Phrase-based Machine Translation is State-of-the-Art for Automatic Grammatical Error Correction

Marcin Junczys-Dowmunt1 and Roman Grundkiewicz2
1Adam Mickiewicz University, Poznań, 2Adam Mickiewicz University in Poznań


Abstract

In this work, we study parameter tuning towards the M2 metric, the standard metric for automatic grammar error correction (GEC) tasks. After implementing M2 as a scorer in the Moses tuning framework, we investigate interactions of dense and sparse features, different optimizers, and tuning strategies for the CoNLL-2014 shared task. We notice erratic behavior when optimizing sparse feature weights with M2 and offer partial solutions. We find that a bare-bones phrase-based SMT setup with task-specific parameter-tuning outperforms all previously published results for the CoNLL-2014 test set by a large margin (46.37% M2 over previously 41.75%, an SMT system with neural features) while being trained on the same, publicly available data. Our newly introduced dense and sparse features widen that gap, and we improve the state-of-the-art to 49.49% M2.