Semantic Parsing with
Combinatory Categorial Grammars

Yoav Artzi, Nicholas FitzGerald and Luke Zettlemoyer
University of VWashington

http://yoavartzi.com/tutorial]

Language to Meaning

More informative

Language to Meaning

Information
Extraction
Recover information

about pre-specified
relations and entities

>
More informative
Example Task

Relation Extraction

s s ||» is.a(OBAMA, PRESIDENT)

Language to Meaning

Broad-coverage
Semantics
Focus on specific

phenomena (e.g., verb-
argument matching)

>
More informative
Example Task

Summarization

Obama wins
election. Big party
in Chicago.
Romney a bit
down, asks for
some tea.

Language to Meaning

Semantic
Parsing
Recover complete

meaning
representation
>

More informative
Example Task

Database Query

Oklahoma
What states "» "» New Mexico
border Texas? Arkansas

Louisiana

Language to Meaning

Semantic
Parsing
Recover complete

meaning
representation
>

More informative
Example Task

Instructing a Robot

at the chair,

turn right * @
At

Language to Meaning

Semantic
Parsing
Recover complete

meaning
representation
>

More informative

Complete meaning is sufficient to
complete the task

¢ Convert to database query to get the answer
¢ Allow a robot to do planning

Language to Meaning

Semantic
Parsing
Recover complete

meaning
representation
>

More informative

at the chair, move forward three steps past the sofa
Aa.pre(a, vx.chair(z)) A move(a) A len(a, 3)A
dir(a, forward) A past(a,ty.sofa(y))

Language to Meaning

Semantic
Parsing
Recover complete

meaning
representation

>
More informative

at the chair, move forward _ past the sofa

Aa.pre(a, vx.chair(z)) A move(a) Alen(a;3) N

dir(a, forward) N past(a,y.sofa(y))

Language to Meaning

at the chair, move forward three steps past the sofa
Aa.pre(a, tx.chair(z)) A move(a) A len(a, 3)A
dir(a, forward) A past(a,vy.sofa(y))

‘ Learn

f : sentence — logical form

Language to Meaning

at the chair, move forward three steps past the sofa

‘ Learn

f : sentence — logical form

Central Problems

Parsing Choices

® Grammar formalism

® Inference procedure

Inductive Logic Programming [zelle and Mooney 1996]
SCFG [Wong and Mooney 2006]

CCG + CKY [Zettlemoyer and Collins 2005]

Constrained Optimization + ILP [Clarke et al.2010]
DCS + Projective dependency parsing [Liang etal.2011]

Learning

® What kind of supervision is available?

® Mostly using latent variable methods

Annotated parse trees [Miler et al. 1994]

Sentence-LF pairs [Zettlemoyer and Collins 2005]
Question-answer pairs [Clarke et al. 2010]
Instruction-demonstration pairs [Chen and Mooney 2011]
Conversation logs [Artziand Zettlemoyer 201 1]

Visual sensors [Matuszek et al. 2012a]

Semantic Modeling

® What logical language to use?

® How to model meaning?

Variable free logic [Zelle and Mooney 1996;Wong and Mooney 2006]
High-order logic [zettlemoyer and Collins 2005]

Relational algebra [Liang et al. 201 1]

Graphical models [Tellex et al. 2011]

Today

~

Parsing Combinatory Categorial Grammars
J

Learning Unified learning algorithm

ISl Best practices for semantics design

Parsing Learning Modeling

Parsing Learning Modeling

¢ Lambda calculus

* Parsing with Combinatory Categorial
Grammars

¢ Linear CCGs
* Factored lexicons

Parsing Learning Modeling

e Structured perceptron

* A unified learning algorithm
* Supervised learning
* Weak supervision

Parsing

Learning Modeling

* Semantic modeling for:

- Querying databases
- Referring to physical objects
- Executing instructions

UW SPF

Open source semantic parsing framework

http://yoavartzi.com/spf

Semantic Flexible High-Order Learning
Parser Logic Representation | | Algorithms

Includes ready-to-run examples

[Artzi and Zettlemoyer 2013a]

Parsing Learning Modeling

¢ | ambda calculus

* Parsing with Combinatory Categorial
Grammars

e Linear CCGs
* Factored lexicons

Lambda Calculus

® Formal system to express computation

® Allows high-order functions

Aa.move(a) A dir(a, LEFT) A to(a,ty.chair(y))A
pass(a, Ay.sofa(y) A intersect(Az.intersection(z),y))

[Church 1932]

Lambda Calculus
Base Cases

® | ogical constant

Variable

Literal

Lambda term

Lambda Calculus
Logical Constants

® Represent objects in the world

NYC,CA, RAINIER, LEFT, . ..

located_in, depart_date, . . .

Lambda Calculus
Variables

® Abstract over objects in the world

® Exact value not pre-determined

T, Y, 2y

Lambda Calculus
Literals

® Represent function application

city(AUSTIN)
located_in(AUSTIN, TEX AS)

Lambda Calculus
Literals

® Represent function application

city(AUSTIN)

located_in(}ilUSTIN, TEXAii)

Logical expression List of logical expressions

Lambda Calculus
Lambda Terms

® Bind/scope a variable

® Repeat to bind multiple variables

Az.city(x)

located_in(x,y) |Body
A

Lambda Calculus
Quantifiers?

® Higher order constants

® No need for any special mechanics

® Can represent all of first order logic
V(Ax.big(x) A apple(x))
(3 (Az.lovely(x))
t(Ax.beauti ful(x) A grammar(x))

Lambda Calculus
Syntactic Sugar

AN (A NB,C) < ANBAC
V(A,V(B,C) < AvBVC
-(4) & -A
Q(Az.f(x)) & Qu.f(x)

for Q € {v, A, 3,V}

Simply Typed Lambda Calculus

® |ike lambda calculus

® But, typed

X \x.flight(z) A to(x, move)
& Az flight(x) A to(z, NY C)
X \x.NYC(x) A z(to, move)

[Church 1940]

Lambda Calculus

Typing
® Simple types
Truth- Type
t value ¢ Complex types constructor
, <eyt >
6 Entity

. Lambda Calculus

¢ Typing
— tr_ﬂa ® Simple types
Type
l_fl ¢ Complex types constructor
— gt <eyt>

_loC_ap <’h>

® Hierarchical typing system

Simply Typed Lambda Calculus

Aa.move(a) A dir(a, LEFT) A to(a, vy.chair(y))A
pass(a, Ay.sofa(y) A intersect(Az.intersection(z),y))

[Type information usually omitted]

Capturing Meaning with
Lambda Calculus

e m
P
WA OR

AL Montgomery 39 Banca <
WA ID Antero Cco
AK Juneau 0.4 CA OR Rainier WA
- _— R CA | v Shasta | CA
Wrangel AK
Si
—

Show me mountains in states
bordering Texas

[Zettlemoyer and Collins 2005]

Capturing Meaning with
Lambda Calculus

SYSTEM how can | help you ?

USER i* d like to fly to new york

SysteM flying to new york . leaving what city ?

USER from boston on june seven with american airlines

SysteM flying to new york . what date would you like to depart boston ?

USER june seventh
SYsTeM do you have a preferred airline ?
USER american airlines

o . k. leaving boston to new york on june seventh flying with

SYSTEM . o e
american airlines . where would you like to go to next ?

USER back to boston on june tenth

[Artzi and Zettlemoyer 2011]

Capturing Meaning with
Lambda Calculus

Aa.move(a)

go to the chair
and turn right %

)

I
i

[Artzi and Zettlemoyer 2013b]

Capturing Meaning with
Lambda Calculus

® Flexible representation

® Can capture full complexity of natural
language

[More on modeling meaning later]

Constructing Lambda
Calculus Expressions

at the chair, move forward three steps past the sofa
Aa.pre(a, tx.chair(x)) A move(a) Nlen(a,3)/
dir(a, forward) N past(a,ty.sofa(y))

Combinatory Categorial
Grammars

cCcG is fun

NP S\NP/ADJ ADJ
CCG AfAzx.f(x) Azx.fun(x)
S\NP g

S
fun(CCQG)

[Steedman 1996, 2000]

Combinatory Categorial
Grammars

® Categorial formalism

® Transparent interface between syntax and
semantics

® Designed with computation in mind

® Part of a class of mildly context sensitive
formalisms (e.g., TAG, HG, LIG) goshi ecal. 19901

CCG Categories
ADJ : \z. fun(x)

® Basic building block

® Capture syntactic and semantic information
jointly

CCG Categories

S AD.J| :[)\:c.fun(a:)

® Basic building block

® Capture syntactic and semantic information
jointly

CCG Categories

4D\ fun(z)

(S\NP)/ADJ : \f Az f(x)
NP:CCG

® Primitive symbols: N, S, NP ADJ and PP
® Syntactic combination operator (/,\)

® Slashes specify argument order and direction

CCG Categories

ADJ [)\xfun(x)

(S\NP)/ADJ : A\f \x.f(x)
NP :CCG

® J-calculus expression

® Syntactic type maps to semantic type

CCQG Lexical Entries
fun - ADJ : Ax.fun(x)

® Pair words and phrases with meaning

® Meaning captured by a CCG category

CCG Lexical Entries

fun FADJ : Ax.fun(x)

Natural CCG Category

Language

® Pair words and phrases with meaning

® Meaning captured by a CCG category

CCG Lexicons

fun - ADJ : Ax.fun(x)
is F (S\NP)/ADJ : A\f.\x.f(x)
CCG FNP:CCG

® Pair words and phrases with meaning

® Meaning captured by a CCG category

Between CCGs and CFGs

CFGs CCGs

Combination operations Many Few
Parse tree nodes Non-terminals. Categories
Handful, but

