Measuring Word Relatedness Using Heterogeneous Vector Space Models

Wen-tau Yih1 and Vahed Qazvinian2
1Microsoft Research, 2University of Michigan


Abstract

Noticing that different information sources often provide complementary coverage of word sense and meaning, we propose a simple and yet effective strategy for measuring lexical semantics. Our model consists of a committee of vector space models built on a text corpus, Web search results and thesauruses, and measures the semantic word relatedness using the averaged cosine similarity scores. Despite its simplicity, our system correlates with human judgements better or similarly compared to existing methods on several benchmark datasets, including WordSim353.