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What is a word embedding?

Suppose you have a dictionary of words.

The i th word in the dictionary is represented by an embedding:

wi 2 Rd

i.e. a d-dimensional vector, which is learnt!

d typically in the range 50 to 1000.

Similar words should have similar embeddings (share latent features).

Embeddings can also be applied to symbols as well as words (e.g.
Freebase nodes and edges).

Discuss later: can also have embeddings of phrases, sentences,
documents, or even other modalities such as images.
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Learning an Embedding Space

Example of Embedding of 115 Countries (Bordes et al., ’11)
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Main methods we highlight, ordered by date.

Latent Semantic Indexing (Deerwester et al., ’88).

Neural Net Language Models (NN-LMs) (Bengio et al., ’06)

Convolutional Nets for tagging (SENNA) (Collobert & Weston, ’08).

Supervised Semantic Indexing (Bai et al, ’09).

Wsabie (Weston et al., ’10).

Recurrent NN-LMs (Mikolov et al., ’10).

Recursive NNs (Socher et al., ’11).

Word2Vec (Mikolov et al., ’13).

Paragraph Vector (Le & Mikolov, ’14).

Overview of recent applications.
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Main methods we highlight, ordered by topic.

Embeddings for Ranking and Retrieval:

Latent Semantic Indexing (Deerwester et al., ’88).

Supervised Semantic Indexing (Bai et al, ’09).

Wsabie (Weston et al., ’10).

Embeddings for Language Modeling (useful for speech, translation, . . . ):

Neural Net Language Models (NN-LMs) (Bengio et al., ’06)

Recurrent NN-LMs (Mikolov et al., ’10).

Word2Vec (Mikolov et al., ’13).

Embeddings for Supervised Prediction Tasks (POS, chunk, NER, SRL,
sentiment, etc.):

Convolutional Nets for tagging (SENNA) (Collobert & Weston, ’08).

Recursive NNs (Socher et al., ’11).

Paragraph Vector (Le & Mikolov, ’14).
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Ranking and Retrieval: The Goal

We want to learn to match a query (text) to a target (text).

Many classical supervised ranking methods use hand-coded features.

Methods like LSI that learn from words are unsupervised.

Supervised Semantic Indexing (SSI) uses supervised learning from text
only:

Bai et al, Learning to Rank with (a Lot of) Word Features. Journal of
Information Retrieval, ’09.

Outperforms existing methods (on words) like TFIDF, LSI or a
(supervised) margin ranking perceptron baseline.
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Basic Bag-O’-Words

Bag-of-words + cosine similarity:

Each doc. {dt}Nt=1 ⇢ RD is a normalized bag-of-words.

Similarity with query q is: f (q, d) = q>d

Doesn’t deal with synonyms: bag vectors can be orthogonal

No machine learning at all
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Latent semantic indexing (LSI)

Learn a linear embedding �(di ) = Udi via a reconstruction objective.

Rank with: f (q, d) = q>U>Ud = �(q)>�(di ) 1.

Uses “synonyms”: low-dimensional latent “concepts”.

Unsupervised machine learning: useful for goal?

1f (q, d) = q>
(U>U + ↵I )d gives better results.

Also, usually normalize this ! cosine similarity.
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Supervised Semantic Indexing (SSI )

Basic model: rank with

f (q, d) = q>Wd =
PD

i ,j=1 qi Wij dj
i.e. learn weights of polynomial terms between documents.

Learn W 2 RD⇥D (huge!) with click-through data or other labels.

Uses “synonyms”

Supervised machine learning: targeted for goal

Too Big/Slow?! Solution = Constrain W :
low rank ! embedding model!
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SSI: why is this a good model?

Classical bag-of-words doesnt work when there are few matching terms:
q=(kitten, vet, nyc)
d=(cat, veterinarian, new, york)

Method q>Wd learns that e.g. kitten and cat are highly related.

E.g. if i is the index of kitten and j is the index of cat, then Wij > 0
after training.
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SSI: Why the Basic Model Sucks

W is big : 3.4Gb if D = 30000, 14.5Tb if D = 2.5M.

Slow: q>Wd computation has mn computations qjWijdi , where q
and d have m and n nonzero terms.

Or one computes v = q>W once, and then vd for each document.
Classical speed where query has D terms, assuming W is dense !
still slow.

One could minimize ||W ||1 and attempt to make W sparse. Then at
most mp times slower than classical model (with p nonzeros in a
column.)
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SSI Improved model: Low Rank W

Constrain W :
W = U>V + I .

U and V are N ⇥D matrices ! smaller
Low dimensional “latent concept” space like LSI (same speed).
Di↵erences: supervised, asymmetric, learns with I .

Variants:

W = I : bag-of-words again.

W = D, reweighted bag-of-words related to [Grangier and Bengio,

2005].

W = U>U + I : symmetric.
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SSI: Training via maximizing AUC

Given a set of tuples R with a query q, a related document d+ and
an unrelated (or lower ranked) document d�.

We would like f (q, d+) > f (q, d�).

Minimize margin ranking loss [Herbrich et al., 2000]:

X

(q,d+,d�)2R

max(0, 1� f (q, d+) + f (q, d�)).

Learning Algorithm Stochastic Gradient Descent: Fast & scalable.

Iterate Sample a triplet (q, d+, d�),
Update W  W � � @

@W max(0, 1� f (q, d+) + f (q, d�)).

Other options: batch gradient, parallel SGD (hogwild), Adagrad . . .
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Training: setting hyperparameters

The following hyperparameters can be tuned for training:

The initial random weights of the embedding vectors:
e.g. use (mean 0, variance 1p

d
) .

The learning rate (typically: 0.0001, 0.001, 0.01, 0.1, . . . ).

The value of the margin (e.g.: 1, 0.5, 0.2, 0.1, . . . ).

Restricting the norm of embeddings:
||Ui ||  C , ||Vi ||  C (e.g.: C=1).

All these parameters are relative to each other, e.g. a larger margin might
need larger initial weights and learning rate.
Typically, we fix the initialization and norm, and try di↵erent values of
margin and learning rate. This can make big di↵erences in performance.
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Prior Work: Summary of learning to Rank

[Grangier & Bengio, ’06] used similar methods to basic SSI for retrieving
images.

[Goel, Langord & Strehl, ’08] used Hash Kernels (Vowpal Wabbit) for advert
placement.

