the sentence pair

Syntax-based Statistical Machine Translation

48

Lexical Rule

Extracted rule: PRP ightarrow Ich | I

Lexical Rule

Extracted rule: PRP \rightarrow Ihnen | you

Syntax-based Statistical Machine Translation

50

Lexical Rule

Extracted rule: DT \rightarrow die | some

Lexical Rule

Extracted rule: NNS \rightarrow Anmerkungen | comments

Syntax-based Statistical Machine Translation

52

Insertion Rule

Extracted rule: PP \rightarrow X \mid to PRP

Non-Lexical Rule

Extracted rule: NP \rightarrow X $_1$ X $_2$ \mid DT $_1$ NNS $_2$

Syntax-based Statistical Machine Translation

54

Lexical Rule with Syntactic Context

Extracted rule: VP \rightarrow X1 X2 aushändigen | passing on PP1 NP2

Lexical Rule with Syntactic Context

Extracted rule: $VP \rightarrow werde X \mid shall be VP$ (ignoring internal structure)

Syntax-based Statistical Machine Translation

56

Non-Lexical Rule

Extracted rule: S \to X₁ X₂ | PRP₁ VP₂ DONE — note: one rule per alignable constituent

Unaligned Source Words

Attach to neighboring words or higher nodes \rightarrow additional rules

Syntax-based Statistical Machine Translation

58

Too Few Phrasal Rules?

- Lexical rules will be 1-to-1 mappings (unless word alignment requires otherwise)
- But: phrasal rules very beneficial in phrase-based models
- Solutions
 - combine rules that contain a maximum number of symbols (as in hierarchical models, recall: "Option 1")
 - compose minimal rules to cover a maximum number of non-leaf nodes

Composed Rules

$$\bullet \ \, \text{Current rules} \qquad \qquad X_1 \ X_2 \quad = \quad \underbrace{NP}_{DT_1 \ NNS_1}$$

• Composed rule

die entsprechenden Anmerkungen
$$=$$
 NP DT NNS some comments

(1 non-leaf node: NP)

Syntax-based Statistical Machine Translation

60

Composed Rules

• Minimal rule: $X_1 X_2$ aushändigen = VP

3 non-leaf nodes: PRP PRP PP1 NP2

VP, PP, NP passing on

• Composed rule: Ihnen X_1 aushändigen = VPPRP PRP PP

3 non-leaf nodes:

VP, PP and NP

passing on TO PRP

to you

 NP_1

Relaxing Tree Constraints

• Impossible rule

$$X = MD VB$$

werde shall be

- Create new non-terminal label: MD+VB
- \Rightarrow New rule

$$\begin{array}{rcl}
X & = & MD + VB \\
\text{werde} & & MD & VB \\
& & \text{shall be}
\end{array}$$

Syntax-based Statistical Machine Translation

62

Zollmann Venugopal Relaxation

- If span consists of two constituents, join them: X+Y
- If span conststs of three constituents, join them: X+Y+Z
- ullet If span covers constituents with the same parent x and include
 - every but the first child Y, label as $X \setminus Y$
 - every but the last child Y, label as X/Y
- For all other cases, label as FAIL
- \Rightarrow More rules can be extracted, but number of non-terminals blows up

Special Problem: Flat Structures

• Flat structures severely limit rule extraction

• Can only extract rules for individual words or entire phrase

Syntax-based Statistical Machine Translation

64

Relaxation by Tree Binarization

More rules can be extracted Left-binarization or right-binarization?

Scoring Translation Rules

- Extract all rules from corpus
- Score based on counts
 - joint rule probability: $p(LHS, RHS_f, RHS_e)$
 - rule application probability: $p(RHS_f, RHS_e|LHS)$
 - direct translation probability: $p(RHS_e|RHS_f, LHS)$
 - noisy channel translation probability: $p(RHS_f|RHS_e, LHS)$
 - lexical translation probability: $\prod_{e_i \in \mathtt{RHS}_e} p(e_i | \mathtt{RHS}_f, a)$

Syntax-based Statistical Machine Translation

66

Part I - Introduction

Part II - Rule Extraction

Part III - Decoding

Part IV - Extensions

Outline

- 1. Hiero/S2T decoding (SCFG with string input)
 - Viterbi decoding with local features (-LM)
 - k-best extraction
 - LM integration (cube pruning)
 - The S2T algorithm, as implemented in Moses
- 2. T2S decoding (STSG with tree input)
 - Vanilla T2S: non-directional, cube pruning
- 3. T2T decoding (STSG with tree input)
 - Included for completeness better alternatives explored later

Syntax-based Statistical Machine Translation

68

Viterbi S2T Decoding (-LM)

Objective Find the highest-scoring synchronous derivation d^*

- C_i , α_i and β_i are LHS, source RHS, target RHS of rule r_i , respectively.
- w_i is weight of rule r_i (weighted product of rule-local feature functions).
- |G| is the number of rules in the grammar G.

Viterbi S2T Decoding (-LM)

Objective Find the highest-scoring synchronous derivation d^*

Solution

1. Project grammar

Project weighted SCFG to weighted CFG $f: G \to G'$ (many-to-one rule mapping)

2. Parse

Find Viterbi parse of sentence wrt G'

3. Translate

Produce synchronous tree pair by applying inverse projection f'

Syntax-based Statistical Machine Translation

70

Example

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

	r_1 :	NP	\rightarrow	$Josef\ K.\ \ Josef\ K.$	0.90
	r_2 :	VBN	\rightarrow	$verleumdet \mid slandered$	0.40
_	r_3 :	VBN	\rightarrow	$verleumdet \mid defamed$	0.20
Grammar	r_4 :	VP	\rightarrow	$mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1$	0.10
	r_5 :	S	\rightarrow	$jemand X_1 \mid someone VP_1$	0.60
	r_6 :	S	\rightarrow	jemand $mu\beta te X_1 X_2 haben \mid someone must have VBN_2 NP_1$	0.80
	r_7 :	S	\rightarrow	jemand $mu\beta te X_1 X_2 haben \mid NP_1 must have been VBN_1 by someone$	0.05