Syntactic symbols Few dozen :
can combine

Paired with words| POS tags Categories

Parsing with CCGs
CCG is fun
NP S\NP/ADJ ADJ
CCG Mfdx.f(x) Az.fun(z)

Use lexicon to match words and
phrases with their categories

CCG Operations

® Small set of operators
® Input: 1-2 CCG categories
® Output:A single CCG category

® Operate on syntax semantics together

® Mirror natural logic operations

CCG Operations
Application

B:g A\B:f=A:f(g) (<)
A/B:f B:g=A:f(g) (>)

® Equivalent to function application

® Two directions: forward and backward

= Determined by slash direction

CCG Operations
Application

B:g ||A\B: fl]=A: f(9)| (<)

A/B:f B:g=A:f(g) (>)

® Equivalent to function application

® Two directions: forward and backward

= Determined by slash direction

Parsing with CCGs

CcCcG is fun

NP S\NP/ADJ ADJ
CCG AfAx.f(x) Azx.fun(x)

Use lexicon to match words and
phrases with their categories

Parsing with CCGs

CCG is fun

NP S\NP/ADJ ADJ

CCG Afdzx.f(x) Az.fun(x)
S\NP g
Az. fun(z)

Combine categories using operators

A/B:f B:g=A:f(g) (>)

Parsing with CCGs

CCG is fun

NP S\NP/ADJ ADJ
CCG Mfdx.f(x) Az fun(x)
S\NP g

S
fun(CCGQG)
Combine categories using operators

Big A\B:f=A:f(g) (<)

Parsing with CCGs

Composed
adjectives

v N

square blue or round yellow pillow
A

\\ Non-standard

coordination

CCG Operations

Composition

A/B:f B/C:g9g= A/C:) x.f(g(x)) (> B)
B\C:g9g A\B:f=A\C:\x.f(g(z)) (< B)

® Equivalent to function composition*

® Two directions: forward and backward

* Formal definition of logical composition in supplementary slides

CCG Operations

Composition

IA/B : f\ B/C:g :>|A/C’ :)\xf(g(x))\ (> B)

B\C:g9g A\B:f= A\C:)\x.f(g(z)) (< B)

® Equivalent to function composition*

® Two directions: forward and backward

* Formal definition of logical composition in supplementary slides

CCG Operations
Type Shifting

ADJ : Azx.g(x) :>|N/N s Af Az f(x) /\g(ac)\
g

PP : Ax.g(z) = N\N : A\f.Azx.f(z) A g(z)
AP : de.g(e) = S\S : Af.Xe.f(e) Ag(e)
AP : de.g(e) :>: Af.Ae.f(e) Agle)

® Category-specific unary operations
® Modify category type to take an argument

® Helps in keeping a compact lexicon

CCG Operations

Coordination

and F C': conj
or - C :disj

® Coordination is special cased
= Specific rules perform coordination

= Coordinating operators are marked with
special lexical entries

Parsing with CCGs

square blue or round yellow pillow

Parsing with CCGs

square blue or round 1 yellow pillow

ADT ADT 4] ADJT ADT N
Az.square(x) Aa-blue(x) disj Azround() Aa.yellow(x) Aa.pillow(x)

Use lexicon to match words and
phrases with their categories

Parsing with CCGs

square blue or round yellow pillow
ADJ v
c.round|

ADJ ADJ C ADJ N
Ae.square(x) Aa-blue(x) disj Ao (z) Ae.yellow(x) Aa.pillow(x)

N/N
MMz f(x) A square(x)

Shift adjectives to combine

ADJ : Ax.g(x) = N/N : AMf z.f(x) A g(x)

Parsing with CCGs

square blue or round yellow pillow

ADT ADJ c ADJ ADJ N
Ae.square(x) Ne-blue(z) disj Ae.round(x) Ne.yellow(x) Aepillow(x)
N/N N/N N/N N/N
AAe.f(2) A square(x) AfAe.f(a) A blue() Mz f(@) Around(x) AfAe.f(x) A yellow(x)

Shift adjectives to combine

ADJ : Xx.g(z) = N/N : Af. x.f(x) A g(z)

Parsing with CCGs

square blue or round yellow pillow
ADJ ADJ C ADJ ADJ N
Ae.square(x) Az-blue(z) disj Aaround(z) Ae.yellow(x) Xepillow(x)

N/N N/N N/N N/N
AfAe.f(2) A square(z) Af.Ae.f(x) A blue(z) AfAef(@) Around(z) AfAa.f(x) A yellow(x)

N/N N/N
AfAz.f(x) A square(x) A blue(x) AfAz.f(x) A round(z) A yellow(x)

Compose pairs of adjectives

A/B:f B/C:g9g= A/C:Xx.f(g(x)) (> B)

Parsing with CCGs

square blue or round yellow pillow
ADJ ADJ C ADJ ADJ N
Ae.square(x) Ae-blue(x) disj Az.round(z) Ne.yellow(x) Aapillow(x)
N/N N/N N/N N/N
AfA.f(x) A square(z) Afde.f (@) A blue(x) A Az f(x) Around(x) AfAe.f(z) A yellow()

N/N N/N
AfAz.f(x) A square(z) A blue() AfAz.f(x) A round(z) A yellow(s)

N/N
ANz f(2) A (square(a) A blue(x)) V (round(x) A yellow(w))

Coordinate composed adjectives

Parsing with CCGs

square blue or round yellow pillow
ADJT ADT 4] ADJT ADJT N
Ar.square(x) Aa-blue(x) disj Aaround() Ar.yellow(x) Aa.pillow(x)
N/N N/N N/N N/N
A Az f(x) A square(x) AfAa.f(x) A blue(x) MMz f(x) Around(z) AfAa.f(x) A yellow(x)

N/N N/N
MMz f(x) A square(x) A blue(x) MAz.f(x) A round(x) A yellow(x)
@

N/N
Az f(@) A ((square(x) A blue()) V (round(z) A yellow(z)))

Ae.pillow(x) A ((square(w) A bzluve(z)) V (round(x) A yellow(x)))

Apply coordinated adjectives to noun

A/B:f B:g=A:f(g) (>)

Parsing with CCGs

T CCG is fun

[NP S\NP/ADJ ADJ

CCG MfAx.f(z) Azx.fun(x)
>

| S\NP
y Azx. fun(x)

S
2 fun(CCG)

Many parsing » Many potential
decisions trees and LFs

—

Lexical
Ambiguity

Weighted Linear CCGs

® Given a weighted linear model:
= CCG lexicon A
- Feature function f:X XY —R™
= Weights w € R™
® The best parse is:
y* =argmaxw - f(z,y)

Yy
® \We consider all possible parses y for sentence z given

the lexicon A

Parsing Algorithms
® Syntax-only CCG parsing has polynomial
time CKY-style algorithms

® Parsing with semantics requires entire
category as chart signature

- eg, ADJ : Ax.fun(x)
® |n practice, prune to top-N for each span

= Approximate, but polynomial time

More on CCGs

® Generalized type-raising operations

® Cross composition operations for cross
‘ serial dependencies

® Compositional approaches to English
intonation

® and a lot more ... even Jazz

[Steedman 1996;2000; 201 |; Granroth and Steedman 2012]

The Lexicon Problem

® Key component of CCG

® Same words often paired with many
different categories

o Difficult to learn with limited data

Factored Lexicons

the house dog house = ADJ : Az.of (x,vy.house(y))

the dog of the house house F N : Az.house(x)
wx.dog(x) A of (z, ty.house(y))
the garden dOg garden + ADJ : Ax.of(x,y.garden(y))

wr.dog(z) A of (x,wy.garden(y))

® | exical entries share information

® Decomposition of entries can lead to more
compact lexicons

Factored Lexicons

the house dog house + ADJ : Ax.of (z,y.house(y))

the dog of the house [housé - N : \zhouseé(x)
wr.dog(x) A of (z, ty.house(y))
the garden dOg garden FADJT Xz of (@, uy-garden(y))

wr.dog(x) A of (z,ty.garden(y))

® | exical entries share information

® Decomposition of entries can lead to more
compact lexicons

Factored Lexicons

(garden, {garden})

* L (house, {house})
Templates
AMw, {vi}1).

[wk ADJ : Ax.of (z, ty.v1(y))]
Aw, {oi}))-

[wE N Az (z))

house + ADJ : Ax.of (x,y.house(y))
hGuse — N : \x.liouse(x)
garden HADJ : Xzof (2, ty.garden(y))

Factored Lexicons

Templates
Aw, {vi}?).
[wk ADJ : Ax.of (z, ty.v1(y))]
AMw, {vi}1).
wk N : Az (z)]

(garden, {garden})
(house, { house})

¢ Capture systematic variations * Model word meaning

in word usage * Abstracts the compositional

o Each variation can then be nature of the word
applied to compact units of

lexical meaning

Factored Lexicons

(garden, {garden})

Words I ﬁonstants

Alw, {vi}))-
[wk N : Az (z)]

B w+ garden
‘ v < garden

garden F N : Azx.garden(x)

Factored Lexicons

flight + S|NP : \z.flight(x)

flight - S|NP/(S|NP): Af.Ax.flight(z) A f()

(OI:TE\N flight F SINP\(SINP) : Af. Az flight(x) A f ()

WS lele)al| ground transport + S|NP : Az.trans(z)

ground transport F S|NP/(S|NP): Af. x.trans(z) A f(x)
ground transport F S|NP\(S|NP): AfAz.trans(z) A f(x)

(fight, { flight})
(ground transport, {trans})

Factored

Lexicon AMw, {vi}]).lwF SINP : Az.vy ()]

Aw, {v;}7).lw = SINP/(SINP) : AMfdz.vi(z) A f(z)]
AMw, {vi}1).lw F SINP\(S|NP) : A\f dz.vi(z) A f(z)]

Factoring a Lexical Entry

house - ADJ : Az.of(z,y.house(y))

Partial (house, {house})
factoring AMw, {vi}7).Jwt ADJ : Az.of (x, ty.v1(y))]

Partial (house, {of})

factoring AMw, {vi}7).[wF ADJ : Ax.vi(z, vy.house(y))]

Maximal (house, {of, house})
factoring Aw, {vi}7).lwt ADJ : Az.vi(z, wy.v2(y))]

Parsing Learning Modeling

¢ | ambda calculus

* Parsing with Combinatory Categorial
Grammars

e Linear CCGs
* Factored lexicons

Learning

Learning »
Data * Algorithm CCG

® What kind of data/supervision we can use?