Main di↵erence: SSI uses low rank on W .

SVM [Joachims, 2002] and NN ranking methods [Burges, 2005] .
Use hand-coded features: title, body, URL, search rankings,. . . (don’t use
words)
(e.g. Burges uses 569 features in all).

In contrast SSI uses only the words and trains on huge feature sets.

Several works on optimizing di↵erent loss functions (MAP, ROC, NDCG):
[Cao, 2008], [Yu, 2007], [Qin, 2006],. . . .

Lots of stu↵ for “metric learning” problem as well..

One could also add features + new loss to this method ..
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Experimental Comparison

Wikipedia
1,828,645 documents. 24,667,286 links.
Split into 70% train, 30% test.

Pick random doc. as query, then rank other docs.

Docs that are linked to it should be highly ranked.

Two setups:
(i) whole document is used as query;
(ii) 5,10 or 20 words are picked to mimic keyword search.
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Wikipedia Experiments: Document Retrieval Performance
Experiments on Wikipedia, which contains 1.8M documents: retrieval task
using the link structure and separated the data into 70% for training and
30% for test.

Document based retrieval:
Algorithm Rank-Loss MAP P10
TFIDF 0.842% 0.432±0.012 0.193
↵LSI + (1� ↵)TFIDF 0.721% 0.433 0.193
Linear SVM Ranker 0.410% 0.477 0.212
Hash Kernels + ↵I 0.322% 0.492 0.215
SSI 0.158% 0.547±0.012 0.239±0.008

k-keywords based retrieval:

k = 5: Algorithm Params Rank MAP P@10
TFIDF 0 21.6% 0.047 0.023
↵LSI + (1� ↵)TFIDF 200D+1 14.2% 0.049 0.023
SSI 400D 4.37% 0.166 0.083
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Scatter Plots: SSI vs. TFIDF and LSI
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Figure : Scatter plots of Average Precision for 500 documents:
(a) SSI vs. TFIDF, (b) SSI vs. ↵LSI + (1� ↵) TFIDF.
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Experiments: Cross-Language Retrieval
Retrieval experiments using a query document in japanese, where the task
is to retrieve documents in English (using link structure as ground truth).

SSI can do this without doing a translation step first as it learns to map
the two languages together in the embedding space.

Algorithm Rank-Loss MAP P10
TFIDFEngEng (Google translated queries) 4.78% 0.319 0.259
↵LSIEngEng+(1� ↵)TFIDFEngEng 3.71% 0.300 0.253
↵CL-LSIJapEng+(1� ↵)TFIDFEngEng 3.31% 0.275 0.212
SSIEngEng 1.72% 0.399 0.325
SSIJapEng 0.96% 0.438 0.351
↵SSIJapEng + (1� ↵)TFIDFEngEng 0.75% 0.493 0.377
↵SSIJapEng + (1� ↵)SSIEngEng 0.63% 0.524 0.386

Some recent related translation-based embeddings:
(Hermann & Blunsom, ICLR ’14) and (Mikolov et al., ’13).
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Wsabie (Weston, Bengio & Usunier, ’10)

Extension to SSI, also embeds objects other than text, e.g. images.
WARP loss function that optimizes precision@k.
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Joint Item-Item Embedding Model
L.H.S: Image, query string or user profile (depending on the task)

�LHS(x) = U�x(x) : Rdx ! R100.

R.H.S: document, image, video or annotation (depending on the task)

�RHS(y) = V�y (y) : Rdy ! R100.

This model again compares the degree of match between the L.H.S and
R.H.S in the embedding space:

fy (x) = sim(�LHS(x),�RHS(y)) = �x(x)
>U>V�y (y)

Also constrain the weights (regularize):

||Ui ||2  C , i = 1, . . . , dx , ||Vi ||2  C , i = 1, . . . , dy .
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Ranking Annotations: AUC is Suboptimal

Classical approach to learning to rank is maximize AUC by minimizing:
X

x

X

y

X

ȳ 6=y

max(0, 1 + fȳ (x)� fy (x))

Problem: All pairwise errors are considered the same, it counts the
number of ranking violations.
Example:
helloFunction 1: true annotations ranked 1st and 101st.
helloFunction 2: true annotations ranked 50th and 52nd.
helloAUC prefers these equally as both have 100 “violations”.

We want to optimize the top of the ranked list!
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Rank Weighted Loss [Usunier et al. ’09]

Replace classical AUC optimization:
X

x

X

y

X

ȳ 6=y

max(0, 1 + fȳ (x)� fy (x))

With weighted version:
X

x

X

y

X

ȳ 6=y

L(ranky (x))max(0, 1 + fȳ (x)� fy (x))

where ranky (f (x)) is the rank of the true label:

ranky (f (x)) =
X

ȳ 6=y

I (fȳ (x) � fy (x))

and L(⌘) converts the rank to a weight, e.g. L(⌘) =
P⌘

i=1 1/⌘.
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Weighted Approximate-Rank Pairwise (WARP) Loss

Problem: we would like to apply SGD:

Weighting L(ranky (f (x))), ranky (f (x)) =
X

ȳ 6=y

I (fȳ (x) + 1 � fy (x))

. . . too expensive to compute per (x , y) sample as y 2 Y is large.

Solution: approximate by sampling fi (x) until we find a violating label ȳ

ranky (f (x)) ⇡
�
|Y|� 1

N

⌫

where N is the number of trials in the sampling step.
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Online WARP Loss

Input: labeled data (xi , yi ), yi 2 {1, . . . ,Y }.
repeat

Pick a random labeled example (xi , yi )
Set N = 0.
repeat
Pick a random annotation ȳ 2 {1, . . . ,Y } \ yi .
N = N + 1.

until fȳ (x) > fyi (x)� 1 or N > Y � 1
if fȳ (x) > fyi (x)� 1 then
Make a gradient step to minimize:

L(
⌅
Y�1
N

⇧
)|1� fy (x) + fȳ (x)|+

end if
until validation error does not improve.
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Image Annotation Performance

Algorithm 16k ImageNet 22k ImageNet 97k Web Data
Nearest Means 4.4% 2.7% 2.3%
One-vs-all SVMs 1+:1- 4.1% 3.5% 1.6%
One-vs-all SVMs 9.4% 8.2% 6.8%
AUC SVM Ranker 4.7% 5.1% 3.1%
Wsabie 11.9% 10.5% 8.3%

