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What Do We Mean by Syntax-based SMT?

e “Syntax-based” is a very inclusive term. It refers to a large family of approaches:

— Hiero, syntax-directed MT, syntax-augmented MT, syntactified phrase-
based MT, tree-to-string, string-to-dependency, dependency treelet-based,
soft syntax, fuzzy tree-to-tree, tree-based, . . .

e We mean that the translation model uses a tree-based representation of
language.

— We don't count syntax-based preordering or syntactic LMs.

e We will focus on four widely-used approaches:

1. Hierarchical phrase-based 3. String-to-tree
2. Tree-to-string 4. Tree-to-tree
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Why Use Syntax?

e Many translation problems can be best explained by pointing to syntax
— reordering, e.g., verb movement in German—English translation
— long distance agreement (e.g., subject-verb) in output

e Encourage grammatically coherent output

e Important step towards more linguistically motivated models (semantics)

e State-of-the art for some language pairs

— Chinese-English (NIST 2008)
— English-German (WMT 2012)
— German-English (WMT 2013)
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Statistical Machine Translation

Given a source string, s, find the target string, t*, with the highest
probability according to a distribution p(¢|s):

t* = argmaxy p(t|s)

1. Model a probability distribution p(t|s)
2. Learn the parameters for the model

3. Find or approximate the highest probability string ¢*
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Statistical Machine Translation

1. Model a probability distribution p(t|s)

e How is syntax used in modelling?

2. Learn the parameters for the model

e What are the parameters of a syntax-based model?

3. Find or approximate the highest probability string ¢*

e How do we decode with a syntax-based model?
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Modelling p(t|s)

e Most SMT models use Och and Ney's (2002) log-linear formulation:

exp (an\le Amhm (2, s))
> oy €xp (fo:l AP (F, s))

h1, ..., hys are real-valued functions and A4, ..., Ay are real-valued constants

p(tls) =

e Denominator can be ignored during search:

t* = arg mtaxp(t|5)

M
= argmax Z Amhin(t, )

m=1
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Modelling p(t|s)

M
t* = argm?XZ)\mhm(t,s) (1)

m=1

e In word-based models, s and t are modelled as sequences of words.
e In phrase-based models, s and t are modelled as sequences of phrases.

e So what about syntax-based models?
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Hierarchical Phrase-based MT

Like phrase pairs. . .

Fir | | britische Skandale [dieser nicht besonders schlupfrlg

As [ British political scandals ] [ go, th&] not partlcularly jmcy

But with nesting:

Fur | britische Skandale nicht besonders - ’ ’
not particularly m ’ ’

ist dieser

As[ British political scandals ]go , this one is
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Hierarchical Phrase-based MT

Hierarchical phrase pairs:

ist dieser [ nicht besonders ] ’
T T
\ | |

1 T
‘ , this one is [not particularly ] ’

are modelled using Synchronous Context-Free Grammar (SCFG):

X — st dieserXy | , this one is Xy
X — nicht besonders Xy | not particularly X,

X — schlipfrig | juicy
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Hierarchical Phrase-based MT

deshalb e [ Werbung ] ’ [unzutreﬂend ] und [ irrefihrend ]’
VA 1 T
| ~ C\ |

[ unfounded ] and [ misle‘ading ]’

therefore the[advenisement] [ was ]

Rules can include up to two non-terminals:

X — deshalb Xy die Xy | therefore the Xo X4

X — XjundXs | Xy andXs
Glue rules concatenate hierarchical phrases:

S—>X1|X1

S — 81X2’81X2
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Hierarchical Phrase-based MT

e Synchronous Context-Free Grammar:

Rewrite rules of the form (A, B) — («a, 3, ~)

— A and B are source and target non-terminals, respectively

— « and (3 are strings of terminals and non-terminals for the source and target
sides, respectively.

— ~ is a one-to-one correspondence between source and target non-terminals.

e Hiero grammars are a special case of SCFG:

— One non-terminal type, X, on source side
— Two non-terminal types, X and s, on target side
— Various restrictions on rule form (see Chiang (2007))
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SCFG Derivation

S1 S1

e Derivation starts with pair of linked S symbols.

Syntax-based Statistical Machine Translation 12
SCFG Derivation
S1 | S1
= So X3 So X3
® S — Sy Xg | S1Xo (glue rule)
Syntax-based Statistical Machine Translation 13



SCFG Derivation

S1 | S1
= S2X3 | S2 X3

= S9 X4 und X5 | S9 X4 and X5

e X — Xy und Xe | X1 and Xg
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SCFG Derivation
s1 | s1
= S2 X3 | S2X3
= Sy X4 und X5 | Sz X4 and Xs

= Sy unzutreffend und X5 | Sz unfounded and X

e X — unzutreffend | unfounded

14
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SCFG Derivation
S1 | S1
= S2 X3 | S2X3
= S3 X4 und X5 | Sz X4 and Xs
= Sy unzutreffend und X5 | Sz unfounded and X
=

So unzutreffend und irrefilhrend | So unfounded and misleading

e X — irrefiihrend | misleading
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SCFG Derivation
S1 | S1
S2 X3 | S2 X3

So X4 und X5 | Sz X4 and Xs

=

=

= Sy unzutreffend und X5 | S unfounded and X

= So unzutreffend und irrefiihrend | So unfounded and misleading
=

Xg unzutreffend und irrefihrend | Xg unfounded and misleading

e S—X; | Xy (glue rule)
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SCFG Derivation

s1 | s1
= S2 X3 | S2X3
= S3 X4 und X5 | Sz X4 and Xs
= Sy unzutreffend und X5 | Sz unfounded and X
= So unzutreffend und irrefiihrend | So unfounded and misleading
= Xg unzutreffend und irrefihrend | Xe unfounded and misleading
= deshalb X7 die Xg unzutreffend und irrefihrend

e X — deshalb X1 die Xo | therefore the Xo X3

| therefore the Xg X7 unfounded and misleading

(non-terminal reordering)
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SCFG Derivation
s1 | s1
= S2 X3 | S2X3
= Sy X4 und X5 | Sz X4 and Xs
= Sy unzutreffend und X5 | S unfounded and X
= So unzutreffend und irrefihrend | So unfounded and misleading
= Xg unzutreffend und irrefihrend | Xe unfounded and misleading
= deshalb X7 die Xg unzutreffend und irrefihrend
| therefore the Xg X7 unfounded and misleading
= deshalb sei die Xg unzutreffend und irrefihrend
| therefore the Xg was unfounded and misleading
e X — sei | was
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SCFG Derivation

s1 | s
= S3 X3 | S2X3
= Sy X4 und X5 | Sz X4 and Xs
= Sy unzutreffend und X5 | S unfounded and Xs
= Sy unzutreffend und irrefihrend | So unfounded and misleading
= Xg unzutreffend und irrefihrend | Xe unfounded and misleading
= deshalb X7 die Xg unzutreffend und irrefihrend

| therefore the Xg X7 unfounded and misleading

4

deshalb sei die Xg unzutreffend und irrefiihrend
| therefore the Xg was unfounded and misleading

= deshalb sei die Werbung unzutreffend und irrefihrend
| therefore the advertisement was unfounded and misleading

e X — Werbung | advertisement
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Hierarchical Phrase-based MT

o \We can now define the search in terms of SCFG derivations

M
tr = argm?XZ)\mhm(t,s)

m=1

M
= arg mfxz Z Amhim (L, s, d)

d m=1

d € D, the set of synchronous derivations with source s and yield t.

e In practice, approximated with search for single-best derivation:

M
d* = argmngAWLh,n(t,s,d)

m=1

20
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Hierarchical Phrase-based MT

e Search for single-best derivation:

M
s = argmng)\mhm(t,s,d) (3)

m=1

e Rule-local feature functions allow decomposition of derivation scores:
hn(d) = Y (74)
L

e But n-gram language model can't be decomposed this way. . .

M
d" = arg ngX A1 IngLM(d) + Z Z )\W’Lhﬂl(ri) (4)

r; m=2

Syntax-based Statistical Machine Translation 22

Hierarchical Phrase-based MT

e Summary so far:

— Generalizes concept of phrase pair to allow nested phrases

— Formalized using SCFG

— No use of linguistic annotation: syntactic in a purely formal sense
— Model uses standard SMT log-linear formulation

— Search over derivations

o Later:

— Rule extraction and scoring
— Decoding (search for best derivation)

— k-best extraction
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Tree-to-String

Hierarchical phrase pairs but with embedded tree fragments on the source side:

- =
VAFIN NP-SB A PPl
/

'
|

- | ist PDS

APPR ADJA ' AVP NG

1 1 |

| | dieser

far britische PTKNEG

I \ nlcht besonders

1 \
[As British political - go | , this one is | not particularly ’

Each source subphrase is a complete subtree.
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Tree-to-String

Formalized using Synchronous Tree-Substitution Grammar (STSG):

PP-MO
PN PP-MP
- ~ .y
=F | APPR ADJA <—» as British X1 go
APPR ADJA
i i far  britische
far britische

As British political - go] Skar!dale <—» scandals

Syntax-based Statistical Machine Translation 25



Tree-to-String

Synchronous Tree Substitution Grammar (STSG):

— Grammar rules have the form (7, ~)

— 7 is a tree with source terminal and non-terminal leaves

— v is a string! of target terminals and non-terminals

— ~ is a one-to-one correspondence between source and target non-terminals.