® \What do we need to learn?

Parsing as Structure
Prediction

show me flights to Boston

S/N N PP/NP NP
Af Az.flight(z) Ay.dz.to(z,y) BOSTON

PP -
Az.to(z, BOSTON)

N\N
A Az f(z) Ato(xz, BOSTON)

N
Az. flight(z) A to(z, BOSTON)
>

S
Az. flight(z) A to(z, BOSTON)

Learning CCG

show me flights to Boston

S/N N PP/NP NP
YN Az flight(z) Ay.Az.to(z,y) BOSTON
>

PP
Aa.to(x, BOSTON)

N\N
AfAz.f(z) Ato(z, BOSTON)

N
Az. flight(z) A to(z, BOSTON)

S
Az. flight(x) A to(x, BOSTON)

Combinators

Lexicon
Predefined

Supervised Data

show me flights Boston

\:A‘e“&

Az. flight(z) A to(z, BOSTON)

Supervised Data

Supervised learning is done from pairs
of sentences and logical forms

Show me flights to Boston
Az flight(x) A to(x, BOSTON)
| need a flight from baltimore to seattle

Ax. flight(x) A from(x, BALTIMORE) A to(x, SEATTLE)

what ground transportation is available in san francisco
Az.ground_transport(zx) A to_city(x, SF)

[Zettlemoyer and Collins 2005;2007]

Weak Supervision

Logical form is latent

® “Labeling” requires less expertise

Labels don’t uniquely determine correct
logical forms

® | earning requires executing logical forms
within a system and evaluating the result

Weak Supervision
Learning from Query Answers

What is the largest state that borders Texas?

New Mexico

[Clarke et al.2010; Liang et al.2011]

Weak Supervision
Learning from Query Answers

What is the largest state that borders Texas?

New Mexico

argmazx(Azx.state(x)

—> New Mexi
Aborder(z, TX), Ny.size(y)) ew Megico aff

argmaz(Az.river(x)
-

“—> Rio Grand
Nin(z, TX), \y.size(y)) oo cx

[Clarke et al.2010; Liang et al. 201 1]

Weak Supervision
Learning from Demonstrations

at the chair, move forward three steps past the sofa

Some examples from other domains:
® Sentences and labeled game states [Goldwasser and Roth 201 1]

® Sentences and sets of physical objects [Matuszek et al. 2012]

[Chen and Mooney 201 I; Kim and Mooney 2012;Artzi and Zettlemoyer 2013b]

Weak Supervision
Learning from Conversation Logs

SYsTEM how can | help you ? (OPEN_ TASK)

USER i*d like to fly to new york

SYsTEM flying to new york . (CONFIRM: from(fl. ATL)) leaving what city ?
(ASK: Az.from(fl.z))

UserR from boston on june seven with american airlines

SYSTEM flying to new york . (CONFIRM: to(fl, NY(C)) what date would you
like to depart boston ? (ASK: Az.date(fl.z)ato(fl. BOS))

USER june seventh

[Artzi and Zettlemoyer 201 1]

Parsing Learning Modeling

* Structured perceptron

* A unified learning algorithm
* Supervised learning

* Weak supervision

Structured Perceptron

® Simple additive updates

= Only requires efficient decoding (argmax)

= Closely related to MaxEnt and other
feature rich models

= Provably finds linear separator in finite
updates, if one exists

® Challenge: learning with hidden variables

Structured Perceptron

Data: {(z;,y;):i=1...n}

Fort=1...T: [iterate epochs]
For:=1...n: [iterate examples]
y* « argmax, (0, ®(x;,y)) [predict]

If y* # y;: [check]

0 0+ @(x;,y:) — P(z4,¥%) [update]

[Collins 2002]

One Derivation of the Perceptron

ew-f(z:y)

Log-linear model: p(ylz) = S ew i @y)
"

Step I: Differentiate, to maximize data log-likelihood
update = f(i,y:) = Epgylo f (i, y)
i
Step 2: Use online, stochastic gradient updates, for example i

update; = f(xi,y:) — Epylan) f (@6, y)

Step 3: Replace expectations with maxes (Viterbi approx.)

update; = f(xi,y:) — f(s,y") where y* = arg maxw - [z y)

The Perceptron with Hidden Variables

Log-linear ew S @:hy)

model: p(ylz) =D p(y, hlz) ply, hlz) = > € T@H)
- v,

Step I: Differentiate marginal, to maximize data log-likelihood
update = Eyniy,,an [F (@is by yi)] = Eytyonian [F (@i, by)]
Step 2: Use or:Iine, stochastic gradient updates, for example i:
update; = Epy, njwi) [f (@6, by yi)] = Epy,njzo lf (@6, by y)]
Step 3: Replace expectations with maxes (Viterbi approx.)
update; = f(xi, b y;) — f(xi, h*,y*) where

y*, h* = arg maxw - f(zih,y) and B =arg maxw - f(xi, hyyi)
by

Hidden Variable Perceptron

Data: {(z;,y;) :i=1...n}

[iterate epochs]

Fort=1...T:

Fort=1...n: [iterate examples]
y*, h* < argmax, (0, ®(z;, b, y)) [predict]
If y* # y;: [check]
I + arg maxp (0, ®(x;, h,y;) [predict hidden]

]

0 < 0+ ® (x5, W, y;) — ®(x, h*,y*) [update

[Liang et al. 2006; Zettlemoyer and Collins 2007]

Hidden Variable Perceptron

® No known convergence guarantees

= Log-linear version is non-convex
® Simple and easy to implement

- Works well with careful initialization
® Modifications for semantic parsing

= Lots of different hidden information

= Can add a margin constraint, do
probabilistic version, etc.

Unified Learning Algorithm

Handle various learning signals

Estimate parsing parameters

Induce lexicon structure

Related to loss-sensitive structured
perceptron [Singh-Miller and Collins 2007]

Learning Choices

Validation Function

V:Y—=A{tf} GENLEX (z,V; A, 0)

¢ Indicates correctness ¢ Given:
of a parse y sentence &
validation function

* Varying V allows for
differing forms of
supervision

lexicon A
parameters 0
* Produce a overly general
set of lexical entries

Unified Learning Algorithm

Initialize 6 using Ag , A < Ag e Online
Fort=1...T,i=1...n:
° .
Step 1: (Lexical generation) InPUt'
Step 2: (Update parameters) { (.
xi, Vi) :i=1...n}
Output: Parameters 6 and lexicon A
® 2 steps:

= Lexical generation

= Parameter update

Initialize 6 using Ag , A < Ay
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters ¢ and lexicon A

Initialize parameters and
lexicon

6 weights

A initial lexicon

Initialize 6 using Ag , A < Ag
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

Iterate over data

T # iterations

n # samples

Initialize 6 using Ag , A < Ag
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
. Set \q «+~ GENLEX (z;,V;; A, 0),
A+ AUXg
Let Y be the k highest scoring parses from
GEN (z;\)
. Select lexical entries from the highest scor-
ing valid parses:
Ai = UyeMAXL;(Y;e) LEX(y)
d. Update lexicon: A <~ AU \;
Step 2: (Update parameters)

®

s

o

Output: Parameters ¢ and lexicon A

Initialize 6 using Ap , A < Ao
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
a. Set \¢ « GENLEX (z;,V;; A, 0),
A AU
b. Let Y be the k highest scoring parses from
GEN (z;\)
c. Select lexical entries from the highest scor-
ing valid parses:
Ai = Uyerraxvivio) LEX ()
d. Update lexicon: A <— AU \;
Step 2: (Update parameters)

Output: Parameters ¢ and lexicon A

Generate a large set of
potential lexical entries

0 weights

x; sentence

V; validation function
GENLEX (z;,V;; A, 0)

lexical generation function

Initialize 6 using Ag , A < Ag
Fort=1...Tyi=1...n:

Step 1: (Lexical generation)
. Set \q <~ GENLEX (z;,Vi; A, 0),
A+ AUNg
. Let Y be the £ highest scoring parses from
GEN (x3;\)
. Select lexical entries from the highest scor-
ing valid parses:
Ai = Uyenmaxvivi LEX ()
d. Update lexicon: A <~ AU \;
Step 2: (Update parameters)

®

o

o

Output: Parameters 6 and lexicon A

Generate a large set of
potential lexical entries

6 weights
x; sentence
V; validation function
GENLEX (z;,V;; A, 0)
lexical generation function