Training time: WARP vs. OWPC-SGD & AUC
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Learned Annotation Embedding (on Web Data)

Annotation Neighboring Annotations
barack obama barak obama, obama, barack, barrack obama, bow wow
david beckham beckham, david beckam, alessandro del piero, del piero
santa santa claus, papa noel, pere noel, santa clause, joyeux noel
dolphin delphin, dauphin, whale, delfin, delfini, baleine, blue whale
cows cattle, shire, dairy cows, kuh, horse, cow, shire horse, kone
rose rosen, hibiscus, rose flower, rosa, roze, pink rose, red rose
pine tree abies alba, abies, araucaria, pine, neem tree, oak tree
mount fuji mt fuji, fuji, fujisan, fujiyama, mountain, zugspitze
ei↵el tower ei↵el, tour ei↵el, la tour ei↵el, big ben, paris, blue mosque
ipod i pod, ipod nano, apple ipod, ipod apple, new ipod
f18 f 18, eurofighter, f14, fighter jet, tomcat, mig 21, f 16
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Summary

Conclusion

Powerful: supervised methods for ranking.

Outperform classical methods

E�cient low-rank models ! learn hidden representations.

Embeddings good for generalization, but can “blur” too much e.g.
for exact word matches.

Extensions

Nonlinear extensions – e.g. convolutional net instead.
e.g. DeViSE (Frome et al., NIPS ’13)
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Main methods we highlight, ordered by topic.
Embeddings for Ranking and Retrieval:

Latent Semantic Indexing (Deerwester et al., ’88).

Supervised Semantic Indexing (Bai et al, ’09).

Wsabie (Weston et al., ’10).

Embeddings for Language Modeling (useful for speech, translation)

Neural Net Language Models (NN-LMs) (Bengio et al., ’06)

Recurrent NN-LMs (Mikolov et al., ’10).

Word2Vec (Mikolov et al., ’13).

Embeddings for Supervised Prediction Tasks (POS, chunk, NER, SRL,
sentiment, etc.):

Convolutional Nets for tagging (SENNA) (Collobert & Weston, ’08).

Recursive NNs (Socher et al., ’11).

Paragraph Vector (Le & Mikolov, ’14).
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Language Modeling

Task: given a sequence of words, predict the next word.

the cat sat on the ??

n-gram models are a strong baseline on this task.

A variety of embedding models have been tried, they can improve
results.

The embeddings learnt from this unsupervised task can also be used
to transfer to and improve a supervised task.
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Neural Network Language Models

Bengio, Y., Schwenk, H., Sencal, J. S., Morin, F., & Gauvain, J. L. (2006).

Neural probabilistic language models. In Innovations in Machine Learning (pp.

137-186). Springer Berlin Heidelberg.
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Neural Network Language Models:
Hierarchical Soft Max Trick (Morin & Bengio ’05)

Predicting the probability of each next word is slow in NNLMs because the
output layer of the network is the size of the dictionary.

Can predict via a tree instead:

1 Cluster the dictionary either according to semantics (similar words in
the same cluster) or frequency (common words in the same cluster).
This gives a two-layer tree, but a binary tree is another possibility.

2 The internal nodes explicitly model the probability of its child nodes.

3 The cost of predicting the probability of the true word is now:
traversal to the child, plus normalization via the internal nodes and
children in the same node.

This idea is used in Word2Vec and RNN models as well.
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Recurrent Neural Network Language Models

Key idea: input to predict next word is current word plus context fed-back
from previous word (i.e. remembers the past with recurrent connection).

Recurrent neural network based language model. Mikolov et al., Interspeech, ’10.
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NNLMS vs. RNNS: Penn Treebank Results (Mikolov)

Recent uses of NNLMs and RNNs to improve machine translation:
Fast and Robust NN Joint Models for Machine Translation, Devlin et al, ACL ’14.

Also (Kalchbrenner ’13), (Sutskever et al., ’14), (Cho et al., ’14).
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Word2Vec : very simple LM, works well

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Je↵rey Dean.

Distributed Representations of Words and Phrases and their Compositionality.

NIPS, 2013.
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Word2Vec: compositionality

Code: https://code.google.com/p/word2vec/
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NLP Tasks
Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)
Chunking: syntactic constituents (noun phrase, verb phrase...)
Name Entity Recognition (NER): person/company/location...
Semantic Role Labeling (SRL):

[John]ARG0 [ate]REL [the apple]ARG1 [in the garden]ARGM�LOC
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The Large Scale Feature Engineering Way

Extract hand-made features e.g. from the parse tree

Disjoint: all tasks trained separately, Cascade features

Feed these features to a shallow classifier like SVM
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ASSERT: many hand built features for SRL (Pradhan et al, ’04)

Problems:
1) Features rely on other solutions (parsing, named entity, word-sense)
2) Technology task-transfer is di�cult
- Choose some good hand-crafted features

Predicate and POS tag of predicate Voice: active or passive (hand-built rules)
Phrase type: adverbial phrase, prepositional phrase, . . . Governing category: Parent node’s phrase type(s)
Head word and POS tag of the head word Position: left or right of verb
Path: traversal from predicate to constituent Predicted named entity class
Word-sense disambiguation of the verb Verb clustering
Length of the target constituent (number of words) NEG feature: whether the verb chunk has a ”not”
Partial Path: lowest common ancestor in path Head word replacement in prepopositional phrases
First and last words and POS in constituents Ordinal position from predicate + constituent type
Constituent tree distance Temporal cue words (hand-built rules)
Dynamic class context: previous node labels Constituent relative features: phrase type
Constituent relative features: head word Constituent relative features: head word POS
Constituent relative features: siblings Number of pirates existing in the world. . .

- Feed them to a shallow classifier like SVM
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The Suboptimal (?) Cascade

(Or, the opposing view is the above is a smart use of prior knowledge..)
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The “Deep Learning” Way
Neural nets attempt to propose a radically? di↵erent end-to-end approach:

Avoid building a parse tree. Humans don’t need this to talk.

Try to avoid all hand-built features ! monolithic systems.