Unlike Hiero:

— Linguistic-annotation (on source-side)
— No limit to number of substitution sites (non-terminals)
— No reordering limit during decoding

1Technically, a 1-level tree formed by adding X as the root and the symbols from -y as children.
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Tree-to-String

Derivation involves synchronous rewrites (like SCFG)

Tree fragments required to match input parse tree.

— Motivation: tree provides context for rule selection (“syntax-directed”)

Efficient decoding algorithms available: source tree constrains rule options

Search for single-best derivation:
M
d* = arg max A logpra(d) + 2: mZ_:Z AP (77)

where source-side of d must match input tree
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String-to-Tree

Hierarchical phrase pairs but with embedded tree fragments on the target side:

)

not particularly

]

Each target subphrase is a complete subtree.
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String-to-Tree

Formalized using STSG:

SBAR
IN S

UrXi <> as ﬁ\vp

|
VBP
|
go

-———————E\

NP

7T~
britische Skandale <  JJ JJ NNS

| | |
British political scandals

[
7]

Or SCFG:

SBAR — fiirx; | asNPj go

NP — britische Skandale | British political scandals

Syntax-based Statistical Machine Translation 29



String-to-Tree

e Derivation is a rewriting process, like hierachical phrase-based and tree-to-string

— Rewrites only allowed if target labels match at substitution sites
— Internal tree structure not used in derivation (hence frequent use of SCFG)

— Motivation: constraints provided by target syntax lead to more fluent output

e Later:

— Rule extraction and scoring
— Decoding (Hiero will be special case of S2T)

— k-best extraction (likewise)
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Tree-to-Tree

Hierarchical phrase pairs but with embedded tree fragments on both sides:

—————--5,

NNS
|

scandals

o
7]

Formalized using STSG
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Tree-to-Tree

Differences in source and target syntactic structure increasingly important

APPR ADJA NN
1 1

PP-MO
- -~

| | |
fiar britische  |Skandale

———==--=

NP VP
- T~ |
-7 = |
JJ JJ NNS VBP
| | | |
British  political scandals ) go

Can be differences in treebank annotation style or simply differences in language

choice
Syntax-based Statistical Machine Translation 32
Summary So Far

e We have introduced four models:
Model Formalism Source Syntax Target Syntax Input
Hiero SCFG N N string
T2S STSG Y N tree
S2T STSG or SCFG N Y string
T2T STSG Y Y tree

o Next:

— Rule extraction
33
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Part Il - Rule Extraction
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Learning Synchronous Grammars

e Extracting rules from a word-aligned parallel corpus

e First: Hierarchical phrase-based model

— only one non-terminal symbol X
— no linguistic syntax, just a formally syntactic model

e Then: Synchronous phrase structure model

— non-terminals for words and phrases: NP, VP, PP, ADJ, ...
— corpus must also be parsed with syntactic parser
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Extracting Phrase Translation Rules

S
26 <
o O 9
£ 5 =y
3 & 2
[} S O ®
c o)
C o 2 EG
£ 9 £ @ ¢c c 5
22T o< ®
|
shall I p» shall be = werde
be
passing
on
to
you
some
comments
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Extracting Phrase Translation Rules

3
28 c
225
S c g.% %
c5202E%
L z2£ T o<
I
shall
be
passing
on
to
you
some | .. some comments =
comments die entsprechenden Anmerkungen
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Extracting Phrase Translation Rules

=

o)

o°

=

©

<

(&)

@ o
c S

P o 2
£ 0 € O ¢
L 2 £ 35 o

Anmerkungen
aushandigen

I

shall

be
passing
on

to

you

some
comments

p» werde Ihnen die entsprechenden
Anmerkungen aushandigen
= shall be passing on to you
some comments
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Extracting Hierarchical Phrase Translation Rules
&
T £
S > o
c £ 9
8 22
85 588 subtracting
S2E85%3 subphrase
|
shall
be
passing p» werde X aushandigen
on = shall be passing on X
to
you
some
comments
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Formal Definition

e Recall: consistent phrase pairs

(e, f) consistent with A <
Ve;€e:(enfj)EA—fi€f
ANDVf; € f:(e;fj) €A —e €é
AND Je; €6, f; € fi(ei fi) €A

e Let P be the set of all extracted phrase pairs (¢, f)
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Formal Definition

e Extend recursively:

if (e, f) € P AND (&sus, fsus) € P
AND € = €éppg + €sup + €posr
AND J(T = fPRE + J?sma + fP()ST
AND € # €sy5 AND f # foun

add (ePRE + X + eposrs fPRE + X+ fP()ST) to P

(nOte: any of epr, €post, fere, OF frosr may be emptY)

e Set of hierarchical phrase pairs is the closure under this extension mechanism
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Comments

e Removal of multiple sub-phrases leads to rules with multiple non-terminals,
such as:

Y — X1 Xo | X9 of X4

e Typical restrictions to limit complexity [Chiang, 2005]

— at most 2 nonterminal symbols
— at least 1 but at most 5 words per language
— span at most 15 words (counting gaps)
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Learning Syntactic Translation Rules

o

S

>
é5/5’\>
r < a < z _.
| o = Z T
o .. c
L O - < 5 . @
o <
[SE) a2 E G5
£ 0 € 0 ¢ c 5
Lzt o<®

PRP |
s<
ﬁ MD shall

VP VB be
VP \/ VBG passing _
PRO — PP
RP ONn
| PN
VP PP(TO to Thnen TO PRP
PRP yoOUu

I
to you

DT some
NNS comments

N
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Constraints on Syntactic Rules

Same word alignment constraints as hierarchical models

Hierarchical: rule can cover any span
< syntactic rules must cover constituents in the tree

Hierarchical: gaps may cover any span
& gaps must cover constituents in the tree

Much fewer rules are extracted (all things being equal)
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Impossible Rules

o

T
ADJ %
VVFIN

z

= o
Q:%E z
b - o e z T
o T .. c
L O - < 5 . @

he) <

= 0 2 E @
C 0O € O ¢ c 5
L' 2B o< ®

PRP |
S ﬁ P T R D I P B > English span not a constituent

vp VB be no rule extracted
VP BG passing
RP ON
V

v
P T0 to
PP(

PRP yoOU
DT some
NNS comments

N
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Rules with Context

T

-U
4
T i
VFIN

E A >

< - - . .
G2e, 23 Rule with this phrase pair
o 8 c < ’5_ q g . .
c 58 LL2ED requires syntactic context
L' 2T o<

VP vB be SN N
. VAFIN VP MD VP

VP VBG passing | | A
RP ONn werde — shall vB vp

|

VP TO tO b

PP{ e

PRP yoOU

DT some
NNS comments

PRP |
S
ﬁmo shall SEF EXE EER TEL EET! EERTREE > VP VP

N
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Too Many Rules Extractable

Huge number of rules can be extracted

(every alignable node may or may not be part of a rule — exponential number of rules)

Need to limit which rules to extract

Option 1: similar restriction as for hierarchical model

(maximum span size, maximum number of terminals and non-terminals, etc.)

Option 2: only extract minimal rules ("GHKM" rules)
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Minimal Rules

S
vp
VP
VP
PP NP
PR S
PRP MD VB VBG RP TO PRP DT NNS

I I | | | | | I \
I shall be passing on to you some comments

Ich werde Thnen die entsprechenden Anmerkungen aushindigen

Extract: set of smallest rules required to explain the sentence pair
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Lexical Rule
S
\5
vpP
vp
PP NP
/\ /\
PRP MD VB VBG RP TO PRP DT NNS
| | I | | | | | \
I shall be passing on to you some comments
e T R
Ich werde Thnen die entsprechenden Anmerkungen aushindigen
Extracted rule: PRP — Ich | I
Syntax-based Statistical Machine Translation 49



Lexical Rule

S
VP
VP
VP
pp NP
s PR

PRP MD VB VBG RP TO PRP DT NNS

I I I | | | I I \

I shall ~be passing on to [ you’ some comments

------
A ..t L .°

Ich werde (hnen die entsprechenden Anmerkungen aushindigen

Extracted rule: PRP — Thnen | you

Syntax-based Statistical Machine Translation 50
Lexical Rule
S
vp
vpP
P
PP NP
/\ /\
PRP MD VB VBG RP TO PRP DT NNS
I I I | | | I I \
I  shall be passing on to | you 'some comments
PR
B T TRl
Ich werde (Ihnen (die entsprechenden Anmerkungen aushidndigen
Extracted rule: DT — die | some
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Lexical Rule

S
VP
VP
VP
PP NP
s S

PRP MD VB  VBG RP TO [fPRP\ [ DT NNS

I I I I | | I I \

I  shall be passing on to [ you 'some comments
g R e et
. . .” g st . o820, .°

. H
,*° o _ae="" .-
------ .