Initialize 6 using Ag , A < Ap
Fort=1...Tyi=1...n:

Step 1: (Lexical generation)
a. Set \g <~ GENLEX (z;,V;; A, 0),
A+ AUXg
. Let Y be the & highest scoring parses from
GEN (z;;\)
c. Select lexical entries from the highest scor-
ing valid parses:
Ai = UyE;\'lA.‘(LQ(Y;H) LEX(y)
d. Update lexicon: A <~ AU \;
Step 2: (Update parameters)

=2

Output: Parameters 6 and lexicon A

Generate a large set of
potential lexical entries

0 weights
x; sentence
V; validation function
GENLEX (z;,V;; A, 0)
lexical generation function

Procedure to propose
potential new lexical
entries for a sentence

V:y%{tmf}

Y all parses

Initialize 6 using Ag , A < Ag
Fort=1...Tyi=1...n:

Step 1: (Lexical generation)
. Set A « GENLEX (z;,Vi: A, 0),
A AUNg
b. Let Y be the k highest scoring parses from
GEN (z;; \)
. Select lexical entries from the highest scor-
ing valid parses:
Ai = Uyenraxvivio) LEX ()
d. Update lexicon: A < AU \;
Step 2: (Update parameters)

®

o

Output: Parameters 0 and lexicon A

Get top parses]

x; sentence
k beam size
GEN (x;; \) set of all parses

Initialize 6 using Ay , A < Ag
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
Set A\g « GENLEX (;,Vi; A, 0),
A+ AUNg
. Let Y be the £ highest scoring parses from
GEN (zi; \)
. Select lexical entries from the highest scor-
ing valid parses:
Ai = Uyenraxvirio) LEX ()
d. Update lexicon: A <~ AU \;
Step 2: (Update parameters)

®

=2

o

Output: Parameters 6 and lexicon A

Get lexical entries from
highest scoring valid
parses

0 weights
V validation function
LEX (y) set of lexical entries
bi(y) = 6(wi,v)
MAXV;(Y;0) ={yly € Y AV;i(y)A
Yy €YVi(y) =
(0, @i(y")) < (0, ®i(y))}

Initialize 6 using Ag , A < Ag
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
. Set \q «+~ GENLEX (z;,V;; A, 0),
A+ AUXg
Let Y be the k highest scoring parses from
GEN (z;\)
. Select lexical entries from the highest scor-
ing valid parses:
Ai = UyeMAXL;(Y;e) LEX(y)
d. Update lexicon: A <~ AU \;
Step 2: (Update parameters)

®

s

o

Output: Parameters ¢ and lexicon A

[Update model’s IexiconJ

Initialize 6 using Ag , A < Ap
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)
a. Set G; «+— MAXV;(GEN (z;;\);0)
and B; + {e|le € GEN(z;;A) A =Vi(y)}
b. Construct sets of margin violating good and
bad parses:
R; + {glg € G; AN3be B;
s.t.(0, Di(g) — @i(b) < vAi(g,b)}
E;i + {blbe B; N3geG;
5.1 (0, ®i(g) = Bi(D)) < vAi(g,b)}
c. Apply the additive update:
060+ ‘R%‘ > er, ®ilr)
7ﬁ deE, ®;(e)

Output: Parameters ¢ and lexicon A

Initialize 6 using Ag , A < Ao
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)
a. Set G; <+~ MAXV;(GEN (z;;A);0)
and B; « {e|le € GEN (z3;A) A —Vi(y)}
b. Construct sets of margin violating good and
bad parses:
R+ {glge G; NTbe B;
s.t. (0, i(g) — ®i(b)) < ¥Ailg,b)}
E; < {blbe B; NIgeG;
5.t (60, 0,(9) — ®,(b)) < vA(g,b)}
c. Apply the additive update:
00+ \1.17\ Srer, Bi(r)
1 S, ®ile)

Output: Parameters 6 and lexicon A

Re-parse and group all
parses into ‘good’ and
‘bad’ sets

0 weights
x; sentence
V; validation function
GEN (z;; A) set of all parses
6i(y) = d(xi,y)
MAXV(Y;0) ={yly € Y AVi(y)A
Yy € YVi(y) =
0,0, < 0. 0:()}

Initialize 6 using Ag , A < Ap
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)
a. Set G; < MAXV;(GEN (x4 A); 6)
and B; < {ele € GEN (x5 A) A=Vi(y)}
b. Construct sets of margin violating good and
bad parses:
Ri <+ {glge Gi NI e B;
s.t. (0, @i(g) — @i(b)) < vAi(g,b)}
E; « {blbe Bi AJg e G;
s.t. (0, @i(g) — ®i(b)) < vAi(g.b)}
c. Apply the additive update:
0 8+ i Lrer, ilr)
1 Deer, Bile)

Output: Parameters 6 and lexicon A

For all pairs of ‘good’
and ‘bad’ parses, if their
scores violate the
margin, add each to
‘right’ and ‘error’ sets
respectively

0 weights

7 margin

6i(y) = ¢(xi,y)

Ai(y,y) = Pi(y) — @iyl

Initialize 0 using Ag , A Ap
Fort=1...T,i=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)
a. Set G; «+— MAXV;(GEN (z;;A);0)
and B; < {ele € GEN (z; A) A =Vi(y)}
b. Construct sets of margin violating good and
bad parses:
R+ {glge Gi NI e B;
s.t. (0, Di(g) — @i(b)) < vAi(g,)}

E; + {blbe B; AN3g € G;
s.t. (0, ®;(g) — @i(b)) < vAi(g,b)}
. Apply the additive update:
0«6+ ﬁzre& ®;(r)
*“317 2655‘ ®;(e)

Update towards
violating ‘good’ parses
and against violating ‘bad’

o

Output: Parameters 6 and lexicon A parses
0 weights
bi(y) = p(xiy)

Initialize 6 using Ag , A < Ag
Fort=1...T,i=1...n:

Step 1: (Lexical generation)

Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

[Return grammar]

6 weights

A lexicon

Features and Initialization

® Parse:indicate lexical entry and combinator use
¢ Logical form: indicate local properties of logical
forms, such as constant co-occurrence

Feature
Classes

e Often use an NP list
¢ Sometimes include additional, domain
independent entries for function words

Lexicon
Initialization

Initial * Positive weight for initial lexical indicator
Weights features

Unified Learning Algorithm

VY validation function
GENLEX (z,V;)\, 0)

lexical generation function

® Two parts of the algorithm we still need to define

® Depend on the task and supervision signal

Unified Learning Algorithm

Supervised

<|

Template-based GENLEX
Unification-based GENLE X

Weakly Supervised
1%
Template-based GENLEX

\

N\

Supervised Learning

show me the afternoon flights from LA to boston

Az. flight(z) A during(z, AFTERNOON) A from(z,LA) A to(x, BOS)

[Parse structure is latent]

Supervised Learning

Supervised
1%

Template-based GENLEX
Unification-based GENLEX

Supervised Validation
Function

® Validate logical form against gold label

Vily) = true if LF(y) = 2
i false else
y parse
z; labeled logical form
LF(y) logical form at the root of y

Supervised Template-based

GEN%@, z; A, 9)\

Sentence Logical Lexicon Weights
form

Small notation abuse:
take labeled logical
form instead of
validation function

Supervised Template-based
GENLEX (z,z;A,0)

| want a flight to new york
Az. flight(z) A to(z, NY C')

Supervised Template-based
GENLEX

® Use templates to constrain lexical entries
structure

® For example: from a small annotated dataset

Mw, {vi}7).JwF ADJ : Ax.v1(z))
Mw, {vi}7).JwF PP : XAz y.v(y, x)]
Mw, {vi}7).Jw F N : Az.vy (2)]

).

Mw, {v;}7).JwF S\NP/NP : Az y.v1(z,y)]

[Zettlemoyer and Collins 2005]

Supervised Template-based
GENLEX

[Need lexemes to instantiate templates]

whk ADJ : Az.vy ()]

Aw, {vi}?)[

D) w bk PP : Az y.v1(y, x)]
)
)l

(wv {U’L} i
(wv {U’i
AMw, {v;

>

whk N : Az.v(z)]
whk S\NP/NP : Ax.\y.vi(z,y)]

>

3
1

Supervised Template-based
GENLEX (z,z;\,0)

| want a flight to new york

Allpossible -\ Flight(z) A to(z, NY C)

sub-strings

I want

a flight
flight

flight to new

Supervised Template-based
GENLEX (x,z;\,0)

| want a flight to new york
Az. flight(x) Ato(z, NY C)

All logical
constants from

I want) labeled logical form
a flight flight

flight to

flight to new NYC

Supervised Template-based
GENLEX (z,z;A,0)

| want a flight to new york
Az. flight(z) Ato(z, NYC)

flight, { flight})

(
a flight flight
fight x ‘o |I» I .Want, H
(flight to new, {to, NYC'?})

flight to new NYC

I want

Create
lexemes

Supervised Template-based
GENLEX (z,z; A\, 0)

| want a flight to new york
Az. flight(z) A to(z, NY C')

1 want Flight
a flight

flight

flight to new NYC

‘ Initialize
(flight, { flight}) templates flight - N : Az.flight(z)

(I want, {}) || I want - S/NP : Az.x
(flight to new, {to, NYC'}) flight to new : S\NP/NP : Az \y.to(x,y)

to

Fast Parsing with Pruning

® GENLEX outputs a large number of entries

® For fast parsing: use the labeled logical form
to prune

® Prune partial logical forms that can’t lead to

labeled form

| want a flight from New York to Boston on Delta
Az.from(z, NYC) A to(z, BOS) A carrier(z, DL)