Humans implicitly learn these features. Neural networks can too. . . ? 45 / 69
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The Big Picture
A unified architecture for all NLP (labeling) tasks:

Sentence: Felix sat on the mat .
POS: NNP VBD IN DT NN .

CHUNK: NP VP PP NP NP-I .
NER: PER - - - - -
SRL: ARG1 REL ARG2 ARG2-I ARG2-I -
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The Lookup Tables

Each word/element in dictionary maps to a vector in Rd .

We learn these vectors.

LookupTable: input of i th word is

x = (0, 0, . . . , 1, 0, . . . , 0) 1 at position i

In the original space words are orthogonal.

cat = (0,0,0,0,0,0,0,0,0,1,0,0,0,0, . . . )
kitten = (0,0,1,0,0,0,0,0,0,0,0,0,0,0, . . . )

To get the Rd embedding vector for the word we multiply Wx where
W is a d ⇥ N vector with N words in the dictionary.
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Deep SRL

Input Sentence

the cat sat on the mat

word of interest
verb of interest

s(1) s(2) s(3) s(4) s(5) s(6)
 -1      0      1       2      3     4

text

indices
pos w.rt. word
pos w.r.t. verb  -2     -1     0       1      2     3

Lookup Tables

LTw

LTpw

LTpv

Convolution Layer

Max Over Time ...

...

HardTanh

HardTanh

Linear

Linear

Softmax

Bla
h B

lah
 Bl

ah
Em

be
dd

in
g

Local features
G

lo
b

al featu
res

Tags

This is the network for a single window. We train/test predicting the entire

sentence of tags (“structured outputs”) using viterbi approach, similar to other

NLP methods.
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Removing The Time Dimension (1/2)
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Removing The Time Dimension (2/2)
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.. we can train directly for that (word tag likelihood) or we could train in a
structured way by predicting the entire sentence’s tags.

That should be useful because tags are not independent.

56 / 69



57 / 69



58 / 69



59 / 69



Improving Word Embedding

Rare words are not trained properly
Sentences with similar words should be tagged in the same way:

The cat sat on the mat
The feline sat on the mat

Word sat

Lookup Table

wLT

Word feline

Lookup Table

wLT

Only 1M WSJ not enough – let’s use lots of unsupervised data!
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Semi-supervised: MTL with Unlabeled Text

Language Model: “is a sentence actually english or not?”
Implicitly captures: * syntax * semantics

Bengio & Ducharme (2001) Probability of next word given previous
words. Overcomplicated – we do not need probabilities here

English sentence windows: Wikipedia (⇠ 631M words)
Non-english sentence windows: middle word randomly replaced

the champion federer wins wimbledon
vs. the champion saucepan wins wimbledon

Multi-class margin cost:
X

s2S

X

w2D
max (0, 1� f (s, w?

s ) + f (s, w))

S: sentence windows D: dictionary
w?
s : true middle word in s

f (s, w): network score for sentence s and middle word w
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Language Model: Embedding

Nearest neighbors in 100-dim. embedding space:

france jesus xbox reddish scratched

454 1973 6909 11724 29869

spain christ playstation yellowish smashed

italy god dreamcast greenish ripped

russia resurrection psNUMBER brownish brushed

poland prayer snes bluish hurled

england yahweh wii creamy grabbed

denmark josephus nes whitish tossed

germany moses nintendo blackish squeezed

portugal sin gamecube silvery blasted

sweden heaven psp greyish tangled

austria salvation amiga paler slashed

(Even fairly rare words are embedded well.)
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Results

Algorithm POS (PWA) CHUNK (F1) NER (F1) SRL (F1)
Baselines 97.24 94.29 89.31 77.92

[Toutanova ’03] [Sha ’03] [Ando ’05] [Koomen ’05]

NN + WTL 96.31 89.13 79.53 55.40
NN + STL 96.37 90.33 81.47 70.99

NN + LM + STL 97.22 94.10 88.67 74.15
NN + . . . + tricks 97.29 94.32 89.95 76.03

[+su�x] [+POS] [+gazetteer] [+Parse Trees]

NOTES:
– Didn’t compare to benchmarks that used external labeled data.
– [Ando ’05] uses external unlabeled data.
– [Koomen ’05] uses 4 parse trees not provided by the challenge. Using
only 1 tree it gets 74.76.
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Software

Code for tagging with POS, NER, CHUNK, SRL + parse trees:
http://ml.nec-labs.com/senna/

See also Torch: http://www.torch.ch
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Recursive NNs for Parsing, Sentiment, ... and more!
(Socher et al., ICML ’13), (Socher et al., EMNLP, ’13))

Build sentence representations using the parse tree to compose
embeddings via a nonlinear function taking pairs (c1, c2) and output p.
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Paragraph Vector
(Le & Mikolov, ’14)

A Paragraph Vector (a vector that represents a paragraph/doc) learned by:

1) Predicting the words in a doc; 2) predict n-grams in the doc:

At test time, for a new document, one needs to learn its vector, this can
encode word order via the n-gram prediction approach.
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Comparison of CNN, RNN & PV (Kim ’14)
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Some More Recent Work

Compositionality approaches by Marco Baroni’s group:
Words are combined with linear matrices dependendent on the P.O.S.:
G. Dinu and M. Baroni. How to make words with vectors: Phrase
generation in distributional semantics. ACL ’14.

Document representation by Phil Blunson’s group:
Variants of convolutional networks for text:
Kalchbrenner et al. A Convolutional Neural Network for Modelling
Sentences. ACL ’14

Good tutorial slides from these teams covering multiple topics:
New Directions in Vector Space Models of Meaning

http://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf
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Summary

Generic end-to-end deep learning system for NLP tasks.

Word embeddings combined to form sentence or document
embeddings can perform well on supervised tasks.

Previous common belief in NLP: engineering syntactic features
necessary for semantic tasks.
One can do well by engineering a model/algorithm rather than
features.

Attitude is changing in recent years... let’s see what happens!
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Embedding Methods for NLP

Part 2: Embeddings for Multi-relational Data

Antoine Bordes & Jason Weston
Facebook AI Research

EMNLP tutorial – October 29, 2014
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Menu – Part 2

1 Embeddings for multi-relational data
Multi-relational data
Link Prediction in KBs
Embeddings for information extraction
Question Answering

2 Pros and cons of embedding models

3 Future of embedding models

4 Resources
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Multi-relational data

Data is structured as a graph

Each node = an entity

Each edge = a relation/fact

A relation = (sub, rel , obj):
sub =subject,
rel = relation type,
obj = object.