(Six derivations in total)

Example

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

```
NP
                             \textit{Josef K.} \; \mid \; \textit{Josef K.}
                                                                                                                                    0.90
                             verleumdet \ | \ slandered
                                                                                                                                    0.40
            VBN
\Rightarrow r_2:
    r_3:
                             verleumdet | defamed
                                                                                                                                    0.20
                             mu\beta te \ X_1 \ X_2 \ haben \mid must \ have \ VBN_2 \ NP_1
                                                                                                                                    0.10
              VP
\Rightarrow r_5:
                             jemand X_1 \mid someone VP_1
                                                                                                                                    0.60
                             \begin{tabular}{ll} jemand \ mu \beta te \ X_1 \ X_2 \ haben \ | \ someone \ must \ have \ VBN_2 \ NP_1 \end{tabular}
                                                                                                                                    0.80
    r_6:
                             jemand mu\beta te \ X_1 \ X_2 \ haben \mid \ NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
```

Derivation 1

Syntax-based Statistical Machine Translation

72

Example

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

Derivation 2

Example

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

```
NP
                          \textit{Josef K.} \; \mid \; \textit{Josef K.}
                                                                                                                       0.90
                          verleumdet \ | \ slandered
                                                                                                                       0.40
\Rightarrow r_2:
           VBN
   r_3:
                          verleumdet | defamed
                                                                                                                       0.20
                          mu\beta te \ X_1 \ X_2 \ haben \mid must \ have \ VBN_2 \ NP_1
                                                                                                                       0.10
            VP
   r_4:
   r_5:
                         jemand X_1 \mid someone VP_1
                                                                                                                       0.60
                          jemand\ mu\beta te\ X_1\ X_2\ haben\ |\ someone\ must\ have\ VBN_2\ NP_1
                                                                                                                       0.80
\Rightarrow r_6:
                          jemand mu\beta te \ X_1 \ X_2 \ haben \mid \ NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
```


Derivation 3

Syntax-based Statistical Machine Translation

74

Example

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

Derivation 4

Example

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

```
NP
                          \textit{Josef K.} \; \mid \; \textit{Josef K.}
                                                                                                                     0.90
                          verleumdet \mid slandered
                                                                                                                     0.40
          VBN
\Rightarrow r_2:
   r_3:
                          verleumdet | defamed
                                                                                                                     0.20
                         mu\beta te \ X_1 \ X_2 \ haben \mid must \ have \ VBN_2 \ NP_1
                                                                                                                     0.10
            VP
   r_4:
   r_5:
                         jemand X_1 \mid someone VP_1
                                                                                                                     0.60
                         jemand\ mu\beta te\ X_1\ X_2\ haben\ |\ someone\ must\ have\ VBN_2\ NP_1
                                                                                                                     0.80
   r_6:
                         jemand mu\beta te \ X_1 \ X_2 \ haben \mid \ NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
```


Derivation 5

Syntax-based Statistical Machine Translation

76

Example

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

Step 1: Project Grammar to CFG

```
Josef K. | Josef K.
                                                                                                                                       0.90
                        NP
                                      verleumdet \mid slandered
                                                                                                                                       0.40
                      VBN
               r_2:
                      VBN
                                      verleumdet | defamed
                                                                                                                                       0.20
G
                                      \mathit{mu\betate} \ x_1 \ x_2 \ \mathit{haben} \ \mid \ \mathit{must have} \ \mathsf{VBN_2} \ \mathsf{NP_1}
                                                                                                                                       0.10
                        VP
                          \mathbf{S}
                                      jemand X_1 \mid someone VP_1
                                                                                                                                       0.60
               r_5:
                          \mathbf{S}
                               \rightarrow
                                     jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1
                                                                                                                                       0.80
               r_6:
                                     jemand mußte x_1 \ x_2 haben | NP_1 must have been VBN_1 by someone
                                                                                                                                       0.05
                                      Josef K.
                                                                                                                                       0.90
                        NP
                      VBN
                                      verleumdet
                                                                                                                                       0.40
G'
                                      \textit{mu\betate} \; \texttt{NP} \; \texttt{VBN} \; \textit{haben}
                                                                                                                                       0.10
               q_3:
                                     jem and \ \mathrm{VP}
                                                                                                                                       0.60
                          S
                                     jemand mußte NP VBN haben
                                                                                                                                       0.80
```

 \bullet G is original synchronous grammar, G' is monolingual projection

Syntax-based Statistical Machine Translation

78

Step 1: Project Grammar to CFG

```
Josef K. | Josef K.
            \Rightarrow r_1:
                         NP
                                                                                                                                                0.90
                       VBN
                                        verleumdet \ | \ slandered
                                                                                                                                                0.40
                       VBN
                                        verleumdet \mid defamed
                                                                                                                                                0.20
                r_3:
G
                                        \mathit{mu\betate} \ x_1 \ x_2 \ \mathit{haben} \ \mid \ \mathit{must have} \ \mathsf{VBN_2} \ \mathsf{NP_1}
                         VP
                                                                                                                                                0.10
                                        jemand X_1 \mid someone VP_1
                           s \rightarrow
                                                                                                                                                0.60
                           S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1
                                                                                                                                                0.80
                r_6:
                                        jemand \textit{mu\betate} \ X_1 \ X_2 \ \textit{haben} \ | \ \textit{NP}_1 \ \textit{must have been} \ \textit{VBN}_1 \ \textit{by someone}
                                                                                                                                                0.05
                                                                                                                                                0.90
                                         Josef K.
            \Rightarrow q_1:
                                                                                                                                                0.40
                                        verleumdet
                       VBN \rightarrow
G'
                                        mu\beta te np vbn haben
                                                                                                                                                0.10
                                        jemand \ \mathrm{VP}
                           _{
m S} \rightarrow
                                                                                                                                                0.60
                                        jemand mußte np vbn haben
                           S
                                                                                                                                                0.80
```