Fast Parsing with Pruning

| want a flight from New York to Boston on Delta
Az.from(z, NYC) A to(x, BOS) A carrier(xz, DL)

from New York to Boston

PP/NP NP PP/NP NP
Az Ay.to(y, x) NYC Az Ay.to(y,z) BOS
>

PP
x Ay.to(y, NYC')

>

PP
Ay.to(y, BOS)

Fast Parsing with Pruning

| want a flight from New York to Boston on Delta
Az.from(z, NYC) A to(x, BOS) A carrier(xz, DL)

from New York to Boston

PP/NP NP
Az Ay.to(y,x) BOS

PP -
Ay.to(y, BOS)

N\N
AfAy.f(y) Ato(y, BOS)

Supervised Template-based
GENLEX

Summary

No initial expert knowledge
Creates compact lexicons v

Language independent

Representation independent
Easily inject linguistic knowledge 4
Weakly supervised learning v

Unification-based GENLEX

® Automatically learns the templates

= Can be applied to any language and many different
approaches for semantic modeling

® Two step process
= Initialize lexicon with labeled logical forms

= “Reverse” parsing operations to split lexical
entries

[Kwiatkowski et al. 2010]

Unification-based GENLEX

® |nitialize lexicon with labeled logical forms
For every labeled training example:

| want a flight to Boston
Ax. flight(z) A to(z, BOS)

Initialize the lexicon with:
I want a flight to Boston F S : Az. flight(z) A to(xz, BOS)

Unification-based GENLEX

® Splitting lexical entries
P g

I want a flight to Boston - S : Ax. flight(z) A to(x, BOS)

¥

I want a flight - S/(S|NP) : AMf.Ax. flight(x) A f(x)
to Boston - S|NP : Az.to(z, BOS)
J \
T]
Many possible Many possible
phrase pairs category pairs

Unification-based GENLEX

® Splitting CCG categories:

I. Split logical form h to fand gs.t.

flg) =horAz.f(g(z)) =h

2. Infer syntax from logical form type

S/(S|NP) : M. Xx.flight(z) A f(z)
S|INP : Az.to(z, BOS)
S : Az flight(z) A to(z, BOS) ||» N
NP : xyAe. flight(z) A f(z,y)
NP :BOS

Unification-based GENLEX

® Split text and create all pairs

I want a flight to Boston - S : Az. flight(z) A to(z, BOS)

¥

Iwant S/(S|NP):Af . flight(x) A f(z)
a flight to Boston S|NP : \z.to(z, BOS)

I want a flight S/(S|NP): Af.\x.flight(z) A f(z)
to Boston S|NP : \z.to(z, BOS)

Unification-based
GENLEX (x,z;\,0

Logical
form

Sentence Lexicon Weights

I. Find highest scoring correct parse
2. Find split that most increases score

3. Return new lexical entries

Parameter Initialization

Compute co-occurrence (IBM Model 1)
between words and logical constants

I want a flight to Boston

S

S Az flught(z) A to(x, BOS)

Initial score for new lexical entries: average
over pairwise weights

Unification-based
GENLEX (z,z; A\, 0)

| want a flight to Boston
Az. flight(z) A to(z, BOS)

Unification-based
GENLEX (z,z;\,0)

| want a flight to Boston
Az. flight(z) A to(x, BOS)

I. Find highest scoring I want a flight to Boston
correct parse

2. Find splits that most
increases score

3. Return new lexical

entries

S
Az. flight(z) A to(z, BOS)

Unification-based
GENLEX (x,z;\,0)

| want a flight to Boston
Az.flight(z) A to(xz, BOS) I want a flight to Boston

S/(SINP) S\NPOS
Af.Ax. fligh Az. B
|. Find highest scoring fz.fught(@) A f(z) Awtola,)

correct parse \ /
2

. Find splits that most
. P I want a flight to Boston
InCreases score

3. Return new lexical
entries

S
Az. flight(z) A to(z, BOS)

Unification-based
GENLEX (z,z;\,0)

| want a flight to Boston
Azx. flight(z) A to(xz, BOS) I want a flight to Boston

S/(SINP) S|INP
. . . Af Az flight(z) A f(z) Aa.to(z, BOS)
Find highest scoring

correct parse \ /
2. Fi .

. Find splits that most
. P I want a flight to Boston
increases score

3. Return new lexical

S
Az. flight(z) A to(xz, BOS)

Unification-based
GENLEX (z,z; A\, 0)

I want a flight to Boston
Az. flight(z) A to(x, BOS)

. . . I want a flight to Boston
I. Find highest scoring S/(SINP SINP

correct parse A Az, f{lght())/\ flz) Az to(‘; BOS)
2. Find splits that most
increases score
3. Return new lexical

S
Az. flight(x) A to(z, BOS)

entries entries
Unification-based Unification-based
GENLEX (z,z;A,0) GENLEX (z,z;A,0)
| want a flight to Boston to Boston | want a flight to Boston to Boston
Ax. flight(z) A to(xz, BOS) (S|NP)/NP NP Az. flight(z) A to(xz, BOS) (S|NP)/NP NP

Ay Az.to(z,y) BOS

~1

I. Find highest scoring

correct parse 1 want a flight to Boston
2. Find splits that most S/(S|NP S|NP

increases score Az flight(z) A f(z) Az.to(z, BOS)
3. Return new lexical S >

entries Az.flight(z) A to(z, BOS)

Iteration 2

Ay Az.to(z,y) BOS

I. Find highest scoring V\ T

correct parse I want a flight to Boston
2. Find splits that most S/(SINP) SINP
increases score Az flight(z) A f(z) Awz.to(z, BOS)
3. Return new lexical ”
entries

Iteration 2

S
Az. flight(x) A to(z, BOS)

Experiments

® Two database corpora:
= Geo880/Geo250 [Zelle and Mooney 1996;Tang and Mooney 2001]
= ATIS pahi ecal 1994

® | earning from sentences paired with logical
forms

® Comparing template-based and unification-
based GENLEX methods

[Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010;2011]

B Template-based Unification-based [Unification-based + Factored Lexicon
90
67.5
45
225
0
Geoggy 75 G°°25g Ge°250 S Geo2s, y
8lisf, "Panys, ish apane U” kisp,

[Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010;201 1]

GENLEX Comparison

Templates Unification

No initial expert knowledge 4
Creates compact lexicons v

Language independent v

Representation independent v

Easily inject linguistic knowledge

SN

Weakly supervised learning

Recap
CCGs

CCG is fun

NP S\NP/ADJ — ADJ

CCG Afdx.f(x) Ax.fun(x)
S\NP g
Azx. fun(x)

S
fun(CCG)

[Steedman 1996, 2000]

Recap
Unified Learning Algorithm

Initialize 6 using Ag , A <= Ao

Fort=1...T;i=1...n:

° .
Step 1: (Lexical generation) Online

Step 2: (Update parameters) ® 2st eps:

Output: Parameters 6 and lexicon A
= Lexical generation

= Parameter update

supervision

Recap

Learning Choices

Validation Function

V:Y— {t, f} GENLEX(J:,V; A,@)
¢ Indicates correctness ¢ Given:
of a parse y sentence &
* Varying V allows for validation function V
differing forms of lexicon A

parameters 6
* Produce a overly general
set of lexical entries

Unified Learning Algorithm

Supervised

<|

Template-based GENLEX
Unification-based GENLE X

\. J

Weakly Supervised

1%
Template-based GENLEX

\

N\

Weak Supervision

What is the largest state that borders Texas?

New Mexico

[Clarke et al.2010; Liang et al. 201 1]

Weak Supervision

What is the largest state that borders Texas?

New Mexico

at the chair, move forward three steps past the sofa

]

[Execute the logical form and observe the result]

Weakly Supervised
Validation Function

true if EXEC(y) =e;
Vily) = { v

false else

y €) parse
e; € £ available execution result
EXEC(y): Y — €&

logical form at the root of y

[Artzi and Zettlemoyer 2013b]

Weakly Supervised

Validation Function
Depends on
/" supervision

v
Vily) = true if EXEC(y) = e;
W= false else

Domain-specific | y €Y parse
execution function:| e: € € available execution result
SQL query engine, | EXEC(y): Y — &
navigation robot logical form at the root of y

In general: execution function is a natural
part of a complete system

Weakly Supervised
Validation Function

Example EXEC(y):
Robot moving in an environment

Example supervision:

Complete € 9 9 2 2
Demonstration \#L i i i i

® 4 4 4 <«

Validate all steps

Weakly Supervised
Validation Function
Example EXEC(y):

Robot moving in an environment

Example supervision:

€
Final State kﬁi

Validate only last .
position

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york

I want . ! ’
a fight x i No access to

fligh .