Nodes w/o features.

In this talk, we focus on Knowledge Bases (KBs).
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Example of KB: WordNet

WordNet: dictionary where each entity is a sense (synset).

Popular in NLP.

Statistics:
117k entities;
20 relation types;
500k facts.

Examples:
(car NN 1, has part, wheel NN 1)
(score NN 1, is a, rating NN 1)
(score NN 2, is a, sheet music NN 1)
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Example of KB: Freebase

Freebase: huge collaborative (hence noisy) KB.

Part of the Google Knowledge Graph.

Statistics:
80M of entities;
20k relation types;
1.2B facts.

Examples:
(Barack Obama, place of birth, Hawai)
(Albert Einstein, follows diet, Veganism)
(San Francisco, contains, Telegraph Hill)
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Modeling Knowledge Bases
Why KBs?

KBs: Semantic search, connect people and things
KBs  Text: Information extraction
KBs ! Text: Text interpretation, summary, Q&A

Main issue: KBs are hard to manipulate
Large dimensions: 105/108 entities, 104/106 rel. types
Sparse: few valid links
Noisy/incomplete: missing/wrong relations/entities

How?
1 Encode KBs into low-dimensional vector spaces
2 Use these representations:

to complete/visualize KBs
as KB data in text applications
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Link Prediction in KBs
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Link Prediction

Add new facts without requiring extra knowledge

From known information, assess the
validity of an unknown fact

! collective classification
! towards reasoning in embedding
spaces
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Link Prediction

Add new facts without requiring extra knowledge

From known information, assess the
validity of an unknown fact

! collective classification
! reasoning in embedding spaces
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Statistical Relational Learning

Framework:

n
s

subjects {sub
i

}
i2[1;n

s

]

n
r

relation types {rel
k

}
k2[1;n

r

]

n
o

objects {obj
j

}
j2[1;n

o

]

! For us, n
s

= n
o

= n
e

and 8i 2 [1; n
e

] , sub
i

= obj
i

.

A fact exists for (sub
i

, rel
k

, obj
j

) if rel
k

(sub
i

, obj
j

)=1

Goal: We want to model, from data,

P[rel
k

(sub
i

, obj
j

) = 1]

(eq. to approximate the binary tensor X 2 {0, 1}ns⇥n

o

⇥n

r )
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Previous Work

Tensor factorization (Harshman et al., ’94)

Probabilistic Relational Learning (Friedman et al., ’99)

Relational Markov Networks (Taskar et al., ’02)

Markov-logic Networks (Kok et al., ’07)

Extension of SBMs (Kemp et al., ’06) (Sutskever et al., ’10)

Spectral clustering (undirected graphs) (Dong et al., ’12)

Ranking of random walks (Lao et al., ’11)

Collective matrix factorization (Nickel et al., ’11)

Embedding models (Bordes et al., ’11, ’13) (Jenatton et al., ’12)

(Socher et al., ’13) (Wang et al., ’14) (Garćıa-Durán et al., ’14)
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Collective Matrix Factorization (Nickel et al., ’11)

RESCAL: 8k 2 [1; n
r

] ,R
k

2 Rd⇥d and A 2 Rn

e

⇥d

(close from DEDICOM (Harshman, ’78)).

A & R learned by reconstruction (alternating least-squares):

min
A,R

1

2

 
X

k

||X
k

� AR
k

A>||2
F

!
+ �

A

||A||2
F

+ �
R

X

k

||R
k

||2
F
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Scalability

Method Nb of parameters on Freebase15k
RESCAL O(n

e

d + n
r

d2) 88M (d = 250)

Freebase15k: n
e

= 15k , n
r

= 1.3k .

RESCAL involves many parameters.

Bad scalability w.r.t. n
r

.

Reconstruction criterion does not fit well for binary data..
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Embedding Models

Two main ideas:

1 Models based on low-dimensional continuous vector embeddings
for entities and relation types, directly trained to define a
similarity criterion.

2 Stochastic training based on ranking loss with sub-sampling of
unknown relations.
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Embedding Models for KBs

Subjects and objects are represented by vectors in Rd .
{sub

i

}
i2[1;n

s

]

! [s1, . . . , sns ] 2 Rd⇥n

s

{obj
j

}
j2[1;n

o

]

! [o1, . . . , ono ] 2 Rd⇥n

o

For us, n
s

= n
o

= n
e

and 8i 2 [1; n
e

] , s
i

= o
i

.

Rel. types = similarity operators between subj/obj.
{rel

k

}
k2[1;n

r

]

! operators {R
k

}
k2[1;n

r

]

Learning similarities depending on rel ! d(sub, rel , obj),
parameterized by s, R and o.
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Structured Embeddings (Bordes et al., ’11)

Intuition: sub and obj are projected using rel
in a space where they are similar

d(sub, rel , obj) = �||Rlefts> � Rrighto>||
1

- Entities: s and o 2 Rd

- Projection: Rleft and Rright 2 Rd⇥d

Rleft 6= Rright because of asymmetry
- Similarity: L1 distance
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Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Stochastic Training

Learning by stochastic gradient descent: one training fact after
the other

For each relation from the training set:
1 sub-sample unobserved facts (false?)
2 check if the similarity of the true fact is lower
3 if not, update parameters of the considered facts

Stopping criterion: performance on a validation set
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Scalability

Method Nb of parameters on Freebase15k
RESCAL O(n

e

d + n
r

d2) 88M (d = 250)
SE O(n

e

d + 2n
r

d2) 8M (d = 50)

Freebase15k: n
e

= 15k , n
r

= 1.3k .

SE also involves many parameters.

Bad scalability w.r.t. n
r

.

Potential training problems for SE (overfitting).
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Neural Tensor Networks (Socher et al., ’13)

In NTN, a relationship is represented by a tensor, 2 matrices and
2 vectors + a non-linearity (tanh).

d(sub, rel , obj) = u>
r

tanh
�
h>W

r

t+ V1

r

h+ V2

r

t+ b
r

�

Neural Tensor layer:

Very powerful model with high capacity for each relation.
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Scalability

Method Nb of parameters on Freebase15k
RESCAL O(n

e

d + n
r

d2) 88M (d = 250)
SE O(n

e

d + 2n
r

d2) 8M (d = 50)
NTN O(n

e

d + n
r

d3) 165M (d = 50)

Freebase15k: n
e

= 15k , n
r

= 1.3k .

