POLY: Mining Relational Paraphrases from Multilingual Sentences

Adam Grycner1 and Gerhard Weikum2
1Max-Planck Institute for Informatics, 2Max Planck Institute for Informatics


Abstract

Language resources that systematically organize paraphrases for binary relations are of great value for various NLP tasks and have recently been advanced in projects like PATTY, WiseNet and DEFIE. This paper presents a new method for building such a resource and the resource itself, called POLY. Starting with a very large collection of multilingual sentences parsed into triples of phrases, our method clusters relational phrases using probabilistic measures. We judiciously leverage fine-grained semantic typing of relational arguments for identifying synonymous phrases. The evaluation of POLY shows significant improvements in precision and recall over the prior works on PATTY and DEFIE. An extrinsic use case demonstrates the benefits of POLY for question answering.