• Projected rule gets LHS and source RHS (but with target non-terminal labels)

Step 1: Project Grammar to CFG

```
Josef K. | Josef K.
                                                                                                                                                                  0.90
                             NP
                                              verleumdet \mid slandered
                                                                                                                                                                   0.40
              \Rightarrow r_2:
                           VBN
                                              verleumdet | defamed
                                                                                                                                                                  0.20
G
                                              \mathit{mu\beta te} \ x_1 \ x_2 \ \mathit{haben} \ \mid \ \mathit{must have} \ \mathsf{VBN}_2 \ \mathsf{NP}_1
                                                                                                                                                                  0.10
                             VP
                               \mathbf{S}
                                              jemand X_1 \mid someone VP_1
                                                                                                                                                                   0.60
                  r_5:
                               \mathbf{S}
                                              jemand \textit{mußte}\ x_1\ x_2\ \textit{haben}\ |\ \textit{someone}\ \textit{must}\ \textit{have}\ \textit{VBN}_2\ \textit{NP}_1
                                                                                                                                                                  0.80
                   r_6:
                                              jemand \textit{mu\betate} \; X_1 \; X_2 \; \textit{haben} \; \mid \; NP_1 \; \textit{must have been} \; VBN_1 \; \textit{by someone}
                                                                                                                                                                  0.05
                                                                                                                                                                  0.90
                             NP
                                              Josef K.
                           VBN
                                              verleumdet
                                                                                                                                                                   0.40
              \Rightarrow q_2:
G'
                                              \textit{mu\betate} \; \texttt{NP} \; \texttt{VBN} \; \textit{haben}
                                                                                                                                                                   0.10
                  q_3:
                                              jem and \ \mathrm{VP}
                                                                                                                                                                  0.60
                               S
                                              jemand mußte NP VBN haben
                                                                                                                                                                   0.80
```

• Many-to-one: weight of projected rule is the best from set of projecting rules

Syntax-based Statistical Machine Translation

80

Step 1: Project Grammar to CFG

```
Josef K. | Josef K.
                         NP
                                                                                                                                          0.90
                       VBN
                                       verleumdet \ | \ slandered
                                                                                                                                          0.40
                       _{\mathrm{VBN}}
                                       verleumdet \mid defamed
                                                                                                                                          0.20
               r_3:
G
                                       \mathit{mu\betate} \ x_1 \ x_2 \ \mathit{haben} \ \mid \ \mathit{must have} \ \mathsf{VBN_2} \ \mathsf{NP_1}
                        VP
                                                                                                                                          0.10
                                      jemand X_1 \mid someone VP_1
                          s \rightarrow
                                                                                                                                          0.60
               r_5:
                                     jemand mußte X<sub>1</sub> X<sub>2</sub> haben | someone must have VBN<sub>2</sub> NP<sub>1</sub>
                                                                                                                                          0.80
               r_6:
                                      jemand mu\beta te \ X_1 \ X_2 \ haben \ | \ NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
                                                                                                                                          0.05
                                                                                                                                          0.90
                                       Josef~K.
               q_1:
                                                                                                                                          0.40
                                       verleumdet
                       VBN
G'
           \Rightarrow q_3:
                                       mu\beta te np vbn haben
                                                                                                                                          0.10
                          _{\mathrm{S}} \rightarrow
                                      jemand VP
                                                                                                                                          0.60
                                      jemand mußte np vbn haben
                                                                                                                                          0.80
                          \mathbf{S}
```

• Target non-terminal labels projected to monolingual rule (in source order)

Step 1: Project Grammar to CFG

```
Josef K. | Josef K.
                                                                                                                       0.90
                     NP
                                 verleumdet | slandered
                                                                                                                       0.40
             r_2:
                   VBN \rightarrow
                                 verleumdet | defamed
                                                                                                                       0.20
G
                                 mu\beta te \ X_1 \ X_2 \ haben \mid must \ have \ VBN_2 \ NP_1
                                                                                                                       0.10
                     VP
          \Rightarrow r_5:
                      S
                                 jemand X_1 \mid someone VP_1
                                                                                                                       0.60
                       \mathbf{S}
                           \rightarrow
                                 jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1
                                                                                                                       0.80
             r_6:
                                 jemand mußte x_1 \ x_2 haben | NP_1 must have been VBN_1 by someone
                                                                                                                       0.05
                                 Josef K.
                                                                                                                       0.90
                     NP
                                                                                                                       0.40
                   VBN
                                 verleumdet
             q_2:
G'
                                 mu\beta te np vbn haben
                                                                                                                       0.10
             q_3:
                                 jem and \ \mathrm{VP}
                      _{
m S} \rightarrow
                                                                                                                       0.60
                           \rightarrow jemand mußte NP VBN haben
                                                                                                                       0.80
```

• And so on. . .

Syntax-based Statistical Machine Translation

82

Step 1: Project Grammar to CFG

```
Josef K. | Josef K.
                                                                                                                           0.90
                      NP
                    VBN
                                  verleumdet \ | \ slandered
                                                                                                                           0.40
                    VBN
                                   verleumdet \mid defamed
                                                                                                                           0.20
             r_3:
G
                                  mu\beta te \ X_1 \ X_2 \ haben \mid must \ have \ VBN_2 \ NP_1
                     VP
                                                                                                                           0.10
                                  jemand X_1 \mid someone VP_1
                      _{\mathrm{S}} \rightarrow
                                                                                                                           0.60
                       S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1
                                                                                                                           0.80
          \Rightarrow r_6:
                        S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \ | \ NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
                                                                                                                           0.05
                                   Josef K.
                                                                                                                           0.90
                      NP
                                                                                                                           0.40
                                   verleumdet
                    VBN \rightarrow
G'
                                  mußte np vbn haben
                                                                                                                            0.10
             q_3:
                     s \rightarrow jemand VP
                                                                                                                           0.60
                       s \rightarrow jemand \ mu\beta te \ NP \ VBN \ haben
                                                                                                                           0.80
```

• And so on.

