Learning Connective-based Word Representations for Implicit Discourse Relation Identification

ChloƩ Braud1 and Pascal Denis2
1University of Copenhagen, 2INRIA


Abstract

We introduce a simple semi-supervised approach to improve implicit discourse relation identification. This approach harnesses large amounts of automatically extracted discourse connectives along with their arguments to construct new distributional word representations. Specifically, we represent words in the space of discourse connectives as a way to directly encode their rhetorical function. Experiments on the Penn Discourse Treebank demonstrate the effectiveness of these task-tailored representations in predicting implicit discourse relations. Our results indeed show that, despite their simplicity, these connective-based representations outperform various off-the-shelf word embeddings, and achieve state-of-the-art performance on this problem.