Very high modeling capacity.

Involves many parameters.

Bad scalability w.r.t. n
r

(overfitting if few triples).
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Modeling Relations as Translations (Bordes et al. ’13)

Intuition: we want s+ r ⇡ o.

The similarity measure is defined as:

d(h, r , t) = �||h+ r � t||2
2

We learn s,r and o that verify that.
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Modeling Relations as Translations (NIPS13)

Intuition: we would like that s+ r ⇡ o.

The similarity measure is defined as:

d(h, r , t) = �||h+ r � t||2
2

We learn s,r and o that verify that.

23 / 83



Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Modeling Relations as Translations (Bordes et al. ’13)

Intuition: we want s+ r ⇡ o.

The similarity measure is defined as:

d(sub, rel , obj) = ||s+ r � o||2
2

s,r and o are learned to verify that.
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Learning TransE

For training, a margin ranking criterion is minimized:

X

pos

X

neg2S 0

⇥
� + ||s+ r � o||2

2

� ||s0 + r � o0||2
2

⇤
+

where [x ]
+

is the positive part of x , � > 0 is a margin, and:

S 0 =
�
(sub0,rel,obj)|sub0 2 E

 
[
�
(sub,rel,obj0)|obj0 2 E
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Learning TransE

1: input: Training set S = {(sub,rel,obj)}, margin �, learning rate �
2: initialize r uniform(� 6p

k

, 6p
k

) for each rel

3: r `/ k`k for each `
4: e uniform(� 6p

j

, 6p
k

) for each entity ent(sub or obj)
5: loop
6: e e/ kek for each entity ent
7: S

batch

 sample(S , b) //sample minibatch of size b
8: T

batch

 ; //initialize set of pairs
9: for (sub,rel,obj) 2 S

batch

do
10: (sub0,rel,obj0) sample(S 0(sub,rel,obj)) //sample negative triplet
11: T

batch

 T
batch

[
��

(sub,rel,obj), (sub0,rel,obj0)
� 

12: end for
13: Update embeddings w.r.t.

X

T

batch

r
⇥
� + ||s+ r � o||2

2

� ||s0 + r � o0||2
2

⇤
+

14: end loop
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Motivations of a Translation-based Model

Natural representation for hierarchical relationships.

Recent work on word embeddings (Mikolov et al., ’13):
there may exist embedding spaces in which relationships among
concepts are represented by translations.
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Scalability

Method Nb of parameters on Freebase15k
RESCAL O(n

e

d + n
r

d2) 88M (d = 250)
SE O(n

e

d + 2n
r

d2) 8M (d = 50)
NTN O(n

e

d + n
r

d3) 165M (d = 50)
TransE O(n

e

d + n
r

d) 0.8M (d = 50)
Freebase15k: n

e

= 15k , n
r

= 1.3k .

TransE is a special case of SE and NTN.

TransE obtains better training errors: less overfitting.

Much better scalability.
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Chunks of Freebase

Data statistics:
Entities (n

e

) Rel. (n
r

) Train. Ex. Valid. Ex. Test Ex.
FB13 75,043 13 316,232 5,908 23,733
FB15k 14,951 1,345 483,142 50,000 59,071
FB1M 1⇥106 23,382 17.5⇥106 50,000 177,404

Training times for TransE:
Embedding dimension: 50.
Training time:

on Freebase15k: ⇡2h (on 1 core),
on Freebase1M: ⇡1d (on 16 cores).
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Visualization of 1,000 Entities
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Visualization of 1,000 Entities - Zoom 1
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Visualization of 1,000 Entities - Zoom 2
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Visualization of 1,000 Entities - Zoom 3
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Example

”Who influenced J.K. Rowling?”

J. K. Rowling influenced by ?

C. S. Lewis
Lloyd Alexander
Terry Pratchett
Roald Dahl
Jorge Luis Borges
Stephen King
Ian Fleming
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Example

”Who influenced J.K. Rowling?”

J. K. Rowling influenced by G. K. Chesterton
J. R. R. Tolkien
C. S. Lewis
Lloyd Alexander
Terry Pratchett
Roald Dahl
Jorge Luis Borges
Stephen King
Ian Fleming
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Example

”Which genre is the movie WALL-E?”

WALL-E has genre ?
Computer animation
Comedy film
Adventure film
Science Fiction
Fantasy
Stop motion
Satire
Drama
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Example

”Which genre is the movie WALL-E?”

WALL-E has genre Animation
Computer animation
Comedy film
Adventure film
Science Fiction
Fantasy
Stop motion
Satire
Drama
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Benchmarking

Ranking on FB15k Classification on FB13

On FB1M,TransE predicts 34% in the Top-10 (SE only 17.5%).
Results extracted from (Bordes et al., ’13) and (Wang et al., ’14)
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Refining TransE

TATEC (Garćıa-Durán et al., ’14) supplements TransE with a
trigram term for encoding complex relationships:

d(sub, rel , obj) =

trigramz }| {
s>
1

Ro
1

+

bigrams⇡TransEz }| {
s>
2

r + o>
2

r0 + s>
2

Do
2

,

with s
1

6= s
2

and o
1

6= o
2

.

TransH (Wang et al., ’14) adds an orthogonal projection to the
translation of TransE:

d(sub, rel , obj) = ||(s�r>
p

sr
p

) + r
t

� (o�r>
p

or
p

)||2
2

,

with r
p

? r
t

.
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Benchmarking

Ranking on FB15k

Results extracted from (Garćıa-Durán et al., ’14) and (Wang et al., ’14)
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Menu – Part 2

1 Embeddings for multi-relational data
Multi-relational data
Link Prediction in KBs
Embeddings for information extraction
Question Answering

2 Pros and cons of embedding models

3 Future of embedding models

4 Resources
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Information Extraction

Information extraction: populate KBs with new facts using text

Usually two steps:
Entity linking: identify mentions of entities in text
Relation extraction: extract facts about them

Previous works include rule-based models, classifiers with
features from parsers, graphical models, etc.