Step 2: Find Viterbi Parse

- Standard weighted parsing algorithms.
- Binarization can be explicit (like CYK) or implicit (like Earley / CYK+)

Syntax-based Statistical Machine Translation

84

Step 3: Reconstruct Synchronous Derivation

1-best parse tree

Source-side parse tree

Step 3: Reconstruct Synchronous Derivation

1-best parse tree Source-side parse tree Source-side parse tree X jemand mußte NP VBN haben jemand mußte X X haben Josef K. verleumdet

• Source-side: replace non-terminals with Xs

Syntax-based Statistical Machine Translation

86

Step 3: Reconstruct Synchronous Derivation

1-best parse tree

Source-side parse tree

• Target-side: invert grammar projection

Step 3: Reconstruct Synchronous Derivation

• Target-side: invert grammar projection

 $NP \rightarrow Josef K. \mid Josef K.$

Syntax-based Statistical Machine Translation

88

Step 3: Reconstruct Synchronous Derivation

• Target-side: invert grammar projection (multiple rules? pick highest-scoring)

VBN \rightarrow verleumdet | slandered 0.4 VBN \rightarrow verleumdet | defamed 0.2

Step 3: Reconstruct Synchronous Derivation

• Target-side: invert grammar projection (multiple rules? pick highest-scoring)

\mathbf{S}	\rightarrow	$jemand mu\beta te X_1 X_2 haben$	$someone \ must \ have \ VBN_2 \ NP_1$	0.80
\mathbf{S}	\rightarrow	$jemand mu\beta te X_1 X_2 haben$	NP ₁ must have been VBN ₂ by someone	0.05

Syntax-based Statistical Machine Translation

90

k-best Extraction

Objective Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Well. . .

- 1. 1-best derivation is 1-best monolingual parse tree with best set of translations
- 2. 2-best and 3-best derivations are (in some order):
 - (a) 1-best monolingual parse tree with second best set of translations, and
 - (b) 2-best monolingual parse tree with best translations
- 3. 4-best derivation is one of. . .

k-best Extraction

Objective Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Well. . .

- 1. 1-best derivation is 1-best monolingual parse tree with best set of translations
- 2. 2-best and 3-best derivations are (in some order):
 - (a) 1-best monolingual parse tree with second best set of translations, and
 - (b) 2-best monolingual parse tree with best translations
- 3. 4-best derivation is one of. . .

We know part of the solution: how to get the k-best monolingual derivations (Huang and Chiang, 2005)

Syntax-based Statistical Machine Translation

92

Digression: Parsing and Hypergraphs

Digression: Parsing and Hypergraphs

- Generalization of a graph: hyperedges connect two sets of vertices
- Terminology: vertices and hyperedges (nodes and arcs)
- A parse forest can be represented by a rooted, connected, labelled, directed, acyclic hypergraph (Klein and Manning, 2001)
- Vertices represent parsing states; hyperedges represent rule applications

Syntax-based Statistical Machine Translation

94

Monolingual *k*-best Extraction

Huang and Chiang (2005) provide efficient algorithms for k-best extraction.

Objective

Extract the k-best monolingual derivations $d_1, d_2, \dots d_k$ from a weighted parse forest

Outline (alg. 3)

- 1. The 1-best subderivation for every vertex (and its incoming hyperedges) is known from the outset
- 2. Given the i-best derivation, the next best candidate along the same hyperedge is identical except for a substitution at a single incoming vertex
- 3. At the top vertex, generates candidates by recursively asking predecessors for next best subderivations.
- 4. Maintain priority queue of candidates at each vertex

Synchronous k-best Extraction

Replace hyperedges according to f' (invert grammar projection)

- The standard *k*-best extraction algorithm now gives the *k*-best synchronous derivations.
- The second hypergraph is sometimes called a "translation hypergraph".
- We'll call the first the "parse forest hypergraph" or the "parse hypergraph."

Syntax-based Statistical Machine Translation

96

S2T Decoding (LM-) Summary

Objective Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Solution

1. Project grammar

Project weighted SCFG to unweighted CFG $f:G\to G'$ (many-to-one)

2. Parse

Build parse hypergraph wrt G'

3. Invert projection

Expand hypergraph by replacing hyperedges according to f^\prime

4. Extract derivations

Extract k-best derivations using Huang and Chiang's (2005) algorithm

LM Integration

Without LM

k-best derivation is k-best path through translation hypergraph

Optimal substructure

If global best path includes ${
m VBN_{4,4}}$ then best path must include hyperedge labelled r_2

Syntax-based Statistical Machine Translation

98

LM Integration

Consider the two paths that include the hyperedge labelled r_6 :

What's the best path through this hypergraph? For bi-gram LM we need to compute:

State Splitting?

Restore optimal substructure property by splitting states:

- Vertex labels include first and last words of translation.
- Hyperedges labelled with weights that incorporate LM costs.
- *k*-best derivation is *k*-best path.

Syntax-based Statistical Machine Translation

100

State Splitting?

Objective

Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Potential Solution

1. Project grammar

Project weighted SCFG to weighted CFG $f: G \rightarrow G'$

- 2. Parse Build parse hypergraph wrt G'
- Invert projection + split states
 Expand hypergraph by replacing hyperedges according to f'. During replacement, split states and add LM costs
- 4. Extract derivations

Extract k-best derivations (Huang and Chiang, 2005)

State Splitting?

- \bullet Pick a search vertex for $\begin{picture}(0,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){$
- $\bullet \ \ \mathsf{Pick} \ \ \mathsf{a} \ \ \mathsf{search} \ \ \mathsf{vertex} \ \ \mathsf{for} \quad \boxed{ {}^{\mathsf{VBN}_{5,5}} } \ \mathsf{from} \ \ \mathsf{the} \ \ \mathsf{set} \ \left\{ \ \boxed{ \ \ }^{\mathsf{NP}_{5,5,\mathsf{slandered}} \ \ \mathsf{,} \ \boxed{ \ \ }^{\mathsf{NP}_{5,5,\mathsf{defamed}} } \ \right\}$
- ullet Pick a synchronous rule from the set $f'(q_5)=\{r_6,r_7\}$ (i.e. pick a target-side)

The full set is generated by taking the Cartesian product of these three sets.