. labeled logical form

flight to new
‘ Initialize
(Right, {flight}) templates flight - N : Az flight(z)
(T want, {}) || I want - S/NP : Az
(flight to new, {to, NY C}) flight to new : S\NP/NP : \x.\y.to(z,y)

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york

Use all logical
constants in the
system instead

T want flight, from,to,
;igxm x ground_transport, dtime, atime,
NYC,BOS,LA,SEA,...

flight to new

‘ Initialize

(fight, { flight}) templates flight - N : Az flight(x)

(T want, {}) || I want = S/NP : \z.x

(flight to new, {to, NYC}) flight to new : S\NP/NP : Ax.\y.to(x,y)
Many more Huge number of
lexemes lexical entries

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york

flight, from. to
3 ground_transport, dtime, atime

NYC,BOS.LA,SEA,...
flight = N : Az. flight(x)
» I want = S/NP : Az
flight to new : S\NP/NP : Az.\y.to(x,y)

= Huge number of
Pars:xzu.”e ‘ lexical entries
gener Xicon

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york

T want

a flight 7
flight x 4
flight to new

"3

Initialize
(fight, { flight}) templates flight - N : Az flight(z)
(I want, {})

|| I want - S/NP : Av.x
(flight to new, {to, NYC'})

flight to new : S\NP/NP : Ax.\y.to(z,y)

Weakly Supervised
GENLEX (z,V; A, 0)

® Gradually prune lexical entries using a coarse-
to-fine semantic parsing algorithm

® Transition from coarse to fine defined by
typing system

‘ Coarse Ontology

tr flight <f145, frome i <ioe>>,t0< 1, <loc,t>>
ground_transport < gy 1>, dtime < ir <yi1>>, AiMe <y <tit>>,

la
f § NYCui, BOSi, JF Ky, LAS,p, ..

= =
‘ Generalize types

flightceis, fromee cets>,t0<e,<et>>,
ground_transport <. >, dtimecc <cp>>, atimece <ct>>,

flight<pi4> | Nyc, BOS,.LA,.SEA,....

B fl—
\ G

flight<e ¢

! Coarse Ontology

I flight<pies, frome i <ioe,>>5t0< f1,<loc,t>>»
ground_transport < g i, dtime <y <iit>>, AHME< i <tit>>,

fla
|_ 1 NY O BOSwi JF Koy, LAS oy ..

gt ‘ Generalize types

flight<e i, fromce <et>>,t0<e <et>>,

ground_transport<e s, dtimece <ci>>, atimece <e 1>,

NYC,,BOS.,LA,, SEA,, ...
[l Merge identically
typed constants

C]~<e,t>7 02<6,<e,t>>7 C35, .

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york
All possible
sub-strings

I want Cl<e.,t>
a flight

C2cle <ot
flight sosete

flight to new c3e

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york
All possible
sub-strings

1 (flight, {c1})
Clce,t>

a flight 02 “ |I» I want, {}

flight sesat>> (flight to new, {¢2})

flight to new

I want

Create
lexemes

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york

1 want Cleers
a flight

2ce <e,
ighe x <e<ets>
3

flight to new

flight F N : Az.cl(z)
(flight, {c1})
(I want, {}) » I want - S/NP : \v.x
(fight to nev, {e2}) flight to new - S\NP/NP : \z.\y.c2(z,y)
Initialize ---
templates

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york

1 want levis
a flight P
ml: x‘im.«r» Coarse
flight to new 3,
constants
flight - N : Az.el(z)

(flight, {c1})

Gvont) gy Twanth §/NP: Az

(gt w0vewide2) SV gkt to new - S\NP/NP : Az \yl@(x, y)

Initialize ---
templates

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york
flight = N : Az.cl(z)

Ll O/NTD .\

Prune by e

parsing Hiahit L G\ ND/ND . N\ Ve a2l o)
Y Y

Keep only lexical entries that participate in
complete parses, which score higher than the
current best valid parse by a margin

Weakly Supervised
GENLEX (z,V; A, 0)

| want a flight to new york
flight = N : Az.el(x)

Replace all coarse constants with [l
all similarly typed constants

flight F N : \z. flight(z)

flight F N : Az.ground_transport(z)
flight = N : Az.nonstop(x)

flight F N : Az.connecting(z)

Weak Supervision Experiments

Requlrements Instruction:

at the chair, move forward three steps past the sofa
Demonstration:

@ @ @
® Know how to act given a logical form ‘x fﬂ \;1

® A validation function

(N

C : ® Situated learning with joint inference
® Templates for lexical induction g J
® Two forms of validation

® Template-based GENLEX (z,V; A, 6)

[Artzi and Zettlemoyer 2013b]

Results Unified Learning Algorithm
Extensions

Final State Validation
I Trace Validation
80
776 | 78.63

o ® | oss-sensitive learning

» 5463 0% - Applied to learning from conversations
n ® Stochastic gradient descent
6 - Approximate expectation computation
0

Single Sentence Sequence Logical Form

[Artzi and Zettlemoyer 201 |; Zettlemoyer and Collins 2005]

Parsing Learning Modeling MOdeling

Show me all papers about semantic parsing

* Structured perceptron

[Parsing with CCG
* A unified learning algorithm ‘ e
Azx.paper(x) A topic(z, SEM PAR)

* Supervised learning

* Weak supervision
[What should these logical forms look like?]

But why should we care?

Modeling Considerations

Modeling is key to learning compact
lexicons and high performing models

® Capture language complexity
® Satisfy system requirements

® Align with language units of meaning

Parsing

Learning Modeling

* Semantic modeling for:

- Querying databases
- Referring to physical objects
- Executing instructions

Querying Databases

L
p.

AL " 1o WA | OR Bianca co
ontgomery .
WA D Antero co
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2 Shasea A

What is the capital of Arizona?
How many states border California?

What is the largest state?

Querying Databases

L
p.

AL " 10 WA OR Bianca co
ontgomery .
WA 1D Antero co
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2 Shasea A

What is the capital of Arizona?
How many states border California?

What is the largest state?

Querying Databases

L
p.

AL " 1o WA OR Bianca co
ontgomer; A
8 Y WA D Antero co
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2 Shasta | CA

What is the capital of Arizona?

How many states - California?

What is the largest state?

Querying Databases

ﬁii Mountains
p.

AL " 10 WA OR Bianca co
ontgomer: .
8 14 WA D Antero co
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2 Shasta | CA

What is the capital of Arizona?

How many states border California?

What is the largest state?

Querying Databases

Eii Mountains
p.

L " 1o WA OR Bianca co
ontgomer: 5
ha v WA D Antero co
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix . Shasta CA

What is the capital of Arizona?

How many states border California? Prepositions

What is the largest state!

Querying Databases

-
p.

" . 1o WA OR Bianca co
ontgomer: .
g Y WA D Antero CcO
AK Juneau 0.4 CA OR Rainier WA
CA NV
- oo N Shasta CA

What is the capital of Arizona?

How many states border California? Superlatives

What is the largest state?

Querying Databases

L
p.

AL " 1o WA | OR Bianca co
ontgomery E
WA D Antero co
AK Juneau 0.4 CA OR Rainier WA
CA NV
— hoeni N Shasta CcA

What is -capital of Arizona?

How many states border California?

What is - largest state?

Querying Databases

L
p.

AL " 10 WA OR Bianca co
ontgomery .
WA 1D Antero co
AK Juneau 0.4 CA OR Rainier WA
CA NV
- S N Shasta CcA

'What|is the capital of Arizona?

_states border California?

‘What is the largest state?

Referring to DB Entities

Noun phrases] Select single DB entities

Relations between entities
Verbs

Nouns] Typing (i.e., column headers)

(
[Prepositions
(
(

Superlatives] Ordering queries

Noun Phrases

Noun phrases name
| ‘ specific entities

AL Montgome Bianca co Washington
Antero co A
AK Juneau Rainier WA W
AZ Phoenix Shasta CA
WA Olympia Florida
Y Albary e-typed The Sunshine State
! Springf entities FL

Noun Phrases

Mountains Noun phrases name
‘ specific entities

s =
|

Verb Relations

Verbs express relations
between entities

Bianca co B WA OR
AL | Montgome PRSI % AL | Montgome wa | o | Nevada borders California
AK Juneau Rainier WA WA AK Juneau CA OR border(NV7 C’A)
cA | Ny
AZ Phoenix Shasta CA AZ Phoenix true
WA Olympia WA Olympia
NY Albany The Sunshine State NY Albany
I Sprinef NP Il Springf
FL
Verb Relations Nouns
Mountains Nouns are functions
‘) ‘ that define entity type
AL Montgome Nevada borders California AL Montgome Bianca | CO state
AK NP S\NP/NP NP AK Anero | <0 Az.state(x)
Juneau NV Az\y.border(y, x) CA Juneau Rainier | WA
AZ Phoenix S\NP > AZ Phoenix Shasta CA { 7 , e .}
WA Olympia Ayborder(y, CA) WA Olympia
NY Albany S NY Albany e—t mountain
; - border(NV,CA) ” — functions Az.mountain(z)
define sets | {gmvey @, . }
Nouns Prepositions

e

=T

Bianca ¢
AL Montgome

Antero C(
AK Juneau Rainier W.
AZ Phoenix Shasta
WA Olympia
NY Albany

Springf

Nouns are functions
that define entity type

state

N
Az.state(x)

mountain
N

Az.mountain(x)

e

Bianca co
AL Montgome:

Antero co
AK Juneau Rainier WA
AZ Phoenix Shasta CA
WA Olympia
NY Albany

Il Springf

Prepositional phrases are
conjunctive modifiers

mountain in Colorado
Az.mountain(z)A

in(z, CO)