Ich werde (Thnen (die entsprechenden ~Anmerkungen aushindigen

Extracted rule: NNS — Anmerkungen | comments
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Insertion Rule
S
vp
vpP
P
PP NP
/\
PRP MD VB VBG RP TO DT NNS
I I I | | | I \
[ shall be passing on to | you' 'some comments
’o' l,' “'." -..""-:-:.:;_'.:—:':':'z.:-:-:: ------ "',‘
. ':,"’ __.--"-_-_-,.--"----- ..--:::::;QE;...
Ich werde (Ihnen (die entsprechenden Anmerkungen aushidndigen
Extracted rule: PP — X | to PRP
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Non-Lexical Rule

S
VP
VP
VP
R NP
/\
PRP MD VB VBG RP DT NNS
I I | | | I \

Ich werde die entsprechenden Anmerkungen aushéndigen

Extracted rule: NP — X3 Xo | DT NNSg
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Lexical Rule with Syntactic Context
S
VP
VP
VP
/PI’N
/\
PRP MD VB VBG RP TO DT NNS
I I | I | | I \
I shall be passing on to some comments
Ich werde die entsprechenden Anmerkungen aushédndigen
Extracted rule: VP — X; Xo aushéndigen | passing on PPy NPy
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Lexical Rule with Syntactic Context

S

VP

PRP MD VB VBG

NNS

\
comments

.

Extracted rule: vP — werde X | shall be vp (ignoring internal structure)
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Non-Lexical Rule
S
VP
VP
VP
PRP  MD VB VBG NNS
T \
I [shall be passing on comments
Ich werde
Extracted rule: s — X; Xo | PRP; VPy
DONE — note: one rule per alignable constituent
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Unaligned Source Words

S
VP
VP
_————
/ ppP
S
PRP MD VB TO DT NNS

| | | | | | | \
I shall l:_>e )

.=
_____

. .

. . e SN .
. . el jee=" .-

- - -
. ¢ .l _Le="" .-

., - -
“° el -eFC et et TEmea

. .
.- .

Ich werde ([hnen (die entsprechenden ~Anmerkungen

¥

Attach to neighboring words or higher nodes — additional rules

Syntax-based Statistical Machine Translation

Too Few Phrasal Rules?

58

e Lexical rules will be 1-to-1 mappings (unless word alignment requires otherwise)

e But: phrasal rules very beneficial in phrase-based models

e Solutions

— combine rules that contain a maximum number of symbols
(as in hierarchical models, recall: " Option 1")

— compose minimal rules to cover a maximum number of non-leaf nodes

Syntax-based Statistical Machine Translation
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Composed Rules

e Current rules X1 Xo = NP
—_—
DT1 NNSp
die = DT entsprechenden Anmerkungen = NNS
| |
some comments

e Composed rule

die entsprechenden Anmerkungen = NP

—

DT NNS
| ‘
some comments

(1 non-leaf node: NP)

Syntax-based Statistical Machine Translation 60

Composed Rules

e Minimal rule: X7 X9 aushandigen = VP
PRP PRP PP; NPy
|

3 non-leaf nodes: -
passing on

VP, PP, NP
e Composed rule: Ihnen x; aushindigen = VP
—
PRP  PRP PP NPy
—

3 non-leaf nodes:

' |
VP. PP and NP passing on TO PRP

|
to you
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Relaxing Tree Constraints

e Impossible rule
X = MD VB

Wefde shall bé

e Create new non-terminal label: MD+VB

= New rule
X = MD-+VB
werde MD VB
shall be
Syntax-based Statistical Machine Translation 62

Zollmann Venugopal Relaxation

If span consists of two constituents , join them: X+4Y

If span conststs of three constituents, join them: X+Y-+2Z

If span covers constituents with the same parent x and include

— every but the first child v, label as x\Y
— every but the last child v, label as X/Y

For all other cases, label as FAIL

= More rules can be extracted, but number of non-terminals blows up
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Special Problem: Flat Structures

e Flat structures severely limit rule extraction

NP

DT NNP NNP NNP NNP

the Isréeli Prime Minister Shafon

e Can only extract rules for individual words or entire phrase
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Relaxation by Tree Binarization
NP
I
DT NP
the NNP NP
Israeli NNP NP
" —
Prime NNP NNP
Minister Sharon
More rules can be extracted
Left-binarization or right-binarization?
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Scoring Translation Rules
e Extract all rules from corpus

e Score based on counts

— joint rule probability: p(LHS, RHS ¢, RHS,)

— rule application probability: p(RHS ¢, RHS.|LHS)

— direct translation probability: p(RHS.|RHS{, LHS)

— noisy channel translation probability: p(RHS f|RHS,, LHS)
— lexical translation probability: [], ., P(€i|RHSf, @)

Syntax-based Statistical Machine Translation

Part [Il - Decoding

66
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Outline

1. Hiero/S2T decoding (SCFG with string input)

Viterbi decoding with local features (-LM)
k-best extraction

LM integration (cube pruning)

The S2T algorithm, as implemented in Moses

2. T2S decoding (STSG with tree input)

e Vanilla T2S: non-directional, cube pruning
3. T2T decoding (STSG with tree input)

e Included for completeness — better alternatives explored later
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Viterbi S2T Decoding (-LM)
Objective Find the highest-scoring synchronous derivation d*
Input S$182 ... Sp,
1 Ci — a1 | B wy
) Co — az| B wa
Grammar T3 Cs — asz | B3 w3
na Cla = a | B wia|
e C;, a; and (3; are LHS, source RHS, target RHS of rule r;, respectively.
e w; is weight of rule r; (weighted product of rule-local feature functions).
e |G| is the number of rules in the grammar G.
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Viterbi S2T Decoding (-LM)

Objective Find the highest-scoring synchronous derivation d*

Solution
1. Project grammar
Project weighted SCFG to weighted CFG
f: G — G’ (many-to-one rule mapping)

2. Parse
Find Viterbi parse of sentence wrt G’

3. Translate
Produce synchronous tree pair by applying inverse
projection f’
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Example
Input jemand muBte Josef K. verleumdet haben
ri: NP —  Josef K. | Josef K. 0.90
ro: VBN —  werleumdet | slandered 0.40
rs: VBN — wverleumdet | defamed 0.20
Grammar IR VP —  mufte X1 X haben | must have VBNg NPy 0.10
r5: S — jemandX; | someone VvPy 0.60
rg: S — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
o s — jemand mufte X; Xo haben | NPy must have been VBNy by someone 0.05
(Six derivations in total)
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Example

Input jemand muBte Josef K. verleumdet haben
= 7y NP —  Josef K. | Josef K. 0.90
=719 VBN — wverleumdet | slandered 0.40
rs: VBN — wverleumdet | defamed 0.20
Grammar = 1y VP —  mufte X1 Xo haben | must have VBNg NPy 0.10
= T3 S — jemandX; | someone vPy 0.60
T6: S — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
7 s — jemand mufte X; Xo haben | NPy must have been VBNy by someone 0.05
Source Target
X s
Derivation 1 : i
muBte X X haben must have VBN NP
Josef K. verleumdet slandered Josef K.
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Example
Input jemand muBte Josef K. verleumdet haben
= 7y NP —  Josef K. | Josef K. 0.90
re: VBN  —  verleumdet | slandered 0.40
= r3: VBN — werleumdet | defamed 0.20
Grammar = 1y VP —  mufte X1 X haben | must have VBNg NPy 0.10
= T3 S — jemandX; | someone VvPy 0.60
T6: S — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
o s — jemand mufte X; Xo haben | NPy must have been VBNy by someone 0.05
Source Target
X s
Derivation 2 Jemand X someone bl
muBte X X haben must have VBN NP
Josef K. verIeL‘dem defamed Josef K.
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Example

Input jemand muBte Josef K. verleumdet haben
= 7y NP —  Josef K. | Josef K. 0.90
=719 VBN — wverleumdet | slandered 0.40
rs: VBN — wverleumdet | defamed 0.20
Grammar IR VP —  mufte X1 Xo haben | must have VBNg NPy 0.10
5 S — jemandX; | someone vPy 0.60
= rg: S — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
7 s — jemand mufte X; Xo haben | NPy must have been VBNy by someone 0.05
Source Target
X S
Derivation 3 jemand muBte X X haben someéone must have VI‘SN NP
Josef K. verleumdet slandered Josef K.
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Example
Input jemand muBte Josef K. verleumdet haben
= 7y NP —  Josef K. | Josef K. 0.90
re: VBN  —  verleumdet | slandered 0.40
= r3: VBN — werleumdet | defamed 0.20
Grammar IR VP —  mufte X1 X haben | must have VBNg NPy 0.10
r5: S — jemandX; | someone VvPy 0.60
= rg: S — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
o s — jemand mufte X; Xo haben | NPy must have been VBNy by someone 0.05
Source Target
X s
Derivation 4 jemand muBte X X haben soméone must have VI‘SN NP
Josef K. verleumdet defamed Josef K.
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Example