Syntax-based Statistical Machine Translation

102

The Search Hypergraph is Too Large. . .

The parse hypergraph has $O(n^3)$ space constraints (assuming certain grammar properties. . .)

With a m-gram LM the search hypergraph is much larger:

	Vertices	Hyperedges
Parse	$O(n^2 C)$	$O(n^3 G)$
Search	$O(n^2 C T ^{2(m-1)})$	$O(n^3 G T ^{2A(m-1)})$

C is the set of target non-terminals n is the input sentence length T is the set of target-side terminals m is the order of the LM A is the maximum rule arity

Heuristic Search

- In practice, only part of the search hypergraph can be explored.
- During search, a partial search hypergraph is generated in topological order.
- Three main strategies for reducing search space:
 - **Parse forest pruning** Avoid splitting some parse forest hyperedges by prepruning the forest (methods can be exact or inexact).
 - **Heuristic best-first splitting** e.g. cube pruning. Use a splitting algorithm that finds expanded hyperedges in approximately best-first order.
 - **Beam search** Bin vertices according to source word span and category. Keep only the highest-scoring vertices for use later in the search.

Syntax-based Statistical Machine Translation

104

Strategy 1: Parse Forest Pruning

- If parse forest is constructed in full prior to search then dead-ends can be pruned away.
- State splitting can be restricted to a small subset of promising hyperedges.
 - Moses ranks hyperedges according to -LM rule cost plus sums of incoming +LM vertex costs.
- Monolingual forest pruning methods (Inside-outside estimates, see e.g. Charniak and Johnson (2005)).

(Forest pruning methods haven't been widely explored in the MT literature.)

Strategy 2: Heuristic Best-First State Splitting

• For every hyperedge in the parse hypergraph, there can be very many corresponding hyperedges in the search hypergraph.

• Cube pruning (Chiang, 2007) is most widely-used approximate algorithm but see Heafield et al. (2013) for a faster alternative.

Syntax-based Statistical Machine Translation

106

Cube Pruning

Arrange all the choices in a "cube"

(here: a square, generally an orthotope, also called a hyperrectangle)

Create the First Hyperedge

• Hyperedges created in cube: (0,0)

Syntax-based Statistical Machine Translation

108

"Pop" Hyperedge

ullet Hyperedges created in cube: ϵ

• Hyperedges popped: (0,0)

Create Neighboring Hyperedges

- Hyperedges created in cube: (0,1), (1,0)
- Hyperedges popped: (0,0)

Syntax-based Statistical Machine Translation

110

Pop Best Hyperedge

- Hyperedges created in cube: (0,1)
- Hyperedges popped: (0,0), (1,0)

Create Neighboring Hyperedges

- Hyperedges created in cube: (0,1), (1,1), (2,0)
- Hyperedges popped: (0,0), (1,0)

Syntax-based Statistical Machine Translation

112

More of the Same

- Hyperedges created in cube: (0,1), (1,2), (2,1), (2,0)
- Hyperedges popped: (0,0), (1,0), (1,1)

Queue of Cubes

- Many parse hyperedges for any given span
- Each of them will have a cube
- We can create a queue of cubes
- ⇒ Always pop off the most promising hyperedge, regardless of cube
- May have separate queues for different target constituent labels

Syntax-based Statistical Machine Translation

114

Strategy 3: Beam search

- Bin vertices according to source word span and category.
- Keep only the highest-scoring vertices for use later in the search.

Putting it All Together: The S2T Decoding Algorithm in Moses

Objective Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Outline

1. Project grammar

Project weighted SCFG to weighted CFG $f: G \rightarrow G'$

- 2. Interleaved parse + search Span-by-span, build parse hypergraph wrt G' and build partial search hypergraph
- 3. Extract derivations

Extract k-best derivations (Huang and Chiang, 2005)

Syntax-based Statistical Machine Translation

116

Decoding: Components

- Vertices of the parse hypergraph are stored in a chart (includes input sentence)
- Hyperedges are enumerated but not stored in chart
- Terminology: PChart, PVertex, PHyperedge

Decoding: Components

- Parser generates PHyperedges for given span of PChart
- Parser has access to partially-completed PChart
- For now, the parser is a black-box component but we'll return to parsing. . .

Syntax-based Statistical Machine Translation

118

Decoding: Components

- Vertices of the search hypergraph are stored in a chart (includes input sentence)
- Vertices are stored in stacks (one per span + category), which are sorted
- Hyperedges are stored (unlike in PChart)
- Terminology: SChart, SVertex, SHyperedge

Decoding: Components

- Cube pruning algorithm (or similar) produces SHyperedges from PHyperedges
- A single SVertex can be produced multiple times so must check for this ('recombination')

Syntax-based Statistical Machine Translation

120

The Moses S2T Decoding Algorithm

```
1: initialize PChart and SChart by adding vertices for input words
2: for each span (in parser-defined order) do
      p-hyperedges = ForestPrune(parser.EnumerateHyperedges(span, p-chart), s-chart)
3:
     for all p-hyperedges do
4:
        create a cube for it
5:
        create first s-hyperedge in cube
6:
        place cube in queue
7:
     end for
8:
     for specified number of pops do
9:
        pop off best s-hyperedge of any cube in queue
10:
        add it to a category-specific buffer
11:
        create its neighbors
12:
     end for
13:
     for category do
14:
        recombine s-hyperedges from buffer and move into s-chart stack
15:
        sort stack
16:
17:
     end for
18: end for
```

Parsing for S2T Decoding

- Parser's job is to enumerate PHyperedges, span-by-span.
- Parser has access to partially-filled PChart.