Embedding models exist for both steps.
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Entity Linking as WSD

Word Sense Disambiguation $ WordNet entity linking

Towards open-text semantic parsing:
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Embeddings of Text and WordNet (Bordes et al., ’12)

Text is converted into relations (sub,rel ,obj).

Joint learning of embeddings for all symbols: words, entities and
relation types from WordNet.

This system can label 37,141 words with 40,943 synsets.

Train. Ex. Test Ex. Labeled? Symbol
WordNet 146,442 5,000 No synsets
Wikipedia 2,146,131 10,000 No words
ConceptNet 11,332 0 Non words
Ext. WordNet 42,957 5,000 Yes words+synsets
Unamb. Wikip. 981,841 0 Yes words+synsets
TOTAL 3,328,703 20,000 - -
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Benchmarking on Extended WordNet

F1-score on 5,000 test sentences to disambiguate.

Results extracted from (Bordes et al., ’12)
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WordNet is enriched through text

Similarities among senses beyond WordNet

”what does an army attack?”

army NN 1 attack VB 1 ?
armed service NN 1
ship NN 1
territory NN 1
military unit NN 1
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WordNet is enriched through text

Similarities among senses beyond original WordNet data

”what does an army attack?”

army NN 1 attack VB 1 troop NN 4
armed service NN 1
ship NN 1
territory NN 1
military unit NN 1
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WordNet is enriched through text

Similarities among senses beyond WordNet

”Who or what earns money”

? earn VB 1 money NN 1
business firm NN 1

family NN 1
payo↵ NN 3

card game NN 1
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WordNet is enriched through text

Similarities among senses beyond original WordNet data

”Who or what earns money”

person NN 1 earn VB 1 money NN 1
business firm NN 1
family NN 1
payo↵ NN 3
card game NN 1
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Relation Extraction

Given a bunch of sentences.
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Relation Extraction

Given a bunch of sentences concerning the same pair of entities.
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Relation Extraction

Goal: identify if there is a relation between them to add to the KB.

52 / 83



Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

Relation Extraction

And from which type, to enrich an existing KB.
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Embeddings of Text and Freebase (Weston et al., ’13)

Standard Method: an embedding-based classifier is trained to
predict the relation type, given text mentions M and (sub, obj):

r(m, sub, obj) = argmax
rel

0

X

m2M

S
m2r

(m, rel 0)

Classifier based on WSABIE (Weston et al., ’11).
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Embeddings of Text and Freebase (Weston et al., ’13)

Idea: improve extraction by using both text + available
knowledge (= current KB).

A model of the KB is used in a re-ranking setting to force
extracted relations to agree with it:

r 0(m, sub, obj) = argmax
rel

0

� X

m2M
S
m2r

(m, rel 0)�d
KB

(sub, rel 0, obj)
�

with d
KB

(sub, rel 0, obj) = ||s+ r0 � o||2
2

(trained separately)
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Benchmarking on NYT+Freebase
Exp. on NY Times papers linked with Freebase (Riedel et al., ’10)
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Precision/recall curve for predicting relations

Results extracted from (Weston et al., ’13)
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Universal Schemas (Riedel et al., ’13)

Join in a single learning problem:
relation extraction
link prediction

The same model score triples:

made of text mentions
from a KB
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Universal Schemas (Riedel et al., ’13)

Relation prediction using the score:

r 0(m, sub, obj) = argmax
rel

0
� P

m2M S
m2r

(m, rel 0)
+ S

KB

(sub, rel 0, obj)
+ S

neighbors

(sub, rel 0, obj)
�

All scores are defined using embeddings:
S
m2r

(m, rel 0) = f(m)>r0

S
kb

(sub, rel 0, obj) = s>r0
s

+ o>r0
o

S
neighbors

(sub, rel 0, obj) =
X

(sub,rel 00,obj)
rel

00 6=rel

0

w rel

0
rel

00

Training by ranking observed facts versus other and updating
using SGD.
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Benchmarking on NYT+Freebase
Exp. on NY Times papers linked with Freebase (Riedel et al., ’10)

Mean Averaged Precision for predicting relations

Results extracted from (Riedel et al., ’13)
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Link Prediction as Q&A

”Who influenced J.K. Rowling?”

J. K. Rowling influenced by G. K. Chesterton
J. R. R. Tolkien
C. S. Lewis
Lloyd Alexander
Terry Pratchett
Roald Dahl
Jorge Luis Borges

Can we go beyond such rigid structure?
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Open-domain Question Answering

Open-domain Q&A: answer question on any topic

�! query a KB with natural language

Examples

“What is cher’s son’s name ?” elijah blue allman

“What are dollars called in spain ?” peseta

“What is henry clay known for ?” lawyer

“Who did georges clooney marry in 1987 ?” kelly preston

Recent e↵ort with semantic parsing (Kwiatkowski et al. ’13)
(Berant et al. ’13, ’14) (Fader et al., ’13, ’14) (Reddy et al., ’14)

Models with embeddings as well (Bordes et al., ’14)
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Subgraph Embeddings (Bordes et al., ’14)

Model learns embeddings of questions and (candidate) answers
Answers are represented by entity and its neighboring subgraph

“Who did Clooney marry in 1987?” 

Word%embedding%lookup%table%

G. Clooney 
K. Preston 

1987 

J. Travolta 

Model 

Honolulu 

Freebase%embedding%lookup%table%

Detec6on%of%Freebase%
en6ty%in%the%ques6on%

Embedding model 

Freebase subgraph 

Binary%encoding%
of%the%subgraph%

Embedding%of%the%
subgraph%

Binary%encoding%
of%the%ques6on%

Embedding%of%
the%ques6on%

Ques%on(

Subgraph%of%a%candidate%
answer%(here%K.%Preston)%

Score 
How%the%candidate%answer%

fits%the%ques6on%

Dot%product%
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Training data

Freebase is automatically converted into Q&A pairs

Closer to expected language structure than triples

Examples of Freebase data

(sikkim, location.in state.judicial capital, gangtok)
what is the judicial capital of the in state sikkim ? – gangtok

(brighouse, location.location.people born here, edward barber)
who is born in the location brighouse ? – edward barber

(sepsis, medicine.disease.symptoms, skin discoloration)
what are the symptoms of the disease sepsis ? – skin discoloration
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Training data
All Freebase questions have rigid and similar structures
Supplemented by pairs from clusters of paraphrase questions
Multitask training: similar questions $ similar embeddings