Input jemand muBte Josef K. verleumdet haben
= 7y NP —  Josef K. | Josef K. 0.90
=719 VBN — wverleumdet | slandered 0.40
rs: VBN — wverleumdet | defamed 0.20
Grammar IR VP —  mufte X1 Xo haben | must have VBNg NPy 0.10
5 S — jemandX; | someone vPy 0.60
T6: S — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
= 7y s — jemand mufte X; Xo haben | NPy must have been VBNy by someone 0.05
Source Target
X S
Der|Vat|On 5 jemand muBte X X haben NP must have been VBN by someone
Josef K. verlel‘Amdet Josef K. slandered
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Example
Input jemand muBte Josef K. verleumdet haben
= 7y NP —  Josef K. | Josef K. 0.90
re: VBN  —  verleumdet | slandered 0.40
= r3: VBN — werleumdet | defamed 0.20
Grammar IR VP —  mufte X1 X haben | must have VBNg NPy 0.10
r5: S — jemandX; | someone VvPy 0.60
T6: S — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
= 7y s — jemand mufte X; Xo haben | NPy must have been VBNy by someone 0.05
Source Target
X S
Der|Vat|On 6 jemand muBte X X haben NP must have been VBN by someone
Josef K. verlel‘Amdet Josef K. defamed
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Step 1: Project Grammar to CFG

r: NP —  Josef K. | Josef K. 0.90

ro: VBN —  verleumdet | slandered 0.40

rs: VBN — verleumdet | defamed 0.20

G Ty VP —  muflte X1 Xa haben | must have VBNg NPy 0.10
5 S — jemandX; | someone VPy 0.60

r6: s — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80

T S — jemand mufte X1 Xo haben | NPy must have been VBN; by someone 0.05

q: NP —  Josef K. 0.90

q2: VBN —  wverleumdet 0.40

G’ q3: VP —  mujSte NP VBN haben 0.10
q4: S — jemand VP 0.60

qs5: S — jemand mufite NP VBN haben 0.80

e (i is original synchronous grammar, G’ is monolingual projection
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Step 1: Project Grammar to CFG

= 7y NP —  Josef K. | Josef K. 0.90

ro: VBN —  verleumdet | slandered 0.40

rs: VBN — verleumdet | defamed 0.20

G Ty VP —  muflte X1 Xa haben | must have VBNg NPy 0.10
5 S — jemandX; | someone VPy 0.60

r6: s — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80

T S — jemand mufte X1 Xo haben | NPy must have been VBN; by someone 0.05

= q NP —  Josef K. 0.90

q2: VBN —  wverleumdet 0.40

G’ q3: VP —  mujSte NP VBN haben 0.10
q4: S — jemand VP 0.60

qs: S — jemand mufite NP VBN haben 0.80

e Projected rule gets LHS and source RHS (but with target non-terminal labels)
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Step 1: Project Grammar to CFG

r: NP —  Josef K. | Josef K. 0.90

= r9: VBN — wverleumdet | slandered 0.40

= r3: VBN — wverleumdet | defamed 0.20

G Ty VP —  muflte X1 Xa haben | must have VBNg NPy 0.10
5 S — jemandX; | someone VPy 0.60

r6: s — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80

T S — jemand mufte X1 Xo haben | NPy must have been VBN; by someone 0.05

q: NP —  Josef K. 0.90

= @2 VBN — wverleumdet 0.40

G’ q3: VP —  mujSte NP VBN haben 0.10
q4: S — jemand VP 0.60

qs5: S — jemand mufite NP VBN haben 0.80

e Many-to-one: weight of projected rule is the best from set of projecting rules
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Step 1: Project Grammar to CFG

r: NP —  Josef K. | Josef K. 0.90
ro: VBN —  verleumdet | slandered 0.40
rs: VBN — verleumdet | defamed 0.20
G = 1y VP —  muflte X1 Xa haben | must have VBNg NPy 0.10
5 S — jemandX; | someone VPy 0.60
r6: s — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
T S — jemand mufte X1 Xo haben | NPy must have been VBN; by someone 0.05
q: NP —  Josef K. 0.90
q2: VBN —  wverleumdet 0.40
G’ = q3: VP —  mujSte NP VBN haben 0.10
q4: S — jemand VP 0.60
qs: S — jemand mufite NP VBN haben 0.80

e Target non-terminal labels projected to monolingual rule (in source order)
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Step 1: Project Grammar to CFG

r: NP —  Josef K. | Josef K. 0.90
ro: VBN —  verleumdet | slandered 0.40
rs: VBN — verleumdet | defamed 0.20
G Ty VP —  muflte X1 Xa haben | must have VBNg NPy 0.10
=75 S — jemandX; | someone VPy 0.60
r6: s — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
T S — jemand mufte X1 Xo haben | NPy must have been VBN; by someone 0.05
L NP —  Josef K. 0.90
, q2: VBN —  wverleumdet 0.40
G q3: VP —  mujSte NP VBN haben 0.10
= q4: S — jemand VP 0.60
qs5: S — jemand mufite NP VBN haben 0.80
e And soon. ..
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Step 1: Project Grammar to CFG
r: NP —  Josef K. | Josef K. 0.90
ro: VBN —  verleumdet | slandered 0.40
rs: VBN — verleumdet | defamed 0.20
G Ty VP —  muflte X1 Xa haben | must have VBNg NPy 0.10
5 S — jemandX; | someone VPy 0.60
= 16t s — jemand mufte X1 Xo haben | someone must have VBN NPy 0.80
= 17 S — jemand mufte X1 Xo haben | NPy must have been VBN; by someone 0.05
L NP —  Josef K. 0.90
, q2: VBN —  wverleumdet 0.40
G q3: VP —  mujSte NP VBN haben 0.10
q4: S — jemand VP 0.60
= g5 S — jemand mufite NP VBN haben 0.80
e And so on.
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Step 2: Find Viterbi Parse

=y

CYK+/ Earley

Input
Sentence

e Standard weighted parsing algorithms.
e Binarization can be explicit (like CYK) or implicit (like Earley / CYK+)
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Step 3: Reconstruct Synchronous Derivation

1-best parse tree Source-side parse tree

jemand muBte NP VBN  haben

Josef K. verleumdet
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Step 3: Reconstruct Synchronous Derivation

1-best parse tree Source-side parse tree
S X
jemand muBte NP VBN  haben [:> jemand muBte X X haben
Josef K. verleumdet Josef K. verleumdet

e Source-side: replace non-terminals with Xs

Syntax-based Statistical Machine Translation

Step 3: Reconstruct Synchronous Derivation

1-best parse tree Source-side parse tree

jemand muBte NP VBN  haben

Josef K. verleumdet

e Target-side: invert grammar projection

86
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Step 3: Reconstruct Synchronous Derivation

1-best parse tree Source-side parse tree

Bte VE|;N haben [:">
verleumdet

e Target-side: invert grammar projection

jemand mu

NP — Josef K. | Josef K.
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Step 3: Reconstruct Synchronous Derivation

1-best parse tree Source-side parse tree

jemand muBte/NP\ VTN haben [:J‘> NP VBN
Josef K. Jverleumdet Jos/ef\K_ slanc!ered

e Target-side: invert grammar projection (multiple rules? pick highest-scoring)

VBN —  wverleumdet | slandered 0.4
VBN —  werleumdet | defamed 0.2
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Step 3: Reconstruct Synchronous Derivation

1-best parse tree Source-side parse tree

jemand mufite NP VBN someone must have VBN

Josef K. verleumdet slandered Josef K.

e Target-side: invert grammar projection (multiple rules? pick highest-scoring)

s — jemand mufte X; Xo haben | someone must have VBNg NP; 0.80
S — jemand mufite X1 Xo haben | NPy must have been VBNg by someone 0.05
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k-best Extraction
Objective Find the k-best synchronous derivations dy, ds, . . . dx

Well. . .

1. 1-best derivation is 1-best monolingual parse tree with best set of translations
2. 2-best and 3-best derivations are (in some order):

(a) 1-best monolingual parse tree with second best set of translations, and
(b) 2-best monolingual parse tree with best translations

3. 4-best derivation is one of. . .

Syntax-based Statistical Machine Translation 91



k-best Extraction
Objective Find the k-best synchronous derivations dy, ds, . . . dx

Well. . .

1. 1-best derivation is 1-best monolingual parse tree with best set of translations
2. 2-best and 3-best derivations are (in some order):

(a) 1-best monolingual parse tree with second best set of translations, and
(b) 2-best monolingual parse tree with best translations

3. 4-best derivation is one of. . .

We know part of the solution: how to get the k-best monolingual
derivations (Huang and Chiang, 2005)
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Digression: Parsing and Hypergraphs

jemand muBte NP VBN  haben jemand VP

Josef K. verleumdet mubte NP VBN haben

Josef K. verleumdet

)

\
ql q2
osen> (K
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Digression: Parsing and Hypergraphs

ql q2
ToweD> (K Toreumdst>

e Generalization of a graph: hyperedges connect two sets of vertices
e Terminology: vertices and hyperedges (nodes and arcs)

e A parse forest can be represented by a rooted, connected, labelled, directed,
acyclic hypergraph (Klein and Manning, 2001)

e Vertices represent parsing states; hyperedges represent rule applications
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Monolingual k-best Extraction

Huang and Chiang (2005) provide efficient algorithms for k-best extraction.