Syntax-based Statistical Machine Translation

122

Parsing for S2T Decoding

- Can we just use CYK / CYK+ / Earley?
 - All require binarization (implicit or explicit).
 - Wasn't a problem for Viterbi -LM case.
- Idea 1 Binarize G'
 - Binary normal forms exist for monolingual CFG grammars.
 - But we still need to know the synchronous rules for +LM search.
- Idea 2 Binarize G before projection to CFG
 - Binarization impossible for some SCFG rules with rank ≥ 4
 - Not necessarily a problem: non-binarizable cases are rare in word-aligned translation data (Zhang et al., 2006)
 - But tricky in practice: how do we weight rules? And what about grammar inflation?

How to Avoid Binarization

• Hopkins and Langmead (2010) define a grammar property called scope:

Pattern	Scope	Pattern	Scope
abcde	0	a ⋄ ⋄ ⋄ e	
$a \diamond c \diamond e$	0	⋄ b c d ⋄	
$a \diamond \diamond d e$	1	⋄⋄cd⋄	3
⋄ b c d e	1	$\diamond \diamond \diamond \diamond \diamond$	6

- They prove that a sentence of length n can be parsed with a scope k grammar in O(nk) chart updates without binarization.
- They demonstrate empirically that reducing a GHKM grammar to scope-3 by pruning does not harm translation quality compared to synchronous binarization (and pruning is much simpler).
- Chung et al. (2011) perform similar comparison and achieve same result.

Syntax-based Statistical Machine Translation

124

Specialized Parsing Algorithms

- CYK+ and Earley are popular choices for S2T decoding.
- But storing large numbers of dotted rules is problematic in practice (Chung et al. 2011 find scope-3 slower than binarized grammar with Earley parser, which they attribute to dotted rule storage).
- Several parsing algorithms have been designed specifically for synchronous translation grammars: DeNero et al. (2009), Hopkins and Langmead (2010), Sennrich (2014).
- We use Sennrich (2014)'s recursive variant of CYK+:
 - Good performance on WMT-scale task: fast, low-memory overhead
 - Simpler than CYK+ and alternatives
 - No dotted rule storage

Parsing for S2T Decoding (Moses-style)

- ullet Projected grammar G' is represented as a trie (sometimes called a prefix tree)
- Edges are labelled with terminals and non-terminals
- Labels along path (from root) represent prefix of rule RHS
- ullet Vertices in black are associated with group of rules from G (sub-grouped by rule LHS)

Syntax-based Statistical Machine Translation

126

- Sennrich (2014)'s parsing algorithm visits cells in right-to-left, depth-first order.
- We consider situation where all of PChart filled except for left-most diagonal.
- Recall that PVertices are stored, but PHyperedges are not.

• Tail prefix: []

• Recursion level: 0

Syntax-based Statistical Machine Translation

128

Parsing for S2T Decoding - Example

• Tail prefix: []

• Recursion level: 0

• Look for edge labelled 'jemand' at root node

- Tail prefix: $[jemand_{1.1}]$
- Recursion level: 0
- Look for edge labelled 'jemand' at root node found

Syntax-based Statistical Machine Translation

130

- \bullet Tail prefix: [jemand_{1,1}]
- Recursion level: 0
- Check for rules at current node none

- Tail prefix: $[jemand_{1,1}]$
- Recursion level: 0
- Now visit each cell along previous diagonal (recursive step)

Syntax-based Statistical Machine Translation

132

- \bullet Tail prefix: [jemand_{1,1}]
- Recursion level: 1
- Look for edge labelled 'mußte' at current node

- $\bullet \ \ \mathsf{Tail} \ \mathsf{prefix:} \ [\mathsf{jemand}_{1,1}, \mathsf{mußte}_{2,2}]$
- Recursion level: 1
- Look for edge labelled 'mußte' at current node found

Syntax-based Statistical Machine Translation

134

- ullet Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 1
- Now visit each cell along previous diagonal

- $\bullet \ \ \mathsf{Tail} \ \mathsf{prefix:} \ [\mathsf{jemand}_{1,1}, \mathsf{mußte}_{2,2}]$
- Recursion level: 2
- Look for edge labelled 'Josef' at current node

Syntax-based Statistical Machine Translation

136

- ullet Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 2
- Look for edge labelled 'Josef' at current node not found

- $\bullet \ \ \mathsf{Tail} \ \mathsf{prefix:} \ [\mathsf{jemand}_{1,1}, \mathsf{mußte}_{2,2}]$
- Recursion level: 2
- Look for edge labelled 'NP' at current node

Syntax-based Statistical Machine Translation

138

- ullet Tail prefix: [jemand_{1,1}, mußte_{2,2}, NP_{3,4}]
- Recursion level: 2
- Look for edge labelled 'NP' at current node found

- ullet Tail prefix: [jemand_{1,1}, mußte_{2,2}, NP_{3,4}]
- Recursion level: 3
- And so on. . .

Syntax-based Statistical Machine Translation

140

- $\bullet \ \, \mathsf{Tail} \,\, \mathsf{prefix} \colon [\mathsf{jemand}_{1,1}, \mathsf{mußte}_{2,2}, \mathsf{NP}_{3,4}, \mathsf{VBN}_{5,5}]$
- Recursion level: 3
- And so on. . .

- \bullet Tail prefix: [jemand _1,1, mußte _2,2, NP _3,4, VBN _5,5, haben _6,6]
- Recursion level: 4
- And so on. . .

Syntax-based Statistical Machine Translation

142

- \bullet Tail prefix: [jemand _1,1, mußte _2,2, NP _3,4, VBN _5,5, haben _6,6]
- Recursion level: 4
- At this point we add a PVertex for each LHS from trie node's rule group

- \bullet Tail prefix: [jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}, haben_{6,6}]
- Recursion level: 4
- At this point we add a PVertex for each LHS from trie node's rule group

Syntax-based Statistical Machine Translation

144

- $\bullet \ \, \mathsf{Tail} \ \mathsf{prefix:} \ [\mathsf{jemand}_{1,1}, \mathsf{mußte}_{2,2}, \mathsf{NP}_{3,4}, \mathsf{VBN}_{5,5}, \mathsf{haben}_{6,6}]$
- Recursion level: 4
- Together the PVertex and tail prefix constitute a complete PHyperedge.

