Unsupervised Neural Dependency Parsing

Yong Jiang, Wenjuan Han, Kewei Tu
ShanghaiTech University


Abstract

Unsupervised dependency parsing aims to learn a dependency grammar from text annotated with only POS tags. Various features and inductive biases are often used to incorporate prior knowledge into learning. One useful type of prior information is that there exist correlations between the parameters of grammar rules involving different POS tags. Previous work employed manually designed features or special prior distributions to encode such information. In this paper, we propose a novel approach to unsupervised dependency parsing that uses a neural model to predict grammar rule probabilities based on distributed representation of POS tags. The distributed representation is automatically learned from data and captures the correlations between POS tags. Our experiments show that our approach outperforms previous approaches utilizing POS correlations and is competitive with recent state-of-the-art approaches on nine different languages.