Objective Extract the k-best monolingual derivations dy,ds,...d; from a
weighted parse forest

Outline 1. The 1-best subderivation for every vertex (and its
(alg. 3) incoming hyperedges) is known from the outset

2. Given the i-best derivation, the next best candidate
along the same hyperedge is identical except for a
substitution at a single incoming vertex

3. At the top vertex, generates candidates by recursively
asking predecessors for next best subderivations.

4. Maintain priority queue of candidates at each vertex
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Synchronous k-best Extraction

Replace hyperedges according to f’ (invert grammar projection)

e The standard k-best extraction algorithm now gives the k-best synchronous
derivations.

e The second hypergraph is sometimes called a “translation hypergraph”.

o We'll call the first the “parse forest hypergraph” or the “parse hypergraph.”
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S2T Decoding (LM-) Summary

Objective Find the k-best synchronous derivations dy, ds, . . . dx

Solution 1. Project grammar
Project weighted SCFG to unweighted CFG
f: G — G’ (many-to-one)

2. Parse
Build parse hypergraph wrt G’
3. Invert projection

Expand hypergraph by replacing hyperedges according to f’

4. Extract derivations
Extract k-best derivations using Huang and Chiang's (2005)
algorithm
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LM Integration

Without LM k-best derivation is k-best path through translation
hypergraph

Optimal r2 0.40 r30.20  |f global best path
substructure includes VBN4 4 then
best path must include
hyperedge labelled r;
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LM Integration

Consider the two paths that include the hyperedge labelled r¢:

r22?? r3 22?2

What's the best path through this hypergraph? For bi-gram LM we need to
compute:

have | slandered | Josef p(have | (s)) x p(slandered | have) x p(Josef | slandered) X ...

have | defamed | Josef  p(have | (s)) x p(defamed | have) x p(Josef | defamed) x ...
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State Splitting?
Restore optimal substructure property by splitting states:

S1,6, someone...K.
ré

0.80 +¢c3

T
@ VBNG,5,defamed haben
r r2 3

0.20 + c2

@ o 0.40 +c1
e Vertex labels include first and last words of translation.
e Hyperedges labelled with weights that incorporate LM costs.
e k-best derivation is k-best path.
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State Splitting?

Objective Find the k-best synchronous derivations dy, ds, . .. dj

Potential 1. Project grammar

Solution Project weighted SCFG to weighted CFG f: G — G’
2. Parse

Build parse hypergraph wrt G’

3. Invert projection + split states
Expand hypergraph by replacing hyperedges according
to f’. During replacement, split states and add
LM costs

4. Extract derivations
Extract k-best derivations (Huang and Chiang, 2005)
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State Splitting?

&

95

%

VBNs,5,slandered

e Pick a search vertex for from the set { }
e Pick a search vertex for from the set { [Npsiaslandmd] , [Np5v5,def3medj }

e Pick a synchronous rule from the set f'(g5) = {rs, 77} (i.e. pick a target-side)

The full set is generated by taking the Cartesian product of these three sets.
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The Search Hypergraph is Too Large. . .

The parse hypergraph has O(n?) space constraints (assuming certain grammar
properties. . . )

With a m-gram LM the search hypergraph is much larger:
| Vertices Hyperedges

Parse | O(n?|C)) O(n3|G))
Search O(n2|C||T|2(mfl)) O(n3|G||T|2A(m71))

C' is the set of target non-terminals n is the input sentence length
T is the set of target-side terminals m is the order of the LM
A is the maximum rule arity
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Heuristic Search

e In practice, only part of the search hypergraph can be explored.
e During search, a partial search hypergraph is generated in topological order.
e Three main strategies for reducing search space:
Parse forest pruning Avoid splitting some parse forest hyperedges by pre-
pruning the forest (methods can be exact or inexact).

Heuristic best-first splitting e.g. cube pruning. Use a splitting algorithm
that finds expanded hyperedges in approximately best-first order.

Beam search Bin vertices according to source word span and category. Keep
only the highest-scoring vertices for use later in the search.
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Strategy 1: Parse Forest Pruning

e If parse forest is constructed in full prior to search then dead-ends can be
pruned away.

e State splitting can be restricted to a small subset of promising hyperedges.

— Moses ranks hyperedges according to -LM rule cost plus sums of incoming
+LM vertex costs.

e Monolingual forest pruning methods (Inside-outside estimates, see e.g.
Charniak and Johnson (2005)).

(Forest pruning methods haven't been widely explored in the MT literature.)
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Strategy 2: Heuristic Best-First State Splitting

e For every hyperedge in the parse hypergraph, there can be very many
corresponding hyperedges in the search hypergraph.

SO A

q5

losef K. VBNS5,5,slandered

e Cube pruning (Chiang, 2007) is most widely-used approximate algorithm but
see Heafield et al. (2013) for a faster alternative.
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Cube Pruning

—

K2}

C

(]

(@]

) ©

N4 °

— — =

[} o

8. 85

- X 5 O

Qo 9oy

— — [a -0
slandered 1.0
defamed 1.3
maligned 2.2
libelled 2.6

Arrange all the choices in a “cube”

(here: a square, generally an orthotope, also called a hyperrectangle)
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Create the First Hyperedge

—

@0

C

(@]

o

R []

X °©

— — =

[} o o

8. 85

5 X 5 O

2N 9o

— — o~ o0

slandered 1.0 [2.1

defamed 1.3
maligned 2.2
libelled 2.6

e Hyperedges created in cube: (0,0)
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“Pop” Hyperedge

@

C

(]

(@]

; 8

x o

© © 2

8 .85

= X 5 O

2N @ ol

— — o (29

slandered 1.0 |2.1

defamed 1.3
maligned 2.2
libelled 2.6

e Hyperedges created in cube: €

e Hyperedges popped: (0,0)
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Create Neighboring Hyperedges

slandered 1.0
defamed 1.3
maligned 2.2

libelled 2.6

—
R
c
o
o))
, g
x S
© © o
8 .85
S X 5 O
oo © oy
— — o 29}
2.112.5
2.7

e Hyperedges created in cube: (0,1), (1,0)

e Hyperedges popped: (0,0)
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Pop Best Hyperedge

@
c
o
(@]
; 8
X )
— — =
[} o 2
8 .85
S5 X 5 O
2N @ o
— — o 2]
slandered 1.0 |2.1]25
defamed 1.3 |27
maligned 2.2
libelled 2.6

e Hyperedges created in cube: (0,1)

e Hyperedges popped: (0,0), (1,0)

110
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Create Neighboring Hyperedges

@
C
o
(@]
; 8
X )
Y Y =
[} o 2
2,25
5 X 5 O
e
— — o 29}
slandered 1.0 |2.1]2.5(3.1
defamed 1.3 [2.7]24
maligned 2.2
libelled 2.6

e Hyperedges created in cube: (0,1), (1,1), (2,0)

e Hyperedges popped: (0,0), (1,0)
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More of the Same

1.5 Josef K.

1.7 K.
2.6 Josef

3.2 our protagonist

slandered 1.0

N
.

2.5

o | o
[==2 B

defamed 1.3 2.48.

b
N

maligned 2.2 3.8

libelled 2.6

e Hyperedges created in cube: (0,1), (1,2), (2,1),

e Hyperedges popped: (0,0), (1,0), (1,1)

(2.0)
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Queue of Cubes

e Many parse hyperedges for any given span
e Each of them will have a cube

e We can create a queue of cubes

=- Always pop off the most promising hyperedge, regardless of cube

e May have separate queues for different target constituent labels
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Strategy 3: Beam search
S1,6
e Bin vertices according to source word span
and category. - -
e Keep only the highest-scoring vertices for use
later in the search.
|
]
115
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Putting it All Together: The S2T Decoding
Algorithm in Moses

Objective Find the k-best synchronous derivations dy, ds, . .. dj

Outline 1. Project grammar
Project weighted SCFG to weighted CFG f: G — G’

2. Interleaved parse + search
Span-by-span, build parse hypergraph wrt G’ and build
partial search hypergraph

3. Extract derivations
Extract k-best derivations (Huang and Chiang, 2005)
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Decoding: Components

BN5,5

® Verleumde

e Vertices of the parse hypergraph are stored in a chart (includes input sentence)
e Hyperedges are enumerated but not stored in chart

e Terminology: PChart, PVertex, PHyperedge
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Decoding: Components

PHyperedges
for span

Span [1,6] @
q5
Partially-filled
PChart

[ T [ |
I I D
| [e] | | -

|
@xe@ Cemand> QP2s>

e Parser generates PHyperedges for given span of PChart
e Parser has access to partially-completed PChart

e For now, the parser is a black-box component but we'll return to parsing. . .
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Decoding: Components

SBAR

SBAR1,6 that ... K.

SBAR1,6,someor ne ... K.