{==D oD |

e

Prepositions

Function Words

Border Certain words are used to
- modify syntactic roles

mountain in Colorado
WA | OR
AL | Montgome) N tain(z) iP /N;P)]C\‘UOD AL | Montgome wa | 0 | statethat borders California
z.mountain(x Azin(z
AK Juneau o — AK Juneau CA | OR | Az.state(z) A border(z, CA)
Az Phoen Ao IEPCO) AZ P cA | Nv
oenix x.an(x oenix NV AZ }
7 {o.mm
WA Olympia N\N WA Olympia
NY Albany Mz f(z) Ain(z, CO) NY Albany
N
I Sprin Az.mountain(z) Ain(z, CO) I Sprin
Function Words Function Words
:fsjgelsie | Certain words are used to
‘ P | modify syntactic roles
state that borders California WA | OR
AL Mont; N PP/(S\NP S\NP/NP NP AL Mont;
eneome NV /)(\f>))\z.)\y\-bom/le'r(l/y x) CA e WA D ° May have other senses
AK Juneau S\NP 3 AK Juneau CA | OR with semantic meaning
AZ Phoenix Xy.border(y, CA) AZ Phoenix CA | NV | e May carry content in
PP other domains
WA Olympia Ay.border(y, CA) WA Olympia
NN
N Albany Af-Ay-f(y) A border(y, CA) Y Albany Other common function
I Sprin I Sprin

N
Az.state(x) A border(x, CA)

words: which, of, for, are, is,
does, please

m
I

Definite Determiners

Definite determiner
selects the single members
of a set when such exists

L:(e—t)—e

the mountain in Washington

wz.mountain(z) A in(z, WA)

Bianca co
AL Montgome

Antero co
AK Juneau Rainier WA
AZ Phoenix Shasta CA
WA Olympia
NY Albany

Springf

(D} =) oD

Definite Determiners

e

‘ Definite determiner
selects the single members

Bianca co of a set when such exists
AL Montgome

Antero co
AK Juneau Rainier WA L (6 1 t) €
AZ Phoenix Shasta CA
WA Olympia the mountain in Colorado
NY Albany wx.mountain(z) A in(z, CO)
I Springf;

e Janreo JEES ¢

No information to disambiguate

Definite Determiners

e

AL | Montgome the mountain in Colorado
AK Juneau)_;\C,f/fj\(]x)
AZ Phoenix N
WA Olympia Az.mountain(z) Ain(z, CO)
>
NY Albany NP
wr.mountain(x) A in(z, CO)

I Spri

Indefinite Determiners

‘ Indefinite determiners are
R select any entity from a

set without a preference

AL | Montgom: Bianca | CO
Antero | CO
A | e e w A (e—=1) —e
AZ Phoenix Shasta CA
WA Olympia state with a mountain
NY Albany Az.state(x) A in(Ay.mountain(y), x)
I Sori

Az.state(x) A Jy.mountain(y) Ain(y,)
Exists

[Steedman 201 I; Artzi and Zettlemoyer 2013b]

Indefinite Determiners

state with a mountain

N PP/NP NP/N N
Az.state(z) Az Ayan(z,y) AfAz.f(z) Az.mountain(z)
>

Az.mountain(z)

PP
Ay.(Az.mountain(z), y)

N\N
A Ay-f(y) A (Az.mountain(x),y)

N
Ay.state(y) A (Az.mountain(z),y)

Indefinite Determiners

a

PP\(PP/NP)/N
AfAgAy.3z.g(@,y) A fz)

a a
S\NP\(S\NP/NP)/N "» ~ NP/N
gy e.g(x,y) A f() AAZf ()
S\(S\NP)/N
AfAg Ay 3w.g(z,y) A f(z)

Using the indefinite quantifier simplifies CCG
handling of the indefinite determiner

Superlatives select optimal
X entities according to a measure
AL | Montgomery | 39 the largest state
AK Juneau 0.4 argmaz(Az.state(x), Ay.pop(y))
AZ Phoenix 27 Min or max ...over this .,Aa.ccordlng to
set this measure
WA Olympia 4.1 {,, — —
NY Albany 17.5 } AK 04
7' .. Seattle [27

I Sprinsfield 1 San Francisco | 4.1

NY 17.5

(o e |

Superlatives

Superlatives select optimal
entities according to a measure

AL | Momgomery | 39 the largest state

AK Juneau 04 argmax(Az.state(z), Ay.pop(y))
i Min or max ..over this ..according to

AZ Phoenix 27 set this measure
WA Olympia 4.1 o -

CA -

NY Albany 17.5 . AK 04
Seardle | 27

Il Springfield 1 San Francisco | 4.1
NY 17.5

Superlatives

AL Montg
state
AK Jur
N

AZ Pho Az.state(x)
WA Oly NP g
Ny N argmaz(Az.state(x), A\y.pop(y))

Il Sp

Superlatives

AL Montg populated state

AK Jun N N
Az.pop(x) Az.state(x)

AZ Pho NP/N >

wa | o Af.argmaz(\a.f(2), y.pop(y)))

NP
NY Alt argmaz(Az.state(z), \y.pop(y))
Il Sp

Representing Questions

-

M WA OR Bianca co
ontgomery

WA D Antero co
[oac | e | 0 ca | or

Which mountains are in Arizona? Represent questions as
the queries that generate
SELECT Name FROM Mountains their answers

WHERE State == AZ

[Reflects the query SQL]

Representing Questions

~

M WA OR Bianca co
lontgomery

WA D Antero [ele]
[ac | e | 0 cA | or

Which mountains are in Arizona? Represent questions as

Az.mountain(z) A in(z, AZ)

the queries that generate
their answers

[Reflects the query SQL]

Representing Questions

-

M WA OR Bianca co
ontgomer;

i 4 WA D Antero co
| AK | Juneau | 0 CA OR -

How many states border California? Represent questions as
the queries that generate
count(Az.state(x) A border(x,CA)) their answers

[Reflects the query SQL]

DB Queries

¢ Refer to entities in a database

So Far * Query over type of entities, order and other

database properties

* How does this approach hold for physical
objects?
* What do we need to change? Add?

Referring to Real World
Objects

Referring to Real World
Objects

all the arches except the green arch

the blue triangle and the green arch

Plurality

® w‘ wehes
Ao/ ialal A o)

the arches
wx.arch(x)

\‘ﬂ

& VWV

Plurality

blue blocks
Az.blue(x) A block(x)

L ol

brown block

o~
N
_— Az.brown(z) A block(x)

N

Plurality

® All entities are sets

® Space of entities includes
singletons and sets of
multiple objects

for sets being a
primitive type

[Scontras et al. 2012]

\‘ { Cognitive evidence }
: >

Plurality

Plurality is a modifier and
entities are defined to be
sets.

arch
Az.arch(z) A sg(z)

e e
e}

Plurality

Plurality is a modifier and
entities are defined to be
sets.

arches

\‘ﬂ E.arch(m) A plu(z)

= {"7\”7(7“}
N

S Vet

Plurality and Determiners
Definite determiner must
» select a single set. E.g.,
heuristically select the
maximal set.

the arches
wr.arch(z) A plu(z)

S alal il

Adjectives

Adjectives are conjunctive

% W modifiers
v

blue objects

(\rw - blue(x) A obj(x) A plu(z)

DBs and Physical Objects

® Describe and refer to entities

® Ask about objects and relations between
them

® Next: move into more dynamic scenarios
' ' \ﬂv

e \

w ¥

Borders

Beyond Queries

(s

Prepositional phrases .
"POS! P Constrain sets
Adjectives

Questions

Works well for natural language interfaces for DBs

[How can we use this approach for other domains?]

Procedural Representations

® Common approach to represent
instructional language

® Natural for executing commands

go forward along the stone hall to the
intersection with a bare concrete hall
Verify(front: GRAVEL_HALL)

Travel()
Verify(side: CONCRETE_HALL)

[Chen and Mooney 2011]

Procedural Representations

® Common approach to represent
instructional language

® Natural for executing commands

leave the room and go right
do_seq(veri fy(room(current_loc)),
move_to(unique_thing(Az.equals(distance(x), 1))),
move_to(right_loc))

[Matuszek et al. 2012b]

Procedural Representations

® Common approach to represent
instructional language

® Natural for executing commands

Click Start, point to Search, and the click For Files and
Folders. In the Search for box, type “msdownld.tmp”.

LEFT_CLICK (Start)
LEFT_CLICK (Search)

TY PE_INFO(Search for:, “msdownld.tmp”)

[Branavan et al. 2009, Branavan et al. 2010]

Procedural Representations

Dissonance between structure of
semantics and language

.

* Poor generalization of learned models

e Difficult to capture complex language

Spatial and Instructional Language

Name objects

(Nows

Prepositional phrases .
R Constrain sets
Adjectives

Instructions to execute

(v
(Imperatives Sets of events

Modeling Instructions

Describing an Executing

environment instructions

=)
€S
Agent s

4

® Model actions and imperatives

® Consider how the state of the agent influences its
understanding of language

Modeling Instructions

place your back against the
wall of the t intersection

turn left

go forward along the pink
flowered carpet hall two
segments to the
intersection with the brick
hall

Instructional Environment

® Maps are graphs of
connected positions

® Positions have properties and
contain objects

Instructional Environment

® Agent can move forward,
turn right and turn left

® Agent perceives clusters of
positions

e Clusters capture objects

Instructional Environment

® Agent can move forward,

Instructional Environment

| 2 3 4 5

® Agent can move forward,

2 turn right and turn left 2 turn right and turn left
3 ® Agent perceives clusters of 3 &G . <@ ® Agent perceives clusters of
positions positions
4 4
® Clusters capture objects ® Clusters capture objects
5 5
. . Grounded Resolution of
Instructional Environment :
Determiners
| 2 3 4 5
| Nouns denote sets of
objects
2
® Refer to objects similarly to
our previous domains 3 4] chair
® “Query” the world . Az.chair(x)
{E}
5