- \bullet Tail prefix: [jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}, haben_{6,6}]
- Recursion level: 4
- Reached end of sentence, so now the recursion stack unwinds

Syntax-based Statistical Machine Translation

146

- $\bullet \ \, \mathsf{Tail} \,\, \mathsf{prefix} \colon [\mathsf{jemand}_{1,1}, \mathsf{mußte}_{2,2}, \mathsf{NP}_{3,4}, \mathsf{VBN}_{5,5}]$
- Recursion level: 3
- The recursion stack unwinds. . .

- ullet Tail prefix: [jemand_{1,1}, mußte_{2,2}, NP_{3,4}]
- Recursion level: 2
- The recursion stack unwinds. . .

Syntax-based Statistical Machine Translation

148

- ullet Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 1
- The parser continues trying to extend the tail. . .

- Tail prefix: $[jemand_{1,1}]$
- Recursion level: 1
- The parser continues trying to extend the tail. . .

Syntax-based Statistical Machine Translation

150

- ullet Tail prefix: $[jemand_{1,1}, VP_{2,6}]$
- Recursion level: 1
- $\bullet\,$ PVertex $S_{1,6}$ has already been added, but new tail means new PHyperedge

Decoding Performance in Practice

- S2T Moses system trained using all English-German data from WMT14
- Span limit can be used to reduce decoding time (limit is typically 10-15 for Hiero; can be higher or unlimited for S2T)

Syntax-based Statistical Machine Translation

152

String-to-Tree Decoding - Summary

- Input sentence is a string.
- Decoding algorithm based on monolingual parsing.
- Hiero decoding is special-case of S2T decoding.
- To integrate a *m*-gram LM, the parse forest hypergraph is expanded to a (much-larger) search hypergraph.
- Heavy pruning is required in practice.

Tree-to-String Decoding

Syntax-based Statistical Machine Translation

154

Reminder

• Translation rules are STSG rules with source-side syntax

• Input is parse tree

Outline

Objective Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Outline

1. Project grammar

Project weighted STSG to unweighted TSG $f:G \to G'$

2. Match rules

Find rules from G^\prime that match input tree, record in match hypergraph

3. Search

In post-order traversal of match hypergraph, build partial search hypergraph

4. Extract derivations

Extract k-best derivations (Huang and Chiang, 2005)

Syntax-based Statistical Machine Translation

156

Step 1: Project Grammar

• Take source-side of rule, ignore weights.

Step 2: Match Rules, Build Match Hypergraph

• Look for rules that match input tree

Syntax-based Statistical Machine Translation

158

Step 2: Match Rules, Build Match Hypergraph

• For each matching rule, add hyperedge to match hypergraph

Step 2: Match Rules, Build Match Hypergraph

ullet Match hypergraph encodes forest of possible derivation trees from G'

Syntax-based Statistical Machine Translation

160

Step 3: Build Partial Search Hypergraph

- Cube pruning algorithm produces SHyperedges from MHyperedges
- Translations not necessarily constituents (unlike S2T)

Step 3: Build Partial Search Hypergraph

• Vertices are stored in stacks, one per input tree node

Syntax-based Statistical Machine Translation

162

The T2S Decoding Algorithm

```
1: build match hypergraph by matching grammar rules to input tree
2: for each m-vertex (post-order) do
     for all incoming m-hyperedges do
3:
       create a cube for it
4:
       create first s-hyperedge in cube
5:
        place cube in queue
6:
     end for
7:
8:
     for specified number of pops do
        pop off best s-hyperedge of any cube in queue
9:
       add it to a buffer
10:
       create its neighbors
11:
12:
     recombine s-hyperedges from buffer and move into stack
13:
     sort and prune stack
15: end for
```

Rule Matching by DFA Intersection

- Rules are encoded as DFAs. Scheme here is from Matthews et al. (2014)
- Input tree encoded in same way.
- Standard DFA intersection algorithm produces rule match hypergraph.

Syntax-based Statistical Machine Translation

164

Tree-to-String Decoding - Summary

- Input sentence is a parse tree.
- Tree constrains rule choice: much smaller search space than S2T
- Decoding algorithm based on rule matching with LM integration.
- LM integration identical to S2T.

A Sketch of Tree-to-Tree Decoding

- STSG with tree input.
- T2T decoding is combination of S2T and T2S:
 - Search state expanded to include target-side category
 - Rule matching used to select rules; further constrained by target categories
 - Multiple category-specific stacks per input tree node
 - LM integration identical to S2T / T2S.
- Exact T2T not widely used in practice due to syntactic divergence.

Syntax-based Statistical Machine Translation

166

Part I - Introduction

Part II - Rule Extraction

Part III - Decoding

Part IV - Extensions

"Fuzzy" Syntax

- In a nutshell: move syntax out of grammar and into feature functions
 - Syntax becomes a soft constraint
 - Motivated by syntactic divergence problem in tree-to-tree model

- "Learning to Translate with Source and Target Syntax" (Chiang, 2010)
 - Zhang et al (2011) use fuzzy syntax on source-side of string-to-tree model and explore alternative feature functions

Syntax-based Statistical Machine Translation

168

"Fuzzy" Syntax

- Parse trees on both sides of training data
- Uses Hiero rule extraction but with SAMT-style labelling

• Only most frequent labelling kept (one-to-one correspondence with Hiero rules)

```
r1 ADJA+NN | NP → britische Skandale | British political scandals
r2 PP-MO | SBAR → für ADJA+NN1 | as NP1 go q1 X → britische Skandale | British political scandals
q2 X → für X1 | as X1 go
```

"Fuzzy" Syntax

• Rule labels not used during parsing but retrieved for search

- Feature functions score substitutions
 - e.g. if a NP is rewritten as a ADJA+NN on source side then the feature ${\tt subst^s_{NP\to ADJA+NN}}$ fires
- Tens of thousands of features
- Outperforms exact tree-to-tree (0.4 BLEU on Zh-En; 1.5 BLEU on Ar-En)

Syntax-based Statistical Machine Translation

170

Forest-to-String

- Translation quality of T2S model depends on accuracy of 1-best (or k-best) parse tree(s) for input sentences
- Forest-to-string extends T2S by using (pruned) parse forest as input

- Algorithm is identical to T2S except for rule matching step
- "Forest-based Translation" (Mi et al., 2008)

Forest-to-String

ullet Using forest gives better speed-quality trade-off than using k-best trees

(Figure taken from Mi et al., 2008)

Syntax-based Statistical Machine Translation

172

Tree Transformation

- Adapting training data for syntax-based MT is active area of research (tree binarization, label coarsening / refinement, word alignment edits)
- "Transforming Trees to Improve Syntactic Convergence" (Burkett and Klein, 2012) proposes tree restructuring method to improve rule extraction:

(Figure taken from Burkett and Klein, 2012)

Tree Transformation

• Defines six classes of transformation

- Error-based learning method using GHKM frontier node count as metric
- Sequence of transformations learned from subset of training data then applied to full corpus
- \bullet Gain of 0.9 $\rm BLEU$ over baseline on Chinese to English; outperforms simple left and right binarization

Syntax-based Statistical Machine Translation

174

Dependency

A different view on syntax

SCFG phrase structure

Syntactic dependency grammar

Phrase Structure is not Enough

syntactically well-formed

semantically implausible

Syntax-based Statistical Machine Translation

176

Dependency in SCFG

• Add head word to constituents

• Add mapping of head words to rules

$$VP(w_1) \rightarrow V(w_1) NP(w_2)$$

requires identification of head child

Semantic Plausibility

Score each lexical relationship

- Rule: $VP(chews) \rightarrow V(chews) NP(dogs)$
 - Feature: $VP(chews) \rightarrow V-HEAD(chews)$ **OK**
 - Feature: $VP(chews) \rightarrow NP(dog)$ BAD
- Rule: $S(chews) \rightarrow NP(bone) VP(chews)$
 - Feature: $S(chews) \rightarrow NP(bone)$ BAD
 - Feature: S(chews)→V-HEAD(chews) OK

Syntax-based Statistical Machine Translation

178

Informed by Source

- Languages with case marking
 - different word order
 - same dependency relationships

• Give preference to translations that preserve dependency relationships

Verb Frames

- Check if full verb frame is properly filled
 - intransitive / transitive / ditransitive
 - not just binary relationships
 - appropriate type of subjects / objects
- However: tracking verb frame is not trivial

Syntax-based Statistical Machine Translation

180

Towards Semantics

- Different syntax same verb-noun semantic relationships
 - The bone is chewed by the dog.
 - The dog chews the bone.
 - The bone, the dog chews.
 - A dog chewed a bone.
- Even more abstract representations
 e.g., Abstract Meaning Representation (AMR):

```
(c / chew-01
  :arg0 (d / dog)
  :arg1 (b / bone))
```

• Generation of these types of representation open research problem

String-to-Dependency: Shen et al. (2008)

- Hiero rules but with unlabelled dependencies on target side
- Target-side allowed one head to which floating dependencies can attach

• "A New String-to-Dependency Machine Translation Algorithm with a Target Dependency Language Model" (Shen et al., 2008)

Syntax-based Statistical Machine Translation

182

String-to-Dependency

- Decoding algorithm modified to combine dependency structures.
- Restriction to well-formed rules reduces grammar size from 140M to 26M rules (no significant effect on translation quality).
- Gains of 1.2 BLEU on Zh-En from addition of dependency LM (Markov model over dependency heads).

References

- Parsing and Hypergraphs
 Dan Klein and Christopher Manning. IWPT 2001.
- What's in a Translation Rule?
 Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. HLT-NAACL 2004.
- A Hierarchical Phrase-based Model for Statistical Machine Translation David Chiang. ACL 2005.
- Better k-best Parsing
 Liang Huang and David Chiang. IWPT 2005.
- Syntax Augmented Machine Translation via Chart Parsing Andreas Zollmann and Ashish Venugopal. WMT 2006.
- Synchronous Binarization for Machine Translation
 Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight. NAACL 2006.
- Hierarchical Phrase-Based Translation
 David Chiang. Computational Linguistics 2007.

Syntax-based Statistical Machine Translation

184

References

- A New String-to-Dependency Machine Translation Algorithm with a Target Dependency Language Model
 Libin Shen, Jinxi Xu, and Ralph Weischedel. ACL 2008.
- Forest-Based Translation
 Haitao Mi, Liang Huang, and Qun Liu. ACL 2008.
- Efficient Parsing for Transducer Grammars

 John DeNero, Mohit Bansal, Adam Pauls, and Dan Klein. NAACL 2009.
- SCFG Decoding Without Binarization
 Mark Hopkins and Greg Langmead. EMNLP 2010.
- Learning to Translate with Source and Target Syntax David Chiang, ACI 2010.
- Issues Concerning Decoding with Synchronous Context-free Grammar Tagyoung Chung, Licheng Fang, and Daniel Gildea. ACL 2011.
- Transforming Trees to Improve Syntactic Convergence David Burkett and Dan Klein. EMNLP 2012.

References

- Grouping Language Model Boundary Words to Speed K-Best Extraction from Hypergraphs Kenneth Heafield, Philipp Koehn, and Alon Lavie. NAACL 2013.
- Tree Transduction Tools for cdec
 Austin Matthews, Paul Baltescu, Phil Blunsom, Alon Lavie, Chris Dyer. PBML Vol 102.
 (2014)
- A CYK+ Variant for SCFG Decoding Without a Dot Chart Rico Sennrich. SSST 2014.

Syntax-based Statistical Machine Translation

186