L —SBAR160ser . someons—

e Vertices of the search hypergraph are stored in a chart (includes input sentence)
e Vertices are stored in stacks (one per span + category), which are sorted

e Hyperedges are stored (unlike in PChart)

e Terminology: SChart, SVertex, SHyperedge
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Decoding: Components

3.20ur protagonist

15 Josef K.

B
i slandered 1.0 [2.1]25 |31
@ @ @ @ @ maligned 2.2 3.8
libelled 2.6
@«

r7+c2

Gomant Canite> NP > VBNt Chaber

e Cube pruning algorithm (or similar) produces SHyperedges from PHyperedges

e A single SVertex can be produced multiple times so must check for this
(‘recombination’)
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The Moses S2T Decoding Algorithm

1: initialize PChart and SChart by adding vertices for input words
2. for each span (in parser-defined order) do

3. p-hyperedges = ForestPrune(parser.EnumerateHyperedges(span, p-chart), s-chart)
4. for all p-hyperedges do

5 create a cube for it

6 create first s-hyperedge in cube

7: place cube in queue

8. end for

9. for specified number of pops do

10: pop off best s-hyperedge of any cube in queue

11: add it to a category-specific buffer

12: create its neighbors

13:  end for

14.  for category do

15: recombine s-hyperedges from buffer and move into s-chart stack
16: sort stack

17: end for

18: end for
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Parsing for S2T Decoding

PHyperedges
for span
Span [1.,6] G
q5
Partially-filled
PChart
L [ 1 €D
| | Je] | | *
\ENss
e ® ferieumaat kaben I Cemand™> QP2s>
e —
e Parser’s job is to enumerate PHyperedges, span-by-span.
e Parser has access to partially-filled PChart.
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Parsing for S2T Decoding

e Can we just use CYK / CYK+ / Earley?

— All require binarization (implicit or explicit).
— Wasn't a problem for Viterbi -LM case.

e Idea 1 Binarize G’

— Binary normal forms exist for monolingual CFG grammars.
— But we still need to know the synchronous rules for +LM search.

e Idea 2 Binarize G before projection to CFG

— Binarization impossible for some SCFG rules with rank > 4

— Not necessarily a problem: non-binarizable cases are rare in word-aligned
translation data (Zhang et al., 2006)

— But tricky in practice: how do we weight rules? And what about grammar
inflation?
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How to Avoid Binarization

Hopkins and Langmead (2010) define a grammar property called scope:

Pattern Scope || Pattern | Scope

abcde acooe |2
aocoe obcdo |2
acoode cocdo | 3
obcde 1 00000 | 6

They prove that a sentence of length n can be parsed with a scope £ grammar
in O(nk) chart updates without binarization.

They demonstrate empirically that reducing a GHKM grammar to scope-3 by
pruning does not harm translation quality compared to synchronous binarization
(and pruning is much simpler).

Chung et al. (2011) perform similar comparison and achieve same result.
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Specialized Parsing Algorithms

CYK+ and Earley are popular choices for S2T decoding.

But storing large numbers of dotted rules is problematic in practice (Chung et
al. 2011 find scope-3 slower than binarized grammar with Earley parser, which
they attribute to dotted rule storage).

Several parsing algorithms have been designed specifically for synchronous
translation grammars: DeNero et al. (2009), Hopkins and Langmead (2010),
Sennrich (2014).

We use Sennrich (2014)’s recursive variant of CYK+:

— Good performance on WMT-scale task: fast, low-memory overhead
— Simpler than CYK+ and alternatives
— No dotted rule storage
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Parsing for S2T Decoding (Moses-style)

q1:
q2:
q3:
q4:
qs:

NP
VBN
VP

AR AN

o
Jeumdet
ver! )o‘?'é z 'b,,a’e
g o)
o g I
% >
(] o
Nind o
Josef K. o % bsy,
verleumdet & Yy Q
mujte NP VBN haben O—ven . 3
. )
jemand VP & >
. AN
jemand muf$te NP VBN haben P )

e Projected grammar G’ is represented as a trie (sometimes called a prefix tree)

e Edges are labelled with terminals and non-terminals

e Labels along path (from root) represent prefix of rule RHS

e Vertices in black are associated with group of rules from G (sub-grouped by
rule LHS)
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Parsing for S2T Decoding - Example

Q
Partially-filled vef\e"‘mde‘é\ N
PChart )og (;g llgre
£ o)
O -2 K
L] e o v
- e z b
¢ K w
(@)
& ° ?
O— vey = %
3 >
‘(\o‘&(\
® o v

e Sennrich (2014)'s parsing algorithm visits cells in right-to-left, depth-first order.

e We consider situation where all of PChart filled except for left-most diagonal.

e Recall that PVertices are stored, but PHyperedges are not.
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Parsing for S2T Decoding - Example

Partially-filled  erieumdet ;ﬁ\ N
PChart o )oez g (,0’8
g ~a
<~ & R
& v 5
.
. . ° /
o o.
o* ® Yon.
N L e)
¥ 3
O—ven_ - %
) & 2
© 'S °
e Tail prefix: ]
e Recursion level: 0
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Parsing for S2T Decoding - Example
Partially-filled  erieumdet ;ﬁ\ N
PChart o )oez g (,0’8
~a
<~ & R
& v 5
.
. . ° /
o . o.
o* ® Yon.
N L e)
¥ 3
O—vey_ - %
) & 2
© 'S °

e Tail prefix: []

o Recursion level: 0

e Look for edge labelled ‘jemand’ at root node
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Parsing for S2T Decoding - Example

Partially-filled erleumdet ;ﬁ\ m
PChart )o*’?' g “By
g ~a
) e 5 2
. ! /
e L
o ~ .
& 3 e
¥ 3
O— vaN - o %
“,b‘o"'(\ i
y
© 'S °
e Tail prefix: [jemand, ;]
e Recursion level: 0
e Look for edge labelled ‘jemand’ at root node - found
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Parsing for S2T Decoding - Example

Partially-filled arteu mdet ;ﬁ\/;,
PChart )oge' g ‘10’
) g ~a
& § °
e 1 5
e <
. £ Yy
0 g 8y,
L \. *o
' =
O ven g 3
& i
A ¥
®) P °
e Tail prefix: [jemand, ;]

o Recursion level: 0

o Check for rules at current node - none
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Parsing for S2T Decoding - Example

Partially-filled erleumdet ;/?\ m
PChart )00 g llgr
1
&~ & ©
[} ///Q ’/
e \
o* s o,
¢ .
z
O ven .o 3
& A
AN Y
® 'S )
e Tail prefix: [jemand, ;]
e Recursion level: 0
e Now visit each cell along previous diagonal (recursive step)
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Parsing for S2T Decoding - Example

Partially-filled arteu mdet ;/?\/;,
PChart )oz g ‘10’
[
@z ) <~ & 0
.A// \k'/ Q* /§
~ /
“%\e g \A ¥
/O‘ g ’/0,1[
L *. *o
4 =
O— vey - 3
v"”e‘\ 9\,
© o L
e Tail prefix: [jemand, ,]

o Recursion level: 1

e Look for edge labelled ‘muBte’ at current node
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Parsing for S2T Decoding - Example

Partially-filled e\.\eumde‘ ;ﬁ\ m
PChart )oez g Qer
@ ~a
<~ & P
0‘/\‘./ ! /§
D /Q\ 1
\W\ 2 P
Je ~ Sy
S 3 “o
/ \
O—ven E
) & 2
® o .
e Tail prefix: [jemand; ;, muBtey o]
e Recursion level: 1
e Look for edge labelled ‘muBte’ at current node - found
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Parsing for S2T Decoding - Example
Partially-filled erleumd t ;ﬁ\o)
PChart )oez g Qer
@ ~a
/ e H o
.l/\k'/ /C*{ /§
et o
je ~ Yon,
N 3 “o
/ \
O—ven E
G5 & 2
® o .
e Tail prefix: [jemand; ;, muBtes o]
e Recursion level: 1

e Now visit each cell along previous diagonal
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Parsing for S2T Decoding - Example

Partially-filled erleumdet ;ﬁ\ N
PChart )oez g Qore
3 ~a
) <~ & e
o © { /§
R\t /Q\(_ 4
&L "\ "'94/\
S .
O—ven_ -
() &
© o
e Tail prefix: [jemand; ;, muBtey o]
e Recursion level: 2

e Look for edge labelled ‘Josef' at current node
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Parsing for S2T Decoding - Example

Partially-filled erleumdet ;ﬁ\ N
PChart )oz g Qer
3 -
<~ & 2
“ ¢ 5
o 9 /
et ,
b ~ "'94/;‘
& \ o
% . =
O—vey )
o s
BNsS «° \
© 'S °
e Tail prefix: [jemand; ;, muBtes o]
e Recursion level: 2

e Look for edge labelled ‘Josef’ at current node - not found
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Parsing for S2T Decoding - Example

Partially-filled e\.\eumde‘ ;ﬁ\ m
PChart )oez g Up, e
g ~a,
) o/ $ 0o
o © { /§
R /Q\(_ 4
be < Yoy,
N 3 “o
¥ . =
O—ven_ - S
) & 2
® o )
e Tail prefix: [jemand; ;, muBtey o]
e Recursion level: 2
e Look for edge labelled ‘NP’ at current node
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Parsing for S2T Decoding - Example

Partially-filled erleumdet ;ﬁ\ N
PChart )oz g Qer
3 ~a
<~ & P
“ ¢ 5
o 9 /
o )
W\ 2 [N 3
R ‘?\ .,
S . o,
O—vey X
) & \
® o .
e Tail prefix: [jemand, ;, mufltes 2, NP3 4
e Recursion level: 2

e Look for edge labelled ‘NP’ at current node - found

Syntax-based Statistical Machine Translation
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Parsing for S2T Decoding - Example

Partially-filled B \,e\v\eu“‘det :7?\ m
PChart o )oez g Qor
P
- v 5
oo /Q\z. ’/
e ‘?\ "'94/\
& Y °
O ven E
N> & 2
)  |rleumdey o~ )
e Tail prefix: [jemand, ;, mufltes , NP3 4
e Recursion level: 3
e And so on. ..
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Parsing for S2T Decoding - Example
Partially-filled B \,e\v\eu“‘det :7?\ m
PChart o )oez g Qor
P
- v 5
oo /Q\z. ’/
e ‘?\ "'94/\
. . -
O—van _ E
e \
)  |rleumdey o~ )

e Tail prefix: [jemand, ;, muBtes », NP3 4, VBN 5]

o Recursion level: 3

e And so on. ..
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Parsing for S2T Decoding - Example

Partially-filled _ ve\'\e“‘“det :7?\ m,
PChart o )oez g Qor
-~ £ e
- ¢ 5
- R Y
% 7
e ‘?\ W,
$ 9
.
O—van _ E
e \
)  |rleumdey o” °
e Tail prefix: [jemand, ;, muBltes 2, NP3 4, VBNj 5, habeng g]
e Recursion level: 4
e Andsoon. ..
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Parsing for S2T Decoding - Example
Partially-filled _ ve\'\e“‘“det :7?\ m,
PChart o )oez g Qor
-~ £ o
- v 5
- R Y
% 7
0 < Sy
N R “o
¥
O—van _ E
o \
)  |rleumdey o” °

e Tail prefix: [jemand, ;, muBtes 2, NP3 4, VBNj 5, habeng g]

o Recursion level: 4

e At this point we add a PVertex for each LHS from trie node’s rule group
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Parsing for S2T Decoding - Example

Partially-filled erleumdet ;ﬁ\ N
PChart )oez g Qor
T A
&~ & ©
- ¢ 5
e /Q\z. /
o+ < "'94/\
& R e
I'4
O\VBN\»D g%
>
& \
®)  |@rieumdey o )
e Tail prefix: [jemand, ;, muBltes 2, NP3 4, VBNj 5, habeng g]
e Recursion level: 4

e At this point we add a PVertex for each LHS from trie node’s rule group
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Parsing for S2T Decoding - Example

Partially-filled erleumdet ;ﬁ\ N
PChart )oez g Qor
@ ~a,
&~ & ©
- ¢ 5
e /Q\z. /
o+ < "'94/\
& R °
¥
O\VBN\»D g%
>
o \
®)  |@rieumdey o )
e Tail prefix: [jemand, ;, muBtes 2, NP3 4, VBNj 5, habeng g]
e Recursion level: 4

e Together the PVertex and tail prefix constitute a complete PHyperedge.
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Parsing for S2T Decoding - Example

Partially-filled erleumdet :7?\ m
PChart )oq,?a 2 g
& N
o ' $
e R M
A~ 4 17
§e) ‘?\ W,
& °
)
O—van _ E
e \
®) |<erleumdey o” °
e Tail prefix: [jemand, ;, muBltes 2, NP3 4, VBNj 5, habeng g]
e Recursion level: 4
e Reached end of sentence, so now the recursion stack unwinds
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Parsing for S2T Decoding - Example
Partially-filled erleumdet :7?\ ’b
PChart )oq,?a 2 g
& N
o ' $
e R M
A~ 4 17
§e) ‘?\ W,
& °
)
O—van _ E
e \
K) |erleumdey )

e Tail prefix: [jemandlyl,muﬁteg,z,NP374,VBN5,5]
e Recursion level: 3

e The recursion stack unwinds.

Syntax-based Statistical Machine Translation

147



Parsing for S2T Decoding - Example

Partially-filled erleumdet A
PChart )oé’\ g lb"@r
@ ~a,
-~ £ o
“ ¢ 5
o 9 /
oo | 1
o E Yoy,
NS Y A
S Y o\’
O—ven _ 3
“,b‘o""\ i
Y
® .
e Tail prefix: [jemand, ;, mufltes , NP3 4
e Recursion level: 2
e The recursion stack unwinds.
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Parsing for S2T Decoding - Example
Partially-filled erleumdet A
PChart )oé’\ g lb"@r
@ ~a,
o~ & o
“ ¢ 5
o 9 /
et ot
o i Yoy
Q \ 3
§ Y o\’
o\VBN\‘D S
“,b‘o""\ \
Y
® .
e Tail prefix: [jemand; ;, muBtes o]
e Recursion level: 1

e The parser continues trying to extend the tail. . .

Syntax-based Statistical Machine Translation

149



Parsing for S2T Decoding - Example

Partially-filled erleumdet ;/?\ N
PChart © g l/gr
1
Pl o
- v ¥
e\ g
o s ey,
N 3 “o
[ ] {
z
o\VBN\‘D S
& i
W
© .
e Tail prefix: [jemand, ;]
e Recursion level: 1
e The parser continues trying to extend the tail. . .
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Parsing for S2T Decoding - Example
Partially-filled erleumdet ;/?\ N
PChart )oez g Qer
1
& § o
- v ¥
%\e/ci ¥
o L o
¥e) A Yoy,
N \, “o
¥ z
o\VBN\‘D S
G5 & 2
® .
e Tail prefix: [jemand, ;, VP g]

o Recursion level: 1

e PVertex S; ¢ has already been added, but new tail means new PHyperedge

Syntax-based Statistical Machine Translation
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Decoding Performance in Practice

250 Max span 25 (exp 1.4
No span limit (exp 2.4
= 200
o
c
o
o4
£ 150
G)
E
'_
o0 100
c
=
a 50 W . St 60220
et
- 'léé w
[o L et

0 10 20 30 40 50 60 70 80
Sentence Length

e S2T Moses system trained using all English-German data from WMT14

e Span limit can be used to reduce decoding time (limit is typically 10-15 for
Hiero; can be higher or unlimited for S2T)
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String-to-Tree Decoding - Summary

Input sentence is a string.

Decoding algorithm based on monolingual parsing.

Hiero decoding is special-case of S2T decoding.

To integrate a m-gram LM, the parse forest hypergraph is expanded to a
(much-larger) search hypergraph.

e Heavy pruning is required in practice.
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Tree-to-String Decoding

Syntax-based Statistical Machine Translation 154
Reminder
e Translation rules are STSG rules with source-side syntax
PP-MP
APPR ADJA <—» as British X1 go
fur  britische
e Input is parse tree
TOP
///\
S-TOP PUNC.
-
PP-MO VAFIN NP-SB AP-PD ‘
7 I I
APPR ADJA NN ist PDS nicht besonders schliipfrig
I I I I
fir  britische Skandale dieser
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Outline

Objective Find the k-best synchronous derivations dy, ds, . . . dx

Outline 1. Project grammar
Project weighted STSG to unweighted TSG f: G —
G/
2. Match rules
Find rules from G’ that match input tree, record in
match hypergraph

3. Search
In post-order traversal of match hypergraph, build
partial search hypergraph

4. Extract derivations
Extract k-best derivations (Huang and Chiang, 2005)
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Step 1: Project Grammar

r S-TOP at S-TOP
NPSE VMFIN ﬁoc\ NPiSB%VMIFmoC
PI|S muBte  VP-OC VANF ¢ someonemusthave X2X1  0.53 |:> PIS  mubte VP'MNF
jemand [NP-DAT] hatl)en jemland [NP-DA | hat|>en
r S-TOP
oc
mubBte VP'MNF <« X1 must have X3 X2 0.61 %
| q2 s-ToP

[NP-DA2 | [VVPP3] haben
[NP-SB | VMFIN VP-oC

rs S-TOP muBte VP-mNF

|
[NP-SB1 ] VMFIN VP-0C [NP-DA | [VVPP | haben

muBte VP-mNF <> X2 must have been X3 by X1 0.03 &

|
[NP-DAz] [VVPPS] haben

e Take source-side of rule, ignore weights.
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Step 2: Match Rules, Build Match Hypergraph

S-TOP

NP-SB VMFIN VP-OC
| | T
PIS  muBte VP-OC VAINF
| NS |
jemand NP-DA VV‘PP haben
NE  NE verleumdet

| |
Josef K.

e Look for rules that match input tree

Syntax-based Statistical Machine Translation

Step 2: Match Rules, Build Match Hypergraph

q1
S-TOP
NP-SB VMFIN VP-OC
VvP-0C VAINF Pls  mubte VP0G VAINF
NPDA VVPP hatLen jem‘and [NP-DA | hal‘)en

NE NE verleumdet
| |
Josef K.

e For each matching rule, add hyperedge to match hypergraph

158
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Step 2: Match Rules, Build Match Hypergraph

q2
S-TOP

oc
| T~
muBte  VP-OC VAINF

VVPP  haben [NP-DA | [VVPP | haben

NE  NE verleumdet
| |
Josef K.