Grounded Resolution of
Determiners
2 3 4 5

Grounded Resolution of
Determiners
I 2 3 4 5

Definite determiner | Definite determiner
selects a single entity selects a single entity
2
the chair 3 the chair
I wx.chair(z) L vx.chair(z)
4
L:(e—t)—e
5
{H} >
Grounded Resolution of Grounded Resolution of
Determiners Determiners
2 3 4 5 | 2 3 4 5
Definite determiner I Definite determiner
selects a single entity selects a single entity
2
the chair 3 the chair
L vx.chair(x) i vr.chair(z)
4 [Must disambiguate to
5 select a single entity

Grounded Resolution of
Determiners

Definite determiner
selects a single entity

n the chair
2 LI I)]
wx.chair(z)
[Definite determiner
depends on agent state

A A 4
EE-E

Modeling Instructions

Events takin, -
g Events refer to Implicit

environment requests

place in the
world

Modeling Instructions

Events takin -
g Events refer to Implicit

environment requests

place in the
world

<mmm -l‘%\

walk forward twice

L eme— S —————

Modeling Instructions

Events takin -
| Events refer to Implicit

environment requests

place in the
world

)

RFM 4—(":\
48
move twice to the chair %

T mem— ———

Modeling Instructions

Events taking
place in the
world

Events refer to
environment

need to

move first

o

o
* Y at the chair, turn right 3
| — e

Davidsonian Event Semantics

® Actions in the world are constrained by
adverbial modifiers

® The number of such modifiers is flexible

Adverbial modification is thus seen to be logically on a par
with adjectival modification: what adverbial clauses modify is
not verbs, but the events that certain verbs introduce.

Davidson 1969 (quoted in Maienborn et al. 2010)

[Davidson 1967]

Davidsonian Event Semantics

® Use event variable to represent events
® Verbs describe events like nouns describe entities

® Adverbials are conjunctive modifiers

Vincent shot Marvin in the car accidentally

Ja.shot(a, VINCENT, MARVIN)A

in(a, vz.car(x)) A —intentional (a)

[Davidson 1967]

Neo-Davidsonian Event
Semantics

Active Vincent shot Marvin
Ja.shot(a, VINCENT, MARVIN)

Passive Marvin was shot {by-Vinecent) Agent

optional in
passive

[Parsons 1990]

Neo-Davidsonian Event
Semantics

Active Vincent shot Marvin
Ja.shot(a, VINCENT, MARVIN)
Passive Marvin was shot {by-Vineent) Agent

optional in
Ja.shot(a, MARVIN) passive

Can we represent such distinctions without
requiring different arity predicates?

[Parsons 1990]

Neo-Davidsonian Event
Semantics

® Separation between semantic and syntactic roles

® Thematic roles captured by conjunctive predicates

Vincent shot Marvin
Ja.shot(a, VINCENT, MARVIN)

4

Ja.shot(a) A agent(a, VINCENT) A patient(a, MARVIN)

[Parsons 1990]

Neo-Davidsonian Event
Semantics

Vincent shot Marvin in the car accidentally

Ja.shot(a) A agent(a, VINCENT)A
patient(a, MARVIN) Ain(a,x.car(x)) A —intentional(a)

® Decomposition to conjunctive modifiers
makes incremental interpretation simpler

® Shallow semantic structures: no need to
modify deeply embedded variables

[Parsons 1990]

Neo-Davidsonian Event
Semantics

Ja.shot(a) A agent(a, VINCENT)A
patient(a, MARVIN) Ain(a, tx.car(x)) A —intentional(a)

Without events:
shot(VINCENT, MARVIN,wx.car(z), INTENTIONAL)

® Decomposition to conjunctive modifiers
makes incremental interpretation simpler

® Shallow semantic structures: no need to
modify deeply embedded variables

[Parsons 1990]

Representing Imperatives

move|forward |past the sofafto the chair

Intermediate
position

Final position

® |mperatives define actions to be executed
® Constrained by adverbials

® Similar to how nouns are defined

Representing Imperatives

move|forward |past the sofafto the chair

Intermediate
position

Final position

® |mperatives are sets of actions

® Just like nouns: functions from events to truth

frev—t

Representing Imperatives

move|forward |past the sofafto the chair

Intermediate Final position

position

[Given a set, what do we actually execute?]

® Need to select a single action and execute it

® Reasonable solution: select simplest/shortest

Modeling Instructions

* Imperatives are sets of
events

* Events are sequences of
identical actions

move

Aa.move(a

{O- o

[Disambiguate by preferring]

shorter sequences

Modeling Instructions

Events can be modified
by adverbials

move twice

Aa.move(a) A len(a,2)

-}

Modeling Instructions

Events can be modified
by adverbials

go to the chair

Aa.move(a)A

to(a, tx.chair(z))

-}

Modeling Instructions

go to the chair
S AP/NP NP/N N
Aa.move(a) Az.da.to(a,x) Afux.f(z) Az.chair(z)
ey g
NP

w.chair(zx)

AP
Aa.to(a, vx.chair(x))

S\S
AfAa.f(a) Ato(a, vx.chair(x))

S
Aa.move(a) A to(a, tx.chair(z))

Treatment of events and their adverbials is similar
to nouns and prepositional phrases

Modeling Instructions

Dynamic Models

Implicit Actions

Dynamic Models

World model changes
during execution
move until you reach the chair

Aa.move(a)A\

post(a, intersect(vz.chair(z), you))

Dynamic Models

World model changes
during execution
move until you reach the chair

Aa.move(a)A\

(éostﬁa, intersect(tx.chair(x), you))

Update 5 J
5 &

e
'\(\"'?'(‘5e
[Update model to reflect state change]
Implicit Actions Experiments

Consider action assignments
with prefixed implicit actions

at the chair, turn left

Aa.turn(a) A dir(a,left)A

re(a, intersect(vx.chair(z), you))

DE=)

Implicit actions

Instruction:
at the chair, move forward three steps past the sofa

Demonstration:
@ @ @i e
HE e >

® Situated learning with joint inference
® Two forms of validation

® Template-based GENLEX (z,V; A, 0)

[Artzi and Zettlemoyer 2013b]

Results
SAIL Corpus - Cross Validation

Chen and Mooney 201 |
I Chen 2012
70 M Kim and Mooney 2012
Final State Validation
B Trace Validation

Single Sentence Sequence

[Artzi and Zettlemoyer 2013b]

More Reading about
Modeling

Type-Logical Semantics
by Bob Carpenter

Bob Carpenter

Type-Logical manr.lcs

[Carpenter 1997]

Today

~

Parsing Combinatory Categorial Grammars

J

Learning Unified learning algorithm

MLl SIls Best practices for semantics design

Looking Forward

Looking Forward: Scale
]
Goal Answer any question
posed to large, community wmdla _
au thore d da tabases \Y’\:)}:ztcaiatr:? the neighborhoods in New

= Large domains How many countries use the rupee?

- Scalable algorithms count(z) . countries_used(rupee, z)

- Unseen words and How many Peabody Award winners are
COnCePtS there?

x).Jy. d_h
Cai and Yates 2013a, 2013p “"1") 7 Ziertenor) 1

award(y, peabody_award)

Az . neighborhoods(new_york, z)

Looking Forward: Code

(@) Text Sp
The input contains a single integer T that indicates the

Program using natural T o e

case begins with a line contains an integer N, representing
the size of wall. The next N ines represent the original

language e . e e
Challenges giibite

aninteger N the next N lines

- Complex intent i

- Complex output o e
Kushman and Barzilay P ||
2013; Lei et al.2013 Foe |
[Text Description [Regular Expression |

[three letter word starting with " X* | \bX [A-Za-2] (2} \b]

Looking Forward: Context

Az flight(z) A from(z, bos) A to(x, phi)
with context
Ay.3z. flight(z) A from(z, bos) A to(x, phi)
A during(x, morning) A aircraft(z) =y
. flight(z) A from(x, mil) A to(x, orl)

. Example #1:
Goal Understandi ng how (a) show me the flights from boston to philly
Az flight(z) A from(a, bos) A to(x, phi)
A during(a, morning)
AlEEES - Data
Example #2:
ellipsis, etc. (b) cheapest

sentence meaning Varies (b) show me the ones that leave in the morning
(c) what kind of plane is used on these flights
= Linguistics: co-ref, (2) show me flights from milwaukee to orlando
argmin(Aa. flight(x) A from(x,mil) A to(z, orl),

. Ay.f
Miller et al. |996, (© depmin%;em;es%.%ei)fycizso‘cchk A
. argmin(Az. flight(z) A 2, mil) A to(w,
Zettlemoyer and Collins """/ i) Lo amertis T,

2009; Artzi and Ay fare(y))
Zettlemoyer 2013

Looking Forward: Sensors

. =3
Y
Integrate semantic parsing es ‘ ®
with rich sensing on real . $5
15%5.° 1a
robots RS = . |
Challenges JEgntic]

the back of the truck

- Managing uncertainty |wo e
- Interactive learning T
Matuszek et al. 2012; Tellex

et al. 2013; Krishnamurthy
and Kollar 2013

from the truck.

UW SPF

Open source semantic parsing framework

http://yoavartzi.com/spf
Semantic Flexible High-Order Learning [fin]
Parser Logic Representation Algorithms

Includes ready-to-run examples

[Artzi and Zettlemoyer 2013a]

Function Composition

9ia.p) = A2.G
Fiom = 2y-F
, 9(A) = (A\a.G)(A) = Glz := A
Supplementary Material F(g(A)) = (. F)(Glz = A]) =

Fly = Glz == AJ]

e f(g(A))[A =] =
Az Fly = Gz := A]|][A =z =

)\x.F[y :G] =(f g)(d)