Examples of paraphrase clusters

what are two reason to get a 404 ?
what is error 404 ?
how do you correct error 404 ?

what is the term for a teacher of islamic law ?
what is the name of the religious book islam use ?
who is chief of islamic religious authority ?

what country is bueno aire in ?
what countrie is buenos aires in ?
what country is bueno are in ?
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Benchmarking on WebQuestions
Experiments on WebQuestions (Berant et al., ’13)

F1-score for answering test questions

Results extracted from (Berant et al., ’14) and (Bordes et al., ’14)
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Advantages

E�cient features for many tasks in practice

Training with SGD scales & parallelizable (Niu et al., ’11)

Flexible to various tasks: multi-task learning of embeddings

Supervised or unsupervised training

Allow to use extra-knowledge in other applications
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Issues

Must train all embeddings together (no parallel 1-vs-rest)

Low-dimensional vector �! compression, blurring

Sequential models su↵er from long-term memory

Embeddings need quite some updates to be good – not 1-shot

Negative example sampling can be une�cient
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Fix current limitations

Compression: improve the memory capacity of embeddings and
allows for one-shot learning of new symbols

Long-term memory: encode longer dependencies in sequential
models like RNNs

Training: faster and better sampling of examples

Beyond linear: most supervised labeling problems are well
tackled by simple linear models. Non-linearity should help more.
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Explore new directions

Compositionality (Baroni et al. ’10) (Grefenstette, 13)

Multimodality (Bruni et al., 12) (Kiros et al., ’14)

Grounding language into actions (Bordes et al., 10)

He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

Step 0:

<Gina>

<Mark>

locatio
n

He cooks the rice

? ? ? ?

x:

y:

u:

Step 4:

(2)

(1)

<kitchen>

<garden>

<John>

<rice><cook>

<Gina>

<Mark>

He cooks the rice

? ? ? ?

x:

y:

u:

Step 5:

<kitchen>

<garden>

<John> <rice><cook>

<Gina>

<Mark>
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At EMNLP
Modeling Interestingness with Deep Neural Networks
Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He and Li Deng

Translation Modeling with Bidirectional Recurrent Neural Networks
Martin Sundermeyer, Tamer Alkhouli, Joern Wuebker and Hermann Ney

Learning Image Embeddings using Convolutional Neural Networks for Improved
Multi-Modal Semantics
Douwe Kiela and Léon Bottou

Learning Abstract Concept Embeddings from Multi-Modal Data: Since You
Probably Can’t See What I Mean
Felix Hill and Anna Korhonen

Incorporating Vector Space Similarity in Random Walk Inference over Knowledge
Bases
Matt Gardner, Partha Talukdar, Jayant Krishnamurthy and Tom Mitchell

Composition of Word Representations Improves Semantic Role Labelling

Michael Roth and Kristian Woodsend
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At EMNLP

A Neural Network for Factoid Question Answering over Paragraphs
Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher and Hal
Daumé III

Joint Relational Embeddings for Knowledge-based Question Answering
Min-Chul Yang, Nan Duan, Ming Zhou and Hae-Chang Rim

Evaluating Neural Word Representations in Tensor-Based Compositional Settings
Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh Sadrzadeh and Matthew Purver

Opinion Mining with Deep Recurrent Neural Networks
Ozan Irsoy and Claire Cardie

The Inside-Outside Recursive Neural Network model for Dependency Parsing
Phong Le and Willem Zuidema

A Fast and Accurate Dependency Parser using Neural Networks
Danqi Chen and Christopher Manning
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At EMNLP

Reducing Dimensions of Tensors in Type-Driven Distributional Semantics
Tamara Polajnar, Luana Fagarasan and Stephen Clark

Word Semantic Representations using Bayesian Probabilistic Tensor Factorization
Jingwei Zhang, Jeremy Salwen, Michael Glass and Alfio Gliozzo

Glove: Global Vectors for Word Representation
Je↵rey Pennington, Richard Socher and Christopher Manning

Jointly Learning Word Representations and Composition Functions Using
Predicate-Argument Structures
Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa and Yoshimasa Tsuruoka

Typed Tensor Decomposition of Knowledge Bases for Relation Extraction
Kai-Wei Chang, Wen-tau Yih, Bishan Yang and Christopher Meek

Knowledge Graph and Text Jointly Embedding
Zhen Wang, Jianwen Zhang, Jianlin Feng and Zheng Chen
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At EMNLP

Question Answering with Subgraph Embeddings
Antoine Bordes, Sumit Chopra and Jason Weston

Word Translation Prediction for Morphologically Rich Languages with Bilingual
Neural Networks
Ke M. Tran, Arianna Bisazza and Christof Monz

Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation
Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk and Yoshua Bengio

Convolutional Neural Networks for Sentence Classification
Yoon Kim

#TagSpace: Semantic Embeddings from Hashtags
Jason Weston, Sumit Chopra and Keith Adams
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Code

Torch: www.torch.ch

SENNA: ronan.collobert.com/senna

RNNLM: www.fit.vutbr.cz/
~

imikolov/rnnlm

Word2vec: code.google.com/p/word2vec

Recursive NN: nlp.stanford.edu/sentiment

SME (multi-relational data): github.com/glorotxa/sme
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A. Bordes, N. Usunier, A. Garćıa-Durán, J. Weston & O. Yakhnenko. NIPS, 2013

80 / 83



Embeddings for multi-relational data Pros and cons of embedding models Future of embedding models Resources

References

Question Answering with Subgraph Embeddings
A. Bordes, S. Chopra & J. Weston. EMNLP, 2014

Clustering with Multi-Layer Graphs: A Spectral Perspective
X. Dong, P. Frossard, P. Vandergheynst & N. Nefedov. IEEE TSP, 2013

Paraphrase-Driven Learning for Open Question Answering
A. Fader, L. Zettlemoyer & O. Etzioni. ACL, 2013

Open Question Answering Over Curated and Extracted Knowledge Bases
A. Fader, L. Zettlemoyer & O. Etzioni. KDD, 2014

Learning Probabilistic Relational Models
N. Friedman, L. Getoor, D. Koller & A. Pfe↵er. IJCAI, 1999

E↵ective Blending of Two and Three-way Interactions for Modeling
Multi-relational Data
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