e Match hypergraph encodes forest of possible derivation trees from G’
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Step 3: Build Partial Search Hypergraph

@ NP-DA3 4 Josef K. VVPPS 5 siandered @

been slandered

-
® v 7
g E % S-TOP:
T 1,4, LK.
a IR o someons
Josef K. 10 [ 2] 2] 80
ST z®§®§® Craber> = R B Gemend> Gune>  CWPDAsex VVPPs sasamea > Chaben>
he 22 3.8,
L a
and Josef K. 26 KA 4 S-TOP1,4 Joset..someons

NP-DA3 4, Josef K. VVPP55 slandered

e Cube pruning algorithm produces SHyperedges from MHyperedges

e Translations not necessarily constituents (unlike S27T)

Syntax-based Statistical Machine Translation 161



Step 3: Build Partial Search Hypergraph

NP-DA34 S-TOP16
NP-DA3,4,Josef K.

e Vertices are stored in stacks, one per input tree node
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The T2S Decoding Algorithm

1: build match hypergraph by matching grammar rules to input tree
2. for each m-vertex (post-order) do

3. for all incoming m-hyperedges do

4 create a cube for it

5 create first s-hyperedge in cube

6: place cube in queue

7. end for

8.  for specified number of pops do

9 pop off best s-hyperedge of any cube in queue

10: add it to a buffer

11: create its neighbors

12:  end for

13:  recombine s-hyperedges from buffer and move into stack
14:  sort and prune stack

15: end for
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Rule Matching by DFA Intersection

e Rules are encoded as DFAs. Scheme here is from Matthews et al. (2014)

e Input tree encoded in same way.

e Standard DFA intersection algorithm produces rule match hypergraph.

1
q S-TOP

NP-SB  VMFIN VP-OC

| |
PIS muBte VP-OC  VAINF

. |
jemend  [RPBA] haben

q2
S-TOP

[NP-SB] N VP-0C

muBte VPOC  VAINF
|
[NP-DA][VVPP ] haben

Fuld) @~

‘3.59'
VMFIN

U

o (- muste

jemand O .

vP-0C vP-0C

VAINF haben ()
.

o6

.
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Tree-to-String Decoding - Summary
e Input sentence is a parse tree.
e Tree constrains rule choice: much smaller search space than S2T
e Decoding algorithm based on rule matching with LM integration.
e LM integration identical to S2T.
165
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A Sketch of Tree-to-Tree Decoding

e STSG with tree input.

e T2T decoding is combination of S2T and T2S:

— Search state expanded to include target-side category

— Rule matching used to select rules; further constrained by target categories
— Multiple category-specific stacks per input tree node

— LM integration identical to S2T / T2S.

e Exact T2T not widely used in practice due to syntactic divergence.
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Part IV - Extensions
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“Fuzzy” Syntax

e In a nutshell: move syntax out of grammar and into feature functions

— Syntax becomes a soft constraint
— Motivated by syntactic divergence problem in tree-to-tree model

NP
_-T~_

- >~
JJ JJ NNS

e,
)

British  political scandals

2
b

e “Learning to Translate with Source and Target Syntax” (Chiang, 2010)

— Zhang et al (2011) use fuzzy syntax on source-side of string-to-tree model
and explore alternative feature functions

168
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“Fuzzy” Syntax

e Parse trees on both sides of training data

e Uses Hiero rule extraction but with SAMT-style labelling

two left-hand side non-terminals

(
ADJA+NN | NP britische Skandale | British political scandals

vBP —
PP-MO | SBAR —® fiifADJA+NN1)l as NP1 go

g0 ‘/v

+ used for adjacent consituents

ADJA

| |
britische ~ Skandale

e Only most frequent labelling kept (one-to-one correspondence with Hiero rules)

ADJA+NN | NP — britische Skandale | British political scandals j : q1l X — britische Skandale | British political scandals

PP-MO | SBAR —> fiir ADJA+NN1 | as NP1 go g2 X — fir X1 | as X1 go

169
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“Fuzzy” Syntax

e Rule labels not used during parsing but retrieved for search
1,2,British ... scandals

e Feature functions score substitutions

— e.g. if a NP is rewritten as a ADJA+NN on source side then the feature

subst®yp_apgasy fires

e Tens of thousands of features
e Outperforms exact tree-to-tree (0.4 BLEU on Zh-En; 1.5 BLEU on Ar-En)
Syntax-based Statistical Machine Translation 170

Forest-to-String

e Translation quality of T2S model depends on accuracy of 1-best (or k-best)
parse tree(s) for input sentences

e Forest-to-string extends T2S by using (pruned) parse forest as input

)
s
D &5

he ith

e Algorithm is identical to T2S except for rule matching step
o “Forest-based Translation” (Mi et al., 2008)
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Forest-to-

e Using forest gives better speed-quality trade-off than

String

0.250 ——
0.248 Sp=12
0246 |/
0244  /

0.240
0.238
0.236
0.234

BLEU score

1-best

0232 forests decoding ---x---

0242 | ¥p=5 k=30 .

k=100

k-best trees —+— |

1 1 1 1 1

0.230 ————
0 5 10

15 20 25 30 35

average decoding time (secs/sentence)

(Figure taken from Mi et al., 2008)

using k-best trees
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Tree Transformation

172

e Adapting training data for syntax-based MT is active area of research (tree
binarization, label coarsening / refinement, word alignment edits)

e “Transforming Trees to Improve Syntactic Convergence” (Burkett and Klein,

2012) proposes tree restructuring method to improve rule extraction:

VB~ ADVP

The first step is to select team members

. R

B B Bk WA

(a) Before

TO+VB ™~ VP
— [
TO VB ADVP

The first step is to select team members

B R o#e Wi

(b) After

(Figure taken from Burkett and Klein, 2012)
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Tree Transformation

e Defines six classes of transformation

A A A A
PIANN T~ a AN
B C L BiC - B P CD
B/\C CD
Type: ARTICULATE Type: FLATTEN
Args: A: PARENT, B: LEFT, C: RIGHT Args: A: PARENT, B: TARGET

e Error-based learning method using GHKM frontier node count as metric

e Sequence of transformations learned from subset of training data then applied
to full corpus

e Gain of 0.9 BLEU over baseline on Chinese to English; outperforms simple left
and right binarization
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Dependency

A different view on syntax

SCFG phrase structure Syntactic dependency grammar
s
/\VP
NP /\NP OBJ
N\ N DET  SUBJ
A A e
the dog chews a bone the dog chews a bone
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Phrase Structure is not Enough

NP /\NP OBJ
N N DET  SUBJ

T 00T P
the bone chews a dog the bone chews a dog
syntactically well-formed semantically implausible
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Dependency in SCFG

e Add head word to constituents

S(chews)
VP(chews)
NP(bone) NP(dog)
DT NN \% DT NN

I | I I I

the bone chews a dog

e Add mapping of head words to rules

requires identification of head child
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Semantic Plausibility

S(chews)
VP(chews)
NP(bone) NP(dog)
/\ /\
DT NN \Y% DT NN

the bone chews a dog

Score each lexical relationship

e Rule: VP(chews) — V(chews) NP(dogs)
— Feature: VP(chews)—V-HEAD(chews) OK
— Feature: VP(chews)—NP(dog) BAD

e Rule: S(chews) — NP(bone) VP(chews)

— Feature: S(chews)—NP(bone) BAD
— Feature: S(chews)—V-HEAD(chews) OK
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Informed by Source
e lLanguages with case marking
— different word order
— same dependency relationships
SUBJ
DET  OBJ -
den Knochen frist der Hund
bone chews dog
e Give preference to translations that preserve dependency relationships
OBJ
DET  SUBJ T
the dog chews a bone
179
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Verb Frames

S(chews)
VP(chews)
NP(bone) NP(dog)
DT NN \Y% DT NN

the bone chews a dog

e Check if full verb frame is properly filled

— intransitive / transitive / ditransitive
— not just binary relationships
— appropriate type of subjects / objects

e However: tracking verb frame is not trivial
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Towards Semantics

e Different syntax — same verb-noun semantic relationships

— The bone is chewed by the dog.
— The dog chews the bone.

— The bone, the dog chews.

— A dog chewed a bone.

e Even more abstract representations
e.g., Abstract Meaning Representation (AMR):

(c / chew-01
rarg0d (d / dog)
rargl (b / bone))

e Generation of these types of representation open research problem
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String-to-Dependency: Shen et al. (2008)

e Hiero rules but with unlabelled dependencies on target side

e Target-side allowed one head to which floating dependencies can attach

AN a2 ,
r X —>» XiflognachX2 | X1 flew to X2 Fixed
AN §
2 X — flog nach X1 I flew to X1 Fixed
3 X — nach X1 | o X2 Floating (left)
4 X — flog nach | flew to lll-formed

e “A New String-to-Dependency Machine Translation Algorithm with a Target
Dependency Language Model” (Shen et al., 2008)
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String-to-Dependency

e Decoding algorithm modified to combine dependency structures.

e Restriction to well-formed rules reduces grammar size from 140M to 26M rules
(no significant effect on translation quality).

e Gains of 1.2 BLEU on Zh-En from addition of dependency LM (Markov model
over dependency